Blog

Inside the SOC

BlackMatter's Smash-and-Grab Ransom Attack Incident Analysis

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Jan 2023
04
Jan 2023
Stay informed on cybersecurity trends! Read about a BlackMatters ransom attack incident and Darktrace's analysis on how RESPOND could have stopped the attack.

Only a few years ago, popular reporting announced that the days of smash-and-grab attacks were over and that a new breed of hackers were taking over with subtler, ‘low-and-slow’ tactics [1]. Although these have undoubtedly appeared, smash-and-grab have quickly become overlooked – perhaps with worrying consequences. Last year, Google saw repeated phishing campaigns using cookie theft malware and most recently, reports of hacktivists using similar techniques have been identified during the 2022 Ukraine Conflict [2 & 3]. Where did their inspiration come from? For larger APT groups such as BlackMatter, which first appeared in the summer of 2021, smash-and-grabs never went out of fashion.

This blog dissects a BlackMatter ransomware attack that hit an organization trialing Darktrace back in 2021. The case reveals what can happen when a security team does not react to high-priority alerts. 

When entire ransomware attacks can be carried out over the course of just 48 hours, there is a high risk to relying on security teams to react to detection notifications and prevent damage before the threat escalates. Although there has been hesitancy in its uptake [4], this blog also demonstrates the need for automated response solutions like Darktrace RESPOND.

The Name Game: Untangling BlackMatter, REvil, and DarkSide

Despite being a short-lived criminal organization on the surface [5], a number of parallels have now been drawn between the TTPs (Tactics, Techniques and Procedures) of the newer BlackMatter group and those of the retired REvil and DarkSide organizations [6]. 

Prior to their retirement, DarkSide and REvil were perhaps the biggest names in cyber-crime, responsible for two of last year’s most devastating ransomware attacks. Less than two weeks after the Colonial Pipeline attack, DarkSide announced it was shutting down its operation [7]. Meanwhile the FBI shutdown REvil in January 2022 after its devastating Fourth of July Kaseya attacks and a failed return in September [8]. It is now suspected that members from one or both went on to form BlackMatter.

This rebranding strategy parallels the smash-and-grab attacks these groups now increasingly employ: they make their money, and a lot of noise, and when they’re found out, they disappear before organizations or governments can pull together their threat intelligence and organize an effective response. When they return days, weeks or months later, they do so having implemented enough small changes to render themselves and their attacks unrecognizable. That is how DarkSide can become BlackMatter, and how its attacks can slip through security systems trained on previously encountered threats. 

Attack Details

In September 2021 Darktrace was monitoring a US marketing agency which became the victim of a double extortion ransomware attack that bore hallmarks of a BlackMatter operation. This began when a single domain-authenticated device joined the company’s network. This was likely a pre-infected company device being reconnected after some time offline. 

Only 15 minutes after joining, the device began SMB and ICMP scanning activities towards over 1000 different internal IPs. There was also a large spike of requests for Epmapper, which suggested an intent for RPC-based lateral movement. Although one credential was particularly prominent, multiple were used including labelled admin credentials. Given it’s unexpected nature, this recon quickly triggered a chain of DETECT/Network model breaches which ensured that Darktrace’s SOC were alerted via the Proactive Threat Notification service. Whilst SOC analysts began to triage the activity, the organization failed to act on any of the alerts they received, leaving the detected threat to take root within their digital environment. 

Shortly after, a series of C2 beaconing occurred towards an endpoint associated with Cobalt Strike [9]. This was accompanied by a range of anomalous WMI bind requests to svcctl, SecAddr and further RPC connections. These allowed the initial compromised device to quickly infect 11 other devices. With continued scanning over the next day, valuable data was soon identified. Across several transfers, 230GB of internal data was then exfiltrated from four file servers via SSH port 22. This data was then made unusable to the organization through encryption occurring via SMB Writes and Moves/Renames with the randomly generated extension ‘.qHefKSmfd’. Finally a ransom note titled ‘qHefKSmfd.README.txt’ was dropped.

This ransom note was appended with the BlackMatter ASCII logo:

Figure 1- The ASCII logo which accompanied BlackMatter’s ransom note

Although Darktrace DETECT and Cyber AI Analyst continued to provide live alerting, the actor successfully accomplished their mission.  

There are numerous reasons that an organization may fail to organize a response to a threat, (including resource shortages, out of hours attacks, and groups that simply move too fast). Without Darktrace’s RESPOND capabilities enabled, the threat actors could proceed this attack without obstacles. 

Figure 2- Cyber AI Analyst breaks down the stages of the attack [Note: this screenshot is from V5 of DETECT/Network] 

How would the attack have unfolded with RESPOND?

Armed with Darktrace’s evolving knowledge of ‘self’ for the customer’s unique digital environment, RESPOND would have activated within seconds of the first network scan, which was recognized as highly anomalous. The standard action taken here would usually involve enforcing the standard ‘pattern of life’ for the compromised device over a set time period in order to halt the anomaly while allowing the business to continue operating as normal.

RESPOND constantly re-evaluates threats as attacks unfold. Had the first stage still been successful, it would have continued to take targeted action at each corresponding stage of this attack. RESPOND models would have alerted to block the external connections to C2 servers over port 443, the outbound exfil attempts and crucially the SMB write activity over port 445 related to encryption.

As DETECT and RESPOND feed into one another, Darktrace would have continued to assess its actions as BlackMatter pivoted tactics. These actions buy back critical time for security teams that may not be in operation over the weekend, and stun the attacker into place without applying overly aggressive responses that create more problems than they solve.

Ultimately although this incident did not resolve autonomously, in response to the ransom event, Darktrace offered to enable RESPOND and set it in active mode for ransomware indicators across all client and server devices. This ensured an event like this would not occur again. 

Why does RESPOND work?

Response solutions must be accurate enough to fire only when there is a genuine threat, configurable enough to let the user stay in the driver’s seat, and intelligent enough to know the right action to take to contain only the malicious activity- without disrupting normal business operations. 

This is only possible if you can establish what ‘normal’ is for any one organization. And this is how Darktrace’s RESPOND product family ensures its actions are targeted and proportionate. By feeding off DETECT alerting which highlights subtle or large deviations across the network, cloud and SaaS, RESPOND can provide a measured response to the potential threat. This includes actions such as:

  • Enforcing the device’s ‘pattern of life’ for a given length of time 
  • Enforcing the ‘group pattern of life’ (stopping a device from doing anything its peers haven’t done in the past)
  • Blocking connections of a certain type to a certain destination
  • Logging out of a cloud account 
  • ‘Smart quarantining’ an endpoint device- maintaining access to VPNs and company’s AV solution

Conclusion 

In its report on BlackMatter [10], CISA recommended that organizations invest in network monitoring tools with the capacity to investigate anomalous activity. Picking up on unusual behavior rather than predetermined rules and signatures is an important step in fighting back against new threats. As this particular story shows, however, detection alone is not always enough. Turning on RESPOND, which takes immediate and precise action to contain threats, regardless of when and where they come in, is the best way to counter smash-and-grab attacks and protect organizations’ digital assets. There is little doubt that the threat actors behind BlackMatter will or have already returned with new names and strategies- but organizations with RESPOND will be ready for them.

Appendices

Darktrace Model Detections (in order of breach)

Those with the ‘PTN’ prefix were alerted directly to Darktrace’s 24/7 SOC team.

  • Device / ICMP Address Scan
  • Device / Suspicious SMB Scanning Activity
  • (PTN) Device / Suspicious Network Scan Activity
  • Anomalous Connection / SMB Enumeration
  • Device / Possible RPC Lateral Movement
  • Device / Active Directory Reconnaissance
  • Unusual Activity / Possible RPC Recon Activity
  • Device / Possible SMB/NTLM Reconnaissance
  • Compliance / Default Credential Usage
  • Device / New or Unusual Remote Command Execution
  • Anomalous Connection / New or Uncommon Service Control
  • Device / New or Uncommon SMB Named Pipe
  • Device / SMB Session Bruteforce
  • Device / New or Uncommon WMI Activity
  • (PTN) Device / Multiple Lateral Movement Model Breaches
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / SSL or HTTP Beacon
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Device / Anomalous SMB Followed By Multiple Model Breaches
  • Device / Anomalous RDP Followed By Multiple Model Breaches
  • Anomalous Server Activity / Rare External from Server
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Rare External SSL Self-Signed
  • Device / Long Agent Connection to New Endpoint
  • Compliance / SMB Drive Write
  • Anomalous Connection / Unusual Admin SMB Session
  • Anomalous Connection / High Volume of New or Uncommon Service Control
  • Anomalous Connection / Unusual Admin RDP Session
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Compliance / SSH to Rare External Destination
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Download and Upload
  • (PTN) Unusual Activity / Enhanced Unusual External Data Transfer
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • (PTN) Compromise / Ransomware / Suspicious SMB Activity

List of IOCs 

Reference List 

[1] https://www.designnews.com/industrial-machinery/new-age-hackers-are-ditching-smash-and-grab-techniques 

[2] https://cybernews.com/cyber-war/how-do-smash-and-grab-cyberattacks-help-ukraine-in-waging-war/

[3] https://blog.google/threat-analysis-group/phishing-campaign-targets-youtube-creators-cookie-theft-malware/

[4] https://www.ukcybersecuritycouncil.org.uk/news-insights/articles/the-benefits-of-automation-to-cyber-security/

[5] https://techcrunch.com/2021/11/03/blackmatter-ransomware-shut-down/ 

[6] https://www.trellix.com/en-us/about/newsroom/stories/research/blackmatter-ransomware-analysis-the-dark-side-returns.html

[7] https://www.nytimes.com/2021/05/14/business/darkside-pipeline-hack.html

[8] https://techcrunch.com/2022/01/14/fsb-revil-ransomware/ 

[9] https://www.virustotal.com/gui/domain/georgiaonsale.com/community

[10] https://www.cisa.gov/uscert/ncas/alerts/aa21-291a

Credit to: Andras Balogh, SOC Analyst and Gabriel Few-Wiegratz, Threat Intelligence Content Production Lead

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
The Darktrace Analyst Team
Book a 1-1 meeting with one of our experts
share this article
COre coverage
No items found.

More in this series

No items found.

Blog

Inside the SOC

Connecting the Dots: Darktrace’s Detection of the Exploitation of the ConnectWise ScreenConnect Vulnerabilities

Default blog imageDefault blog image
10
May 2024

Introduction

Across an ever changing cyber landscape, it is common place for threat actors to actively identify and exploit newly discovered vulnerabilities within commonly utilized services and applications. While attackers are likely to prioritize developing exploits for the more severe and global Common Vulnerabilities and Exposures (CVEs), they typically have the most success exploiting known vulnerabilities within the first couple years of disclosure to the public.

Addressing these vulnerabilities in a timely manner reduces the effectiveness of known vulnerabilities, decreasing the pace of malicious actor operations and forcing pursuit of more costly and time-consuming methods, such as zero-day related exploits or attacking software supply chain operations. While actors also develop tools to exploit other vulnerabilities, developing exploits for critical and publicly known vulnerabilities gives actors impactful tools at a low cost they are able to use for quite some time.

Between January and March 2024, the Darktrace Threat Research team investigated one such example that involved indicators of compromise (IoCs) suggesting the exploitation of vulnerabilities in ConnectWise’s remote monitoring and management (RMM) software ScreenConnect.

What are the ConnectWise ScreenConnect vulnerabilities?

CVE-2024-1708 is an authentication bypass vulnerability in ScreenConnect 23.9.7 (and all earlier versions) that, if exploited, would enable an attacker to execute remote code or directly impact confidential information or critical systems. This exploit would pave the way for a second ScreenConnect vunerability, CVE-2024-1709, which allows attackers to directly access confidential information or critical systems [1].

ConnectWise released a patch and automatically updated cloud versions of ScreenConnect 23.9.9, while urging security temas to update on-premise versions immediately [3].

If exploited in conjunction, these vulnerabilities could allow a malicious actor to create new administrative accounts on publicly exposed instances by evading existing security measures. This, in turn, could enable attackers to assume an administrative role and disable security tools, create backdoors, and disrupt RMM processes. Access to an organization’s environment in this manner poses serious risk, potentially leading to significant consequences such as deploying ransomware, as seen in various incidents involving the exploitation of ScreenConnect [2]

Darktrace Coverage of ConnectWise Exploitation

Darktrace’s anomaly-based detection was able to identify evidence of exploitation related to CVE-2024-1708 and CVE-2024-1709 across two distinct timelines; these detections included connectivity with endpoints that were later confirmed to be malicious by multiple open-source intelligence (OSINT) vendors. The activity observed by Darktrace suggests that threat actors were actively exploiting these vulnerabilities across multiple customer environments.

In the cases observed across the Darktrace fleet, Darktrace DETECT™ and Darktrace RESPOND™ were able to work in tandem to pre-emptively identify and contain network compromises from the onset. While Darktrace RESPOND was enabled in most customer environments affected by the ScreenConnect vulnerabilities, in the majority of cases it was configured in Human Confirmation mode. Whilst in Human Confirmation mode, RESPOND will provide recommended actions to mitigate ongoing attacks, but these actions require manual approval from human security teams.

When enabled in autonomous response mode, Darktrace RESPOND will take action automatically, shutting down suspicious activity as soon as it is detected without the need for human intervention. This is the ideal end state for RESPOND as actions can be taken at machine speed, without any delays waiting for user approval.

Looking within the patterns of activity observed by Darktrace , the typical  attack timeline included:

Darktrace observed devices on affected customer networks performing activity indicative of ConnectWise ScreenConnect usage, for example connections over 80 and 8041, connections to screenconnect[.]com, and the use of the user agent “LabTech Agent”. OSINT research suggests that this user agent is an older name for ConnectWise Automate [5] which also includes ScreenConnect as standard [6].

Darktrace DETECT model alert highlighting the use of a remote management tool, namely “screenconnect[.]com”.
Figure 1: Darktrace DETECT model alert highlighting the use of a remote management tool, namely “screenconnect[.]com”.

This activity was typically followed by anomalous connections to the external IP address 108.61.210[.]72 using URIs of the form “/MyUserName_DEVICEHOSTNAME”, as well as additional connections to another external, IP 185.62.58[.]132. Both of these external locations have since been reported as potentially malicious [14], with 185.62.58[.]132 in particular linked to ScreenConnect post-exploitation activity [2].

Figure 2: Darktrace DETECT model alert highlighting the unusual connection to 185.62.58[.]132 via port 8041.
Figure 2: Darktrace DETECT model alert highlighting the unusual connection to 185.62.58[.]132 via port 8041.
Figure 3: Darktrace DETECT model alert highlighting connections to 108.61.210[.]72 using a new user agent and the “/MyUserName_DEVICEHOSTNAME” URI.
Figure 3: Darktrace DETECT model alert highlighting connections to 108.61.210[.]72 using a new user agent and the “/MyUserName_DEVICEHOSTNAME” URI.

Same Exploit, Different Tactics?  

While the majority of instances of ConnectWise ScreenConnect exploitation observed by Darktrace followed the above pattern of activity, Darktrace was able to identify some deviations from this.

In one customer environment, Darktrace’s detection of post-exploitation activity began with the same indicators of ScreenConnect usage, including connections to screenconnect[.]com via port 8041, followed by connections to unusual domains flagged as malicious by OSINT, in this case 116.0.56[.]101 [16] [17]. However, on this deployment Darktrace also observed threat actors downloading a suspicious AnyDesk installer from the endpoint with the URI “hxxp[:]//116.0.56[.]101[:]9191/images/Distribution.exe”.

Figure 4: Darktrace DETECT model alert highlighting the download of an unusual executable file from 116.0.56[.]101.
Figure 4: Darktrace DETECT model alert highlighting the download of an unusual executable file from 116.0.56[.]101.

Further investigation by Darktrace’s Threat Research team revealed that this endpoint was associated with threat actors exploiting CVE-2024-1708 and CVE-2024-1709 [1]. Darktrace was additionally able to identify that, despite the customer being based in the United Kingdom, the file downloaded came from Pakistan. Darktrace recognized that this represented a deviation from the device’s expected pattern of activity and promptly alerted for it, bringing it to the attention of the customer.

Figure 5: External Sites Summary within the Darktrace UI pinpointing the geographic locations of external endpoints, in this case highlighting a file download from Pakistan.
Figure 5: External Sites Summary within the Darktrace UI pinpointing the geographic locations of external endpoints, in this case highlighting a file download from Pakistan.

Darktrace’s Autonomous Response

In this instance, the customer had Darktrace enabled in autonomous response mode and the post-exploitation activity was swiftly contained, preventing the attack from escalating.

As soon as the suspicious AnyDesk download was detected, Darktrace RESPOND applied targeted measures to prevent additional malicious activity. This included blocking connections to 116.0.56[.]101 and “*.56.101”, along with blocking all outgoing traffic from the device. Furthermore, RESPOND enforced a “pattern of life” on the device, restricting its activity to its learned behavior, allowing connections that are considered normal, but blocking any unusual deviations.

Figure 6: Darktrace RESPOND enforcing a “pattern of life” on the offending device after detecting the suspicious AnyDesk download.
Figure 6: Darktrace RESPOND enforcing a “pattern of life” on the offending device after detecting the suspicious AnyDesk download.
Figure 7: Darktrace RESPOND blocking connections to the suspicious endpoint 116.0.56[.]101 and “*.56.101” following the download of the suspicious AnyDesk installer.
Figure 7: Darktrace RESPOND blocking connections to the suspicious endpoint 116.0.56[.]101 and “*.56.101” following the download of the suspicious AnyDesk installer.

The customer was later able to use RESPOND to manually quarantine the offending device, ensuring that all incoming and outgoing traffic to or from the device was prohibited, thus preventing ay further malicious communication or lateral movement attempts.

Figure 8: The actions applied by Darktrace RESPOND in response to the post-exploitation activity related to the ScreenConnect vulnerabilities, including the manually applied “Quarantine device” action.

Conclusion

In the observed cases of the ConnectWise ScreenConnect vulnerabilities being exploited across the Darktrace fleet, Darktrace was able to pre-emptively identify and contain network compromises from the onset, offering vital protection against disruptive cyber-attacks.

While much of the post-exploitation activity observed by Darktrace remained the same across different customer environments, important deviations were also identified suggesting that threat actors may be adapting their tactics, techniques and procedures (TTPs) from campaign to campaign.

While new vulnerabilities will inevitably surface and threat actors will continually look for novel ways to evolve their methods, Darktrace’s Self-Learning AI and behavioral analysis offers organizations full visibility over new or unknown threats. Rather than relying on existing threat intelligence or static lists of “known bads”, Darktrace is able to detect emerging activity based on anomaly and respond to it without latency, safeguarding customer environments whilst causing minimal disruption to business operations.

Credit: Emma Foulger, Principal Cyber Analyst for their contribution to this blog.

Appendices

Darktrace Model Coverage

DETECT Models

Compromise / Agent Beacon (Medium Period)

Compromise / Agent Beacon (Long Period)

Anomalous File / EXE from Rare External Location

Device / New PowerShell User Agent

Anomalous Connection / Powershell to Rare External

Anomalous Connection / New User Agent to IP Without Hostname

User / New Admin Credentials on Client

Device / New User Agent

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Compromise / Suspicious Request Data

Compliance / Remote Management Tool On Server

Anomalous File / Anomalous Octet Stream (No User Agent)

RESPOND Models

Antigena / Network::External Threat::Antigena Suspicious File Block

Antigena / Network::External Threat::Antigena File then New Outbound Block

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

Antigena / Network::Significant Anomaly::Antigena Controlled and Model Breach

Antigena / Network::Insider Threat::Antigena Unusual Privileged User Activities Block

Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Pattern of Life Block

List of IoCs

IoC - Type - Description + Confidence

185.62.58[.]132 – IP- IP linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

108.61.210[.]72- IP - IP linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

116.0.56[.]101    - IP - IP linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

/MyUserName_ DEVICEHOSTNAME – URI - URI linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

/images/Distribution.exe – URI - URI linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

24780657328783ef50ae0964b23288e68841a421 - SHA1 Filehash - Filehash linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

a21768190f3b9feae33aaef660cb7a83 - MD5 Filehash - Filehash linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

MITRE ATT&CK Mapping

Technique – Tactic – ID - Sub-technique of

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Web Services      - RESOURCE DEVELOPMENT - T1583.006 - T1583

Drive-by Compromise - INITIAL ACCESS - T1189 – NA

Ingress Tool Transfer   - COMMAND AND CONTROL - T1105 - NA

Malware - RESOURCE DEVELOPMENT - T1588.001- T1588

Exploitation of Remote Services - LATERAL MOVEMENT - T1210 – NA

PowerShell – EXECUTION - T1059.001 - T1059

Pass the Hash      - DEFENSE EVASION, LATERAL MOVEMENT     - T1550.002 - T1550

Valid Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078 – NA

Man in the Browser – COLLECTION - T1185     - NA

Exploit Public-Facing Application - INITIAL ACCESS - T1190         - NA

Exfiltration Over C2 Channel – EXFILTRATION - T1041 – NA

IP Addresses – RECONNAISSANCE - T1590.005 - T1590

Remote Access Software - COMMAND AND CONTROL - T1219 – NA

Lateral Tool Transfer - LATERAL MOVEMENT - T1570 – NA

Application Layer Protocol - COMMAND AND CONTROL - T1071 – NA

References:

[1] https://unit42.paloaltonetworks.com/connectwise-threat-brief-cve-2024-1708-cve-2024-1709/  

[2] https://www.huntress.com/blog/slashandgrab-screen-connect-post-exploitation-in-the-wild-cve-2024-1709-cve-2024-1708    

[3] https://www.huntress.com/blog/a-catastrophe-for-control-understanding-the-screenconnect-authentication-bypass

[4] https://www.speedguide.net/port.php?port=8041  

[5] https://www.connectwise.com/company/announcements/labtech-now-connectwise-automate

[6] https://www.connectwise.com/solutions/software-for-internal-it/automate

[7] https://www.securityweek.com/slashandgrab-screenconnect-vulnerability-widely-exploited-for-malware-delivery/

[8] https://arcticwolf.com/resources/blog/cve-2024-1709-cve-2024-1708-follow-up-active-exploitation-and-pocs-observed-for-critical-screenconnect-vulnerabilities/https://success.trendmicro.com/dcx/s/solution/000296805?language=en_US&sfdcIFrameOrigin=null

[9] https://www.connectwise.com/company/trust/security-bulletins/connectwise-screenconnect-23.9.8

[10] https://socradar.io/critical-vulnerabilities-in-connectwise-screenconnect-postgresql-jdbc-and-vmware-eap-cve-2024-1597-cve-2024-22245/

[11] https://www.trendmicro.com/en_us/research/24/b/threat-actor-groups-including-black-basta-are-exploiting-recent-.html

[12] https://otx.alienvault.com/indicator/ip/185.62.58.132

[13] https://www.virustotal.com/gui/ip-address/185.62.58.132/community

[14] https://www.virustotal.com/gui/ip-address/108.61.210.72/community

[15] https://otx.alienvault.com/indicator/ip/108.61.210.72

[16] https://www.virustotal.com/gui/ip-address/116.0.56[.]101/community

[17] https://otx.alienvault.com/indicator/ip/116.0.56[.]101

Continue reading
About the author
Justin Torres
Cyber Analyst

Blog

Email

How Empowering End Users can Improve Your Email Security and Decrease the Burden on the SOC

Default blog imageDefault blog image
08
May 2024

Why do we pay attention to the end user?

Every email security solution filters inbound mail, then typically hands over false positives and false negatives to the security team for manual triage. A crucial problem with this lifecycle is that it ignores the inevitability of end users being at the front line of any organization. Employees may receive point in time security awareness training, but it is rarely engaging or contextualized to their reality. While an employee may report a suspicious-looking email to the security team, they will rarely get to understand the outcome or impact of that decision. This means that the quality of reporting never improves, so the burden on the security team of triaging these emails – of which 90% are falsely reported – persists and grows with the business over time.

At Darktrace, we recognize that employees will always be on the front line of email security. That’s why we aim to improve end-user reporting from the ground up, reducing the overall number of emails needing triage and saving security team resource.

How does Darktrace improve the quality of end-user reporting?

Darktrace prioritizes improving users’ security awareness to increase the quality of end-user reporting from day one. We train users and optimize their experience, which in turn provides better detection. 

That starts with training and security awareness. Traditionally, organizations oblige employees to attend point-in-time training sessions which interrupt their daily work schedules. With Darktrace/Email, if a message contains some potentially suspicious markers but is most likely safe, Darktrace takes a specific action to neutralize the risky components and presents it to the user with a simple narrative explaining why certain elements have been held back. The user can then decide whether to report this email to the security team. 

AI shares its analysis in context and in real time at the moment a user is questioning an email
Figure 1: AI shares its analysis in context and in real time at the moment a user is questioning an email

The AI narrative gives the user context for why their specific email may carry risk, putting their security awareness training into practice. This creates an element of trust with the security solution, rather than viewing it as outside of daily workflows. Users may also receive a daily or weekly digest of their held emails and make a decision on whether to release or report them.  

Whatever the user’s existing workflow is for reporting emails, Darktrace/Email can integrate with it and improve its quality. Our add-in for Outlook gives users a fully optimized experience, allowing them to engage with the narratives for each email, as well as non-productive mail management. However, if teams want to integrate Darktrace into an existing workflow, it can analyze emails reported to an internal SOC mailbox, the native email provider’s 'Report Phish’ button, or the ‘Knowbe4’ button.

By empowering the user with contextual feedback on each unique email, we foster employee engagement and elevate both reporting quality and security awareness. In fact, 60% fewer benign emails are reported because of the extra context supplied by Darktrace to end users. The eventual report is then fed back to the detection algorithm, improving future decision-making.  

Reducing the amount of emails that reach the SOC

Out of the higher-quality emails that do end up being reported by users, the next step is to reduce the amount of emails that reach the SOC.   

Once a user reports an email, Darktrace will independently determine if the mail should be automatically remediated based on second level triage. Darktrace/Email’s Mailbox Security Assistant automates secondary triage by combining additional behavioral signals and the most advanced link analysis engine we have ever built. It detects 70% more sophisticated malicious phishing links by looking at an additional twenty times more context than at the primary analysis stage, revealing the hidden intent within interactive and dynamic webpages. This directly alleviates the burden of manual triage for security analysts.

Following this secondary triage the emails that are deemed worthy of security team attention are then passed over, resulting in a lower quantity and higher quality of emails for SOC manual triage.

Centralizing and speeding analysis for investigations

For those emails that are received by the SOC, Darktrace also helps to improve triage time for manual remediation.  

AI-generated narratives and automated remediation actions empower teams to fast-track manual triage and remediation, while still providing security analysts with the necessary depth. With live inbox view, security teams gain access to a centralized platform that combines intuitive search capabilities, Cyber AI Analyst reports, and mobile application access. With all security workflows consolidated within a unified interface, users can analyze and take remediation actions without the need to navigate multiple tools, such as e-discovery platforms – eliminating console hopping and accelerating incident response.

Our customers tell us that our AI allows them to go in-depth quickly for investigations, versus other solutions that only provide a high-level view.

Cyber AI Analyst provides a simple language narrative for each reported email, allowing teams to quickly understand why it may be suspicious
Figure 2: Cyber AI Analyst provides a simple language narrative for each reported email, allowing teams to quickly understand why it may be suspicious

Conclusion

Unlike our competitors, we believe that improving the quality of users’ experience is not only a nice-to-have, but a fundamental means for improving security. Any modern solution should consider end users as a key source of information as well as an opportunity for defense. Darktrace does both – optimizing the user experience as well as our AI learning from the user to augment detection.  

The benefits of empowering users are ultimately felt by the security team, who benefit from improved detection, a reduction in manual triage of benign emails, and faster investigation workflows.

Augmented end user reporting is just one of a range of features new to Darktrace/Email. Check out the latest Innovations to Darktrace/Email in our recent blog.

Continue reading
About the author
Carlos Gray
Product Manager
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.