3 Ways AI Secures OT & ICS from Cyber Attacks

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Jan 2024
09
Jan 2024
Explore the three challenges facing industries that manage OT and ICS Systems, the benefits of adopting AI technology, and Darktrace/OT’s unique role!

What is OT and ICS?

Operational technologies and industrial control systems are the networked technologies used for the automation of physical processes. These are the technologies that allow operators to control processes and retrieve real time process data from a factory, rail system, pipeline, and other industrial processes.  

The role of AI in defending OT/ICS networks  

While largely adopted by industrial organizations, OT is utilized by Critical Infrastructures, these being the industries that directly affect the health, safety, and welfare of the public. As these organizations expand and adopt new networked industrial technologies, they are simultaneously expanding their attack surface.  

With a larger attack surface, more attacks targeting OT/ICS, and focused coordination around cyber security from regulatory authorities, security personnel have increasing workloads that make it difficult to keep pace with threats and vulnerabilities. Defenders are managing growing attack surfaces due to IT and OT convergence. Thus, the adoption of AI technology to protect, detect, respond, and recover from cyber incidents in industrial systems is paramount for keeping critical infrastructure safe.

This blog will explore three challenges facing industries managing OT/ICS, the perceived benefits of adopting AI technology to address these challenges, and Darktrace/OT’s unique role in this process.  

Darktrace also delivers complete AI-powered solutions to defend US federal government customers from cyber disruptions and ensure mission resilience. Learn more about high fidelity detection in Darktrace Federal’s TAC report.

Figure 1: AI statistics from Gartner and Deloitte

Three ways AI helps improves OT/ICS security  

1. Anomaly detection and response

In this heightened security landscape, OT/ICS environments face a spectrum of external cyber threats that demand vigilant defense. From the looming risk of industrial ransomware to the threat of insiders, yet another dimension is added to security challenge, meaning security professionals must be equipped to detect and respond to internal and external threats.  

While threats are eminent from both inside and outside the organization, many organizations rely on Indicator of Compromises (IOCs) for threat detection. By definition, these solutions can only detect network activity they recognize as an indicator of compromise; therefore, often miss insider threats and novel (zero-day) attacks because the tactics, techniques, and procedures (TTPs) and attack toolkits have never been seen in practice.  

Anomaly-based detection is best suited to combat never-before-seen threats and signatureless threats from the inside. However, not all detection methods are equal. Most anomaly-based detection solutions that leverage AI rely on a combination of supervised machine learning, deep learning, and transformers to train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. This data set gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.  

While this method reduces the workload for security teams who would have to input attack data otherwise manually, it runs the same risk of only detecting known threats and has potential privacy concerns when shipping this data externally.  

To improve the quality and speed of anomaly detection, Darktrace/OT uses Self-Learning AI that leverages Bayesian Probabilistic Methodologies, Graph Theory, and Deep Neural Networks to learn your organization from the ground up in real time. By learning your unique organization, Darktrace/OT develops a sophisticated baseline knowledge of your network and assets, identifying abnormal activity that indicates a threat based on your unique network data at machine speed. Because the AI engine is local to the organization and/or assets, concerns of data residency and privacy are reduced, and the result is faster time to detect and triage incidents.  

Leveraging Self-Learning AI, Darktrace/OT uses autonomous response that severs only the anomalous or risky behaviors allowing the assets to continue to operate as normal. Organizations work with Darktrace to customize how they want Darktrace’s autonomous response to be applied. These options vary from on a device- by-device basis, device type by device type, or subnet by subnet basis and can be done completely autonomously or in human confirmation mode. This gives security teams more time to respond to an incident and reduces operational downtime when facing a threat.  

Darktrace leverages a combination of AI methods:

  • Self-Learning AI
  • Bayesian classification probabilistic models  
  • Deep neural networks
  • Transformers
  • Graph theory models
  • Clustering models  
  • Anomaly detection models
  • Generative and applied AI  
  • Natural language processing  
  • Supervised machine learning for investigation process of alerts

2. Vulnerability & Asset Management

At present, managing OT cyber risk is labor and resource intensive. Many organizations use third-party auditors to identify assets and vulnerabilities, grade compliance, and recommend improvements.  

At best, these exercises become tick-box exercises for companies to stay in compliance with little measurable reduction in cyber risk. At worst, asset owners can be left with a mountain of vulnerability information to work through, much of it irrelevant to the security risks Engineering and Operations teams deal with day to day, and increasingly out of date each passing day after the annual or biannual audit has been completed.  

In both cases, organizations are left using a patchwork of point products to address different aspects of preventative OT cyber security, most of which lack wider business context and lead to costly inefficiencies with no real impact to vulnerability or risk exposure.  

Darktrace’s technology helps in three unique ways:

  1. AI populates asset inventories: Self-Learning AI technology listens and learns from network traffic to populate or update asset inventories. It does this not just by identifying simple IPs, mac addresses, and hostnames, it learns from what it sees and automatically classifies or tags specific types of assets with the function that they perform. For example, if a specific device is performing functions like a PLC, sending commands to and from an HMI, it can appropriately tag and label these systems.
  2. AI prioritizes risk: Leveraging Bayesian Probabilistic Methodologies, Graph Theory, and Deep Neural Networks, Darktrace/OT assesses the strategic risks facing your organization in real time. Using knowledge of data points on all your networked assets, data flow topology, your assets vulnerabilities and OSINT, Darktrace identifies and prioritizes high-value assets, potential attack pathways based on an existing vulnerabilities targetability and impact.
  3. AI explains remediation tactics: Many OT devices run 24/7 operations and cannot be taken offline to apply a patch, assuming a patch is even available. Darktrace/OT uses natural language processing to provide and explain prioritized remediation and mitigation associated with a given cyber risk across all MITRE ATT&CK techniques. Thus, where a CVE exists but a patch cannot be applied, a different technical mitigation can be recommended to remove a potential attack path before it can be exploited, preemptively securing vital internal systems and assets.
Figure 2: A critical attack path which starts with the compromise of a PC in the internal IT network, and ends with a PLC in the OT network. Each step is mapped out to the real world TTPs including abuse of SSH sessions and the modifications of ICS programs

3. Simplify compliance and reporting

Organizations, regardless of size or resources, have compliance regulations they need to adhere to. What this creates is an increased workload for security professionals. For smaller organizations, security teams might lack the manpower or resources to report in the short time frame that is required. For large organizations, keeping track of a massive amount of assets proves to be a challenge. Both cases emanate the risk of reporting fatigue where organizations might be hesitant to report incidents due to the complexity and time requirements they demand.  

An AI engine within the Darktrace/OT platform, Cyber AI analyst autonomously investigates incidents, summarize findings in natural language, and provides comprehensive insights into the nature and scope of cyber threats to improve the time it takes to triage and report on incidents. The ability to stitch together and present related security events provides a holistic understanding of the incident, enabling security analysts to identify patterns, assess the scope of potential threats, and prioritize responses effectively.  

Darktrace's detection capabilities identify every stage of an intrusion, from a compromised domain controller to network reconnaissance and privilege escalation. The AI technology is capable of detecting infections across several devices and generating incident reports that piece together disparate events to give a clear security narrative containing details of the attack, bridging the communication gap between IT and OT specialists.  

Post-incident, the technology assists in outlining timelines, discerning compromised data, pinpointing unusual activities, and aiding security teams in proactive threat mitigation.  

With its capabilities, organizations can swiftly understand the attack timeline, affected assets, unauthorized accesses, compromised data points, and malicious interactions, facilitating appropriate communication and action. For example, when Cyber AI Analyst shows an attack path, the security team gains insight on the segmentation or lack thereof between two subnets allowing the security team to appropriately segment the subnets.  

Cyber AI improves critical infrastructure operators’ ability to report major cyber-attacks to regulatory authorities. Considering that 72 hours is the reporting period for most significant incidents — and 24 hours for ransomware payments — Cyber AI Analyst is no longer a nice-to-have but a must-have for critical infrastructure.

Figure 3: The tabs labeled 1-4 denote model breaches, each with a specific action and severity indicated by color dots. Darktrace integrates these breaches, offering the security team a unified view of interconnected security events.  

The right AI for the right challenge


Incident Phase:

Protect

Role of AI:

Cyber risk prioritization

Attack path modelling

Compliance reporting

Darktrace Product:

PREVENT/OT

Incident Phase:

Detect

Role of AI:

Anomaly detection

Triaging and investigating

Darktrace Product:

Cyber AI analyst

DETECT/OT

Incident Phase:

Respond

Role of AI: 

Autonomous response  

Incident reporting

Darktrace Product:

RESPOND/OT

Incident Phase:

Recover

Role of AI:

Incident preparedness

Incident simulations

Darktrace Product:

HEAL

Credit to: Nicole Carignan, VP of Strategic Cyber AI - Kendra Gonzalez Duran, Director of Technology Innovation - & Daniel Simonds, Director of Operational Technology for their contribution to this blog.

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Oakley Cox
Analyst Technical Director, APAC

Oakley is a technical expert with 5 years’ experience as a Cyber Analyst. After leading a team of Cyber Analysts at the Cambridge headquarters, he relocated to New Zealand and now oversees the defense of critical infrastructure and industrial control systems across the APAC region. His research into cyber-physical security has been published by Cyber Security journals and CISA. Oakley is GIAC certified in Response and Industrial Defense (GRID), and has a Doctorate (PhD) from the University of Oxford.

Book a 1-1 meeting with one of our experts
share this article
USE CASES
No items found.
PRODUCT SPOTLIGHT
No items found.
COre coverage

More in this series

No items found.

Blog

No items found.

Appleby law firm uses Darktrace and Microsoft for proactive cyber resilience and compliance

Default blog imageDefault blog image
02
May 2024

Security Challenges for Appleby law firm

Appleby is an international law firm that provides offshore legal advice to clients. As such, assuring confidentiality is one of our priorities. I regularly discuss cybersecurity with our clients and prospects who want to know that their data will be protected.

Like all security teams, we are working to keep ahead of the evolving cyber threat landscape while also managing our internal tools and infrastructure.

Although we already applied security philosophies like defense-in-depth and multi-tiered protection, we wanted to expand our coverage especially given the increase in working from home. These improvements would be especially impactful given our lean security team, which must provide 24/7 coverage for our 10 offices around the globe that span several jurisdictions and time zones.

Given these challenges and goals, we turned to Darktrace.

Going beyond an XDR with Darktrace and Microsoft

We wanted to move away from point solutions, and after doing extensive research, we chose to consolidate around Darktrace and Microsoft. This helped us achieve increased coverage, seamless security operations, and even reduced costs.

While considering our upgrade from E3 to E5, we went through an extensive TCO exercise. After reviewing our stack, we were able to sunset legacy tools and consolidate our vendors into an integrated and cost-efficient modern platform built around Darktrace and Microsoft. We now have a single portal to manage security for all our coverage areas, improving upon what we had with our legacy eXtended Detection and Response (XDR) tool.

Darktrace’s AI-led understanding of our business operations, people, processes, and technology has helped us automate so our small team can easily achieve continuous detection, investigation, and response across our systems. This has helped us save time and overcome resource limitations, giving us comprehensive cyber resilience and new opportunities to move past firefighting to take proactive measures that harden our environment.

Darktrace and Microsoft have allowed us to simplify workflows and reduce costs without compromising security. In fact, it’s now stronger than ever.

Proactive protection with Darktrace PREVENT/Attack Surface Management™

I come from a physical security background, so I’ve always been keen on the prevention side. You would always rather prevent somebody from entering in the first place than deal with them once they are inside. With that mindset, we’re pushing our strongest controls to the boundary to stop threat actors before they gain access to our systems.

To help us with that, we use Darktrace PREVENT/Attack Surface Management™ (ASM). With just our brand name, it was able to reveal our entire attack surface, including shadow IT we didn’t know was there. PREVENT/ASM continuously monitors our exposures with AI and reports its findings to my team with actionable insights that contain key metrics and prioritizations based on critical risk. This enables us to maximize our impact with limited time and resources.

PREVENT/ASM has already identified typo squatting domains that threat actors set up to impersonate our brand in phishing attacks. Finding this type of brand abuse not only defends our company from attackers who could damage our reputation, but also protects our clients and vendors who could be targeted with these imitations. PREVENT/ASM even collects the necessary data needed for my team to file a Notice and Takedown order.

In addition to finding vulnerabilities such as brand abuse, PREVENT/ASM integrates with our other Darktrace products to give us platform-wide coverage. This is key because an attacker will never hit only one point, they’re going to hit a sequence of targets to try to get in.

Now, we can easily understand vulnerabilities and attacks because of the AI outputs flowing across the Darktrace platform as part of the comprehensive, interconnected system. I have already made a practice of seeing an alert in Darktrace DETECT/Network and clicking through to the PREVENT/ASM interface to get more context.

Achieving compliance standards for our clients

We work hard to ensure confidentiality for our clients and prospects and we also frequently work with regulated entities, so we must demonstrate that we have controls in place.

With Darktrace in our security stack, we have 24/7 coverage and can provide evidence of how autonomous responses have successfully blocked malicious activity in the past. When I have demonstrated how Darktrace works to regulators, it ticks several of their boxes. Our Darktrace coverage has been critical in helping us achieve ISO27001 compliance, the world’s best-known standard for information security management systems.

Darktrace continues to prove its value. Last year, we brought a red team into our office for penetration testing. As soon as the first tester plugged into our network, Darktrace shut him out. We spent hours clearing the alerts and blocks to let the red team continue working, which validated that Darktrace stopped them at every step.

The red team reported that our controls are effective and even in the top 10% of all companies they had ever tested. That feedback, when presented to ISO auditors, regulators, and clients, immediately answers a lot of their more arduous questions and concerns.

Darktrace helps us meet compliance frameworks while reassuring both my team and our clients that our digital infrastructure is safe.

Continue reading
About the author
Michael Hughes
CISO, Appleby (guest contributor)

Blog

Inside the SOC

Detecting Attacks Across Email, SaaS, and Network Environments with Darktrace’s AI Platform Approach

Default blog imageDefault blog image
30
Apr 2024

The State of AI in Cybersecurity

In a recent survey outlined in Darktrace’s State of AI Cyber Security whitepaper, 95% of cyber security professionals agree that AI-powered security solutions will improve their organization’s detection of cyber-threats [1]. Crucially, a combination of multiple AI methods is the most effective to improve cybersecurity; improving threat detection, accelerating threat investigation and response, and providing visibility across an organization’s digital environment.

In March 2024, Darktrace’s AI-led security platform was able to detect suspicious activity affecting a customer’s email, Software-as-a-Service (SaaS), and network environments, whilst its applied supervised learning capability, Cyber AI Analyst, autonomously correlated and connected all of these events together in one single incident, explained concisely using natural language processing.

Attack Overview

Following an initial email attack vector, an attacker logged into a compromised SaaS user account from the Netherlands, changed inbox rules, and leveraged the account to send thousands of phishing emails to internal and external users. Internal users fell victim to the emails by clicking on contained suspicious links that redirected them to newly registered suspicious domains hosted on same IP address as the hijacked SaaS account login. This activity triggered multiple alerts in Darktrace DETECT™ on both the network and SaaS side, all of which were correlated into one Cyber AI Analyst incident.

In this instance, Darktrace RESPOND™ was not active on any of the customer’s environments, meaning the compromise was able to escalate until their security team acted on the alerts raised by DETECT. Had RESPOND been enabled at the time of the attack, it would have been able to apply swift actions to contain the attack by blocking connections to suspicious endpoints on the network side and disabling users deviating from their normal behavior on the customer’s SaaS environment.

Nevertheless, thanks to DETECT and Cyber AI Analyst, Darktrace was able to provide comprehensive visibility across the customer’s three digital estate environments, decreasing both investigation and response time which enabled them to quickly enact remediation during the attack. This highlights the crucial role that Darktrace’s combined AI approach can play in anomaly detection cyber defense

Attack Details & Darktrace Coverage

Attack timeline

1. Email: the initial attack vector  

The initial attack vector was likely email, as on March 18, 2024, Darktrace observed a user device making several connections to the email provider “zixmail[.]net”, shortly before it connected to the first suspicious domain. Darktrace/Email identified multiple unusual inbound emails from an unknown sender that contained a suspicious link. Darktrace recognized these emails as potentially malicious and locked the link, ensuring that recipients could not directly click it.

Suspected initial compromise email from an unknown sender, containing a suspicious link, which was locked by Darktrace/Email.
Figure 1: Suspected initial compromise email from an unknown sender, containing a suspicious link, which was locked by Darktrace/Email.

2. Escalation to Network

Later that day, despite Darktrace/Email having locked the link in the suspicious email, the user proceeded to click on it and was directed to a suspicious external location, namely “rz8js7sjbef[.]latovafineart[.]life”, which triggered the Darktrace/Network DETECT model “Suspicious Domain”. Darktrace/Email was able to identify that this domain had only been registered 4 days before this activity and was hosted on an IP address based in the Netherlands, 193.222.96[.]9.

3. SaaS Account Hijack

Just one minute later, Darktrace/Apps observed the user’s Microsoft 365 account logging into the network from the same IP address. Darktrace understood that this represented unusual SaaS activity for this user, who had only previously logged into the customer’s SaaS environment from the US, triggering the “Unusual External Source for SaaS Credential Use” model.

4. SaaS Account Updates

A day later, Darktrace identified an unusual administrative change on the user’s Microsoft 365 account. After logging into the account, the threat actor was observed setting up a new multi-factor authentication (MFA) method on Microsoft Authenticator, namely requiring a 6-digit code to authenticate. Darktrace understood that this authentication method was different to the methods previously used on this account; this, coupled with the unusual login location, triggered the “Unusual Login and Account Update” DETECT model.

5. Obfuscation Email Rule

On March 20, Darktrace detected the threat actor creating a new email rule, named “…”, on the affected account. Attackers are typically known to use ambiguous or obscure names when creating new email rules in order to evade the detection of security teams and endpoints users.

The parameters for the email rule were:

“AlwaysDeleteOutlookRulesBlob: False, Force: False, MoveToFolder: RSS Feeds, Name: ..., MarkAsRead: True, StopProcessingRules: True.”

This rule was seemingly created with the intention of obfuscating the sending of malicious emails, as the rule would move sent emails to the "RSS Feeds” folder, a commonly used tactic by attackers as the folder is often left unchecked by endpoint users. Interestingly, Darktrace identified that, despite the initial unusual login coming from the Netherlands, the email rule was created from a different destination IP, indicating that the attacker was using a Virtual Private Network (VPN) after gaining a foothold in the network.

Hijacked SaaS account making an anomalous login from the unusual Netherlands-based IP, before creating a new email rule.
Figure 2: Hijacked SaaS account making an anomalous login from the unusual Netherlands-based IP, before creating a new email rule.

6. Outbound Phishing Emails Sent

Later that day, the attacker was observed using the compromised customer account to send out numerous phishing emails to both internal and external recipients. Darktrace/Email detected a significant spike in inbound emails on the compromised account, with the account receiving bounce back emails or replies in response to the phishing emails. Darktrace further identified that the phishing emails contained a malicious DocSend link hidden behind the text “Click Here”, falsely claiming to be a link to the presentation platform Prezi.

Figure 3: Darktrace/Email detected that the DocSend link displayed via text “Click Here”, was embedded in a Prezi link.
Figure 3: Darktrace/Email detected that the DocSend link displayed via text “Click Here”, was embedded in a Prezi link.

7. Suspicious Domains and Redirects

After the phishing emails were sent, multiple other internal users accessed the DocSend link, which directed them to another suspicious domain, “thecalebgroup[.]top”, which had been registered on the same day and was hosted on the aforementioned Netherlands-based IP, 193.222.96[.]91. At the time of the attack, this domain had not been reported by any open-source intelligence (OSINT), but it has since been flagged as malicious by multiple vendors [2].

External Sites Summary showing the suspicious domain that had never previously been seen on the network. A total of 11 “Suspicious Domain” models were triggered in response to this activity.
Figure 4: External Sites Summary showing the suspicious domain that had never previously been seen on the network. A total of 11 “Suspicious Domain” models were triggered in response to this activity.  

8. Cyber AI Analyst’s Investigation

As this attack was unfolding, Darktrace’s Cyber AI Analyst was able to autonomously investigate the events, correlating them into one wider incident and continually adding a total of 14 new events to the incident as more users fell victim to the phishing links.

Cyber AI Analyst successfully weaved together the initial suspicious domain accessed in the initial email attack vector (Figure 5), the hijack of the SaaS account from the Netherlands IP (Figure 6), and the connection to the suspicious redirect link (Figure 7). Cyber AI Analyst was also able to uncover other related activity that took place at the time, including a potential attempt to exfiltrate data out of the customer’s network.

By autonomously analyzing the thousands of connections taking place on a network at any given time, Darktrace’s Cyber AI Analyst is able to detect seemingly separate anomalous events and link them together in one incident. This not only provides organizations with full visibility over potential compromises on their networks, but also saves their security teams precious time ensuring they can quickly scope out the ongoing incident and begin remediation.

Figure 5: Cyber AI Analyst correlated the attack’s sequence, starting with the initial suspicious domain accessed in the initial email attack vector.
Figure 5: Cyber AI Analyst correlated the attack’s sequence, starting with the initial suspicious domain accessed in the initial email attack vector.
Figure 6: As the attack progressed, Cyber AI Analyst correlated and appended additional events to the same incident, including the SaaS account hijack from the Netherlands-based IP.
Figure 6: As the attack progressed, Cyber AI Analyst correlated and appended additional events to the same incident, including the SaaS account hijack from the Netherlands-based IP.
Cyber AI Analyst correlated and appended additional events to the same incident, including additional users connecting to the suspicious redirect link following the outbound phishing emails being sent.
Figure 7: Cyber AI Analyst correlated and appended additional events to the same incident, including additional users connecting to the suspicious redirect link following the outbound phishing emails being sent.

Conclusion

In this scenario, Darktrace demonstrated its ability to detect and correlate suspicious activities across three critical areas of a customer’s digital environment: email, SaaS, and network.

It is essential that cyber defenders not only adopt AI but use a combination of AI technology capable of learning and understanding the context of an organization’s entire digital infrastructure. Darktrace’s anomaly-based approach to threat detection allows it to identify subtle deviations from the expected behavior in network devices and SaaS users, indicating potential compromise. Meanwhile, Cyber AI Analyst dynamically correlates related events during an ongoing attack, providing organizations and their security teams with the information needed to respond and remediate effectively.

Credit to Zoe Tilsiter, Analyst Consulting Lead (EMEA), Brianna Leddy, Director of Analysis

Appendices

References

[1] https://darktrace.com/state-of-ai-cyber-security

[2] https://www.virustotal.com/gui/domain/thecalebgroup.top

Darktrace DETECT Model Coverage

SaaS Models

- SaaS / Access / Unusual External Source for SaaS Credential Use

- SaaS / Compromise / Unusual Login and Account Update

- SaaS / Compliance / Anomalous New Email Rule

- SaaS / Compromise / Unusual Login and New Email Rule

Network Models

- Device / Suspicious Domain

- Multiple Device Correlations / Multiple Devices Breaching Same Model

Cyber AI Analyst Incidents

- Possible Hijack of Office365 Account

- Possible SSL Command and Control

Indicators of Compromise (IoCs)

IoC – Type – Description

193.222.96[.]91 – IP – Unusual Login Source

thecalebgroup[.]top – Domain – Possible C2 Endpoint

rz8js7sjbef[.]latovafineart[.]life – Domain – Possible C2 Endpoint

https://docsend[.]com/view/vcdmsmjcskw69jh9 - Domain - Phishing Link

Continue reading
About the author
Zoe Tilsiter
Cyber Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.