Blog

Inside the SOC

Cyber Tactics in the Russo-Ukrainian Conflict

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Aug 2022
09
Aug 2022
The conflict between Russia and Ukraine has led to fears of a full-scale cyberwar. Learn the cyber attack tactics used, hacking groups involved, and more!

Introduction

Since the beginning of the Russian invasion of Ukraine in February 2022, cyber communities around the world have been witnessing what can be called a ‘renaissance of cyberwarfare' [1]. Rather than being financially motivated, threat actors are being guided by political convictions to defend allies or attack their enemies. This blog reviews some of the main threat actors involved in this conflict and their ongoing tactics, and advises on how organizations can best protect themselves. Darktrace’s preliminary assessments predicted that attacks would be observed globally with a focus on pro-Ukrainian nations such as North Atlantic Treaty Organization (NATO) members and that identified Advanced Persistent Threat (APT) groups would develop new and complex malware deployed through increasingly sophisticated attack vectors. This blog will show that many of these assessments had unexpected outcomes.

Context for Conflict 

Cyber confrontation between Russia and Ukraine dates back to 2013, when Viktor Yanukovych, (former President of Ukraine) rejected an EU trade pact in favour of an agreement with Russia. This sparked mass protests leading to his overthrow, and shortly after, Russian troops annexed Crimea and initiated the beginning of Russian-Ukrainian ground and cyber warfare. Since then, Russian threat actors have been periodically targeting Ukrainian infrastructure. One of the most notable examples of this, an attack against their national power grid in December 2015, resulted in power outages for approximately 255,000 people in Ukraine and was later attributed to the Russian hacking group Sandworm [2 & 3]. 

Another well-known attack in June 2017 overwhelmed the websites of hundreds of Ukrainian organizations using the infamous NotPetya malware. This attack is still considered the most damaging cyberattack in history, with more than €10 billion euros in financial damage [4]. In February 2022, countries witnessed the next stage of cyberwar against Ukraine with both new and familiar actors deploying various techniques to target their rival’s critical infrastructure. 

Tactic 1: Ransomware

Although some sources suggest US ransomware incidents and expectations of ransom may have declined during the conflict, ransomware still remained a significant tactic deployed globally across this period [5] [6] [7]. A Ukrainian hacking group, Network Battalion 65 (NB65), used ransomware to attack the Russian state-owned television and radio broadcasting network VGTRK. NB65 managed to steal 900,000 emails and 4000 files, and later demanded a ransom which they promised to donate to the Ukrainian army. This attack was unique because the group used the previously leaked source code of Conti, another infamous hacker group that had pledged its support to the Russian government earlier in the conflict. NB65 modified the leaked code to make unique ransomware for each of its targets [5]. 

Against expectations, Darktrace’s customer base appeared to deviate from these ransom trends. Analysts have seen relatively unsophisticated ransomware attacks during the conflict period, with limited evidence to suggest they were connected to any APT activity. Between November 2021 and June 2022, there were 51 confirmed ransomware compromises across the Darktrace customer base. This represents an increase of 43.16% compared to the same period the year before, accounting for relative customer growth. Whilst this suggests an overall growth in ransom cases, many of these confirmed incidents were unattributed and did not appear to be targeting any particular verticals or regions. While there was an increase in the energy sector, this could not be explicitly linked to the conflict. 

The Darktrace DETECT family has a variety of models related to ransomware visibility:

Darktrace Detections for T1486 (Data Encrypted for Impact):

- Compromise / Ransomware / Ransom or Offensive Words Written to SMB

- Compromise / Ransomware / Suspicious SMB Activity

- Anomalous Connection / Sustained MIME Type Conversion

- Unusual Activity / Sustained Anomalous SMB Activity

- Compromise / Ransomware / Suspicious SMB File Extension

- Unusual Activity / Anomalous SMB Read & Write

- Unusual Activity / Anomalous SMB Read & Write from New Device

- SaaS / Resource / SaaS Resources with Additional Extensions

- Compromise / Ransomware / Possible Ransom Note Read

- [If RESPOND is enabled] Antigena / Network / External Threat / Antigena Ransomware Block

Tactic 2: Wipers

One of the largest groups of executables seen during the conflict were wipers. On the eve of the invasion, Ukrainian organizations were targeted by a new wiper malware given the name “HermeticWiper”. Hermetic refers to the name of the Cyprian company “Hermetica Digital Ltd.” which was used by attackers to request a code signing certificate [6]. Such a digital certificate is used to verify the ownership of the code and that it has not been altered. The 24-year-old owner of Hermetica Digital says he had no idea that his company was abused to retrieve a code signing certificate [7]. 

HermeticWiper consists of three components: a worm, decoy ransomware and the wiper malware. The custom worm designed for HermeticWiper was used to spread the malware across the network of its infected machines. ESET researchers discovered that the decoy ransomware and the wiper were released at the same time [8]. The decoy ransomware was used to make it look like the machine was hit by ransomware, when in reality the wiper was already permanently wiping data from the machines. In the attack’s initial stage, it bypasses Windows security features designed to prevent overwriting boot records by installing a separate driver. After wiping data from the machine, HermeticWiper prevents that data from being re-fragmented and overwrites the files to fragment it further. This is done to make it more challenging to reconstruct data for post-compromise forensics [9]. Overall, the function and purpose of HermeticWiper seems similar to that of NotPetya ransomware. 

HermeticWiper is not the only conflict-associated wiper malware which has been observed. In January 2022, Microsoft warned Ukrainian customers that they detected wiper intrusion activity against several European organizations. One example of this was the MBR (Master Boot Record) wiper. This type of wiper overwrites the MBR, the disk sector that instructs a computer on how to load its operating system, with a ransomware note. In reality, the note is a misdirection and the malware destroys the MBR and targeted files [10].  

One of the most notable groups that used wiper malware was Sandworm. Sandworm is an APT attributed to Russia’s foreign military intelligence agency, GRU. The group has been active since 2009 and has used a variety of TTPs within their attacks. They have a history of targeting Ukraine including attacks in 2015 on Ukraine’s energy distribution companies and in 2017 when they used the aforementioned NotPetya malware against several Ukrainian organizations [11]. Another Russian (or pro-Russian) group using wiper malware to target Ukraine is DEV-0586. This group targeted various Ukrainian organizations in January 2022 with Whispergate wiper malware. This type of wiper malware presents itself as ransomware by displaying a file instructing the victim to pay Bitcoin to have their files decrypted [12].  

Darktrace did not observe any confirmed cases of HermeticWiper nor other conflict-associated wipers (e.g IsaacWiper and CaddyWiper) within the customer base over this period. Despite this, Darktrace DETECT has a variety of models related to wipers and data destruction:

Darktrace Detections for T1485 (Data Destruction)- this is the main technique exploited during wiper attacks

- Unusual Activity / Anomalous SMB Delete Volume

- IaaS / Unusual Activity / Anomalous AWS Resources Deleted

- IaaS / Storage / S3 Bucket Delete

- SaaS / Resource / Mass Email Deletes from Rare Location

- SaaS / Resource / Anomalous SaaS Resources Deleted

- SaaS / Resource / Resource Permanent Delete

- [If RESPOND is enabled] Antigena / Network / Manual / Enforce Pattern of Life

- [If RESPOND is enabled] Antigena / SaaS / Antigena Unusual Activity Block

Tactic 3: Spear-Phishing

Another strategy that some threat actors employ is spear-phishing. Targeting can be done using email, social media, messaging, or other platforms.

The hacking group Armageddon (also known as Gamaredon) has been responsible for several spear-phishing attacks during the crisis, primarily targeting individuals involved in the Ukrainian Government [13]. Since the beginning of the war, the group has been sending out a large volume of emails containing an HTML file which, if opened, downloads and launches a RAR payload. Those who click the attached link download an HTA with a PowerShell script which obtains the final Armageddon payload. Using the same strategy, the group is also targeting governmental agencies in the European Union [14]. With high-value targets, the need to improve teaching around phishing identification to minimize the chance of being caught in an attacker's net is higher than ever. 

In comparison to the wider trends, Darktrace analysts again saw little-to-no evidence of conflict-associated phishing campaigns affecting customers. Those phishing attempts which did target customers were largely not conflict-related. In some cases, the conflict was used opportunistically, such as when one customer was targeted with a phishing email referencing Russian bank exclusions from the SWIFT payment system (Figures 1 and 2). The email was identified by Darktrace/Email as a probable attempt at financial extortion and inducement - in this case the company received a spoofed email from a major bank’s remittance department.  

Figure 1- Screencap of targeted phishing email sent to Darktrace customer
Figure 2- Attached file contains soliciting reference to SWIFT, a money payment system which select Russian banks were removed from because of the conflict [15]

 Although the conflict was used as a reference in some examples, in most of Darktrace’s observed phishing cases during the conflict period there was little-to-no evidence to suggest that the company being targeted nor the threat actor behind the phishing attempt was associated with or attributable to the Russia-Ukraine conflict.

However, Darktrace/Email has several model categories which pick up phishing related threats:

Sample of Darktrace for Email Detections for T1566 (Phishing)- this is the overarching technique exploited during spear-phishing events

Model Categories:

- Inducement

- Internal / External User Spoofing

- Internal / External Domain Spoofing

- Fake Support

- Link to Rare Domains

- Link to File Storage

- Redirect Links

- Anomalous / Malicious Attachments

- Compromised Known Sender

Specific models can be located on the Email Console

 

Tactic 4: Distributed-Denial-of-Service (DDoS)

Another tactic employed by both pro-Russian and pro-Ukrainian threat actors was DDoS (Distributed Denial of Service) attacks. Both pro-Russia and pro-Ukraine actors were seen targeting critical infrastructure, information resources, and governmental platforms with mass DDoS attacks. The Ukrainian Minister of Digital Transformation, Mykhailo Fedorov, called on an IT Army of underground Ukrainian hackers and volunteers to protect Ukraine's critical infrastructure and conduct DDoS attacks against Russia [16]. As of 1 August 2022, more than two hundred thousand people are subscribed to the group's official Telegram channel, where potential DDoS targets are announced [17].

Darktrace observed similar pro-Ukraine DDoS behaviors within a variety of customer environments. These DDoS campaigns appeared to involve low-volume individual support combined with crowd-sourced DDoS activity. They were hosted on a range of public-sourced DDoS sites and seemed to share sentiments of groups such as the IT Army of Ukraine (Figure 3).

Figure 3- Example DDoS outsource domain with unusual TLD 

From the Russian side, one of the prominent newly emerged groups, Killnet, is striking back, launching several massive DDoS attacks against the critical infrastructure of countries that provide weaponry to Ukraine [18 & 19]. Today, the number of supporters of Killnet has grown to eighty-four thousand on their Telegram channel. The group has already launched a number of mass attacks on several NATO states, including Germany, Poland, Italy, Lithuania and Norway. This shows the conflict has attracted new and fast-growing groups with large backing and the capacity to undertake widespread attacks. 

DETECT has several models to identify anomalous DoS/DDoS activity:

Darktrace Detection for T1498 (Network Denial of Service)- this is the main technique exploited during DDoS attacks

- Device / Anomaly Indicators / Denial of Service Activity Indicator

- Anomalous Server Activity / Possible Denial of Service Activity

- [If RESPOND is enabled] Antigena / Network / External Threat / Antigena Suspicious Activity Block

What did Darktrace observe?

Darktrace’s cross-fleet detections were largely contrary to expectations. Analysts did not see large-scale complex conflict-linked attacks utilizing either conflict-associated ransomware, malware, or other TTPs. Instead, cyber incidents observed were largely opportunistic, using malware that could be purchased through Malware-as-a-Service models and other widely available toolkits, (rather than APT or conflict-attributable attacks). Overall, this is not to say there have been no repercussions from the conflict or that opportunistic attacks will cease, but evidence suggests that there were fewer wider cyber consequences beyond the initial APT-based attacks seen in the public forum. 

Another trend expected since the beginning of the conflict was targeted responses to sanction announcements focusing on NATO businesses and governments. Analysts, however, saw the limited reactive actions, with little-to-no direct impact from sanction announcements. Although cyber-attacks on some NATO organizations did take place, they were not as widespread or impactful as expected. Lastly, it was thought that exposure to new and sophisticated exploits would increase and be used to weaken NATO nations - especially corporations in critical industries. However, analysts observed relatively common exploits deployed indiscriminately and opportunistically. Overall, with the wider industry expecting chaos, Darktrace analysts did not see the crisis taken advantage of to target wider businesses outside of Ukraine. Based on this comparison between expectations and reality, the conflict has demonstrated the danger of  falling prey to confirmation bias and the need to remain vigilant and expect the unexpected. It may be possible to say that cyberwar is ‘cold’ right now, however the element of surprise is always present, and it is better to be prepared to protect yourself and your organization.    

What to Expect from the Future

As cyberattacks continue to become less monetarily and physically costly, it is to be expected that they will increase in frequency. Even after a political ceasefire is established, hacking groups can harbour resentment and continue their attacks, though possibly on a smaller scale.  

Additionally, the longer this conflict continues, the more sophisticated hacking groups’s attacks may become. In one of their publications, Killnet shared with subscribers that they had created ‘network weaponry’ powerful enough to simultaneously take down five European countries (Figure 4) [20]. Whether or not this claim is true, it is vital to be prepared. The European Union and the United States have supported Ukraine since the start of the invasion, and the EU has also stated that it is considering providing further assistance to help Ukraine in cyberspace [21].

Figure 4- Snapshot of Killnet Telegram announcement

How to Protect Against these Attacks

In the face of wider conflict and cybersecurity tensions, it is crucial that organizations evaluate their security stack and practise the following: 

·       Know what your critical assets are and what software is running on them. 

·       Keep your software up to date. Prioritize patching critical and high vulnerabilities that allow remote code execution. 

·       Enforce Multifactor Authentication (MFA) to the greatest extent possible. 

·       Require the use of a password manager to generate strong and unique passwords for each separate account. 

·       Backup all the essential files on the cloud and external drives and regularly maintain them. 

·       Train your employees to recognize phishing emails, suspicious websites, infected links or other abnormalities to prevent successful compromise of email accounts. 

In order to prevent an organization from suffering damage due to one of the attacks mentioned above, a full-circle approach is needed. This defence starts with a thorough understanding of the attack surface to provide timely mitigation. This can be supported by Darktrace products: 

·       As shown throughout this blog, Darktrace DETECT and Darktrace/Email have several models relating to conflict-associated TTPs and attacks. These help to quickly alert security teams and provide visibility of anomalous behaviors.

·       Darktrace PREVENT/ASM helps to identify vulnerable external-facing assets. By patching and securing these devices, the risk of exploit is drastically reduced.

·       Darktrace RESPOND and RESPOND/Email can make targeted actions to a range of threats such as blocking incoming DDoS connections or locking malicious email links.

Thanks to the Darktrace Threat Intelligence Unit for their contributions to this blog.

Appendices 

Reference List

[1] https://www.atlanticcouncil.org/blogs/ukrainealert/vladimir-putins-ukraine-invasion-is-the-worlds-first-full-scale-cyberwar/ 

[2] https://www.reuters.com/article/us-ukraine-cybersecurity-idUSKCN0VY30K

[3] https://www.reuters.com/article/us-ukraine-cybersecurity-sandworm-idUSKBN0UM00N20160108

[4 & 11] https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/ 

[5] https://www.scmagazine.com/analysis/ransomware/despite-hopes-for-decline-ransomware-attacks-increased-during-russia-ukraine-conflict

[6] https://ransomware.org/blog/has-the-ukraine-conflict-disrupted-ransomware-attacks/

[7] https://www.cfr.org/blog/financial-incentives-may-explain-perceived-lack-ransomware-russias-latest-assault-ukraine

[8] https://www.bleepingcomputer.com/news/security/hackers-use-contis-leaked-ransomware-to-attack-russian-companies/ 

[9] https://voi.id/en/technology/138937/hermetica-owner-from-cyprus-didnt-know-his-server-was-used-in-malicious-malware-attack-in-ukraine 

[10] https://www.reuters.com/article/ukraine-crisis-cyber-cyprus-idCAKBN2KT2QI 

[11] https://www.eset.com/int/about/newsroom/press-releases/research/eset-research-ukraine-hit-by-destructive-attacks-before-and-during-the-russian-invasion-with-hermet/ 

[12] https://blog.malwarebytes.com/threat-intelligence/2022/03/hermeticwiper-a-detailed-analysis-of-the-destructive-malware-that-targeted-ukraine/ 

[13] https://www.microsoft.com/security/blog/2022/01/15/destructive-malware-targeting-ukrainian-organizations/ 

[15] https://www.cisa.gov/uscert/ncas/alerts/aa22-057a 

[16] https://attack.mitre.org/groups/G0047/ 

[17] https://cyware.com/news/ukraine-cert-warns-of-increasing-attacks-by-armageddon-group-850081f8 

[18] https://www.bbc.co.uk/news/business-60521822

[19] https://foreignpolicy.com/2022/04/11/russia-cyberwarfare-us-ukraine-volunteer-hackers-it-army/

[20] https://t.me/itarmyofukraine2022

[21] https://www.csoonline.com/article/3664859/russian-ddos-attack-on-lithuania-was-planned-on-telegram-flashpoint-says.html

[19 & 20] https://flashpoint.io/blog/killnet-kaliningrad-and-lithuanias-transport-standoff-with-russia/ 

[21] https://presidence-francaise.consilium.europa.eu/en/news/member-states-united-in-supporting-ukraine-and-strengthening-the-eu-s-telecommunications-and-cybersecurity-resilience/ 

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Rosa Jong
OSINT Analyst
Taisiia Garkava
Security Analyst
Book a 1-1 meeting with one of our experts
share this article
PRODUCT SPOTLIGHT
No items found.
COre coverage
No items found.

More in this series

No items found.

Blog

Inside the SOC

Lost in Translation: Darktrace Blocks Non-English Phishing Campaign Concealing Hidden Payloads

Default blog imageDefault blog image
15
May 2024

Email – the vector of choice for threat actors

In times of unprecedented globalization and internationalization, the enormous number of emails sent and received by organizations every day has opened the door for threat actors looking to gain unauthorized access to target networks.

Now, increasingly global organizations not only need to safeguard their email environments against phishing campaigns targeting their employees in their own language, but they also need to be able to detect malicious emails sent in foreign languages too [1].

Why are non-English language phishing emails more popular?

Many traditional email security vendors rely on pre-trained English language models which, while function adequately against malicious emails composed in English, would struggle in the face of emails composed in other languages. It should, therefore, come as no surprise that this limitation is becoming increasingly taken advantage of by attackers.  

Darktrace/Email™, on the other hand, focuses on behavioral analysis and its Self-Learning AI understands what is considered ‘normal’ for every user within an organization’s email environment, bypassing any limitations that would come from relying on language-trained models [1].

In March 2024, Darktrace observed anomalous emails on a customer’s network that were sent from email addresses belonging to an international fast-food chain. Despite this seeming legitimacy, Darktrace promptly identified them as phishing emails that contained malicious payloads, preventing a potentially disruptive network compromise.

Attack Overview and Darktrace Coverage

On March 3, 2024, Darktrace observed one of the customer’s employees receiving an email which would turn out to be the first of more than 50 malicious emails sent by attackers over the course of three days.

The Sender

Darktrace/Email immediately understood that the sender never had any previous correspondence with the organization or its employees, and therefore treated the emails with caution from the onset. Not only was Darktrace able to detect this new sender, but it also identified that the emails had been sent from a domain located in China and contained an attachment with a Chinese file name.

The phishing emails detected by Darktrace sent from a domain in China and containing an attachment with a Chinese file name.
Figure 1: The phishing emails detected by Darktrace sent from a domain in China and containing an attachment with a Chinese file name.

Darktrace further detected that the phishing emails had been sent in a synchronized fashion between March 3 and March 5. Eight unique senders were observed sending a total of 55 emails to 55 separate recipients within the customer’s email environment. The format of the addresses used to send these suspicious emails was “12345@fastflavor-shack[.]cn”*. The domain “fastflavor-shack[.]cn” is the legitimate domain of the Chinese division of an international fast-food company, and the numerical username contained five numbers, with the final three digits changing which likely represented different stores.

*(To maintain anonymity, the pseudonym “Fast Flavor Shack” and its fictitious domain, “fastflavor-shack[.]cn”, have been used in this blog to represent the actual fast-food company and the domains identified by Darktrace throughout this incident.)

The use of legitimate domains for malicious activities become commonplace in recent years, with attackers attempting to leverage the trust endpoint users have for reputable organizations or services, in order to achieve their nefarious goals. One similar example was observed when Darktrace detected an attacker attempting to carry out a phishing attack using the cloud storage service Dropbox.

As these emails were sent from a legitimate domain associated with a trusted organization and seemed to be coming from the correct connection source, they were verified by Sender Policy Framework (SPF) and were able to evade the customer’s native email security measures. Darktrace/Email; however, recognized that these emails were actually sent from a user located in Singapore, not China.

Darktrace/Email identified that the email had been sent by a user who had logged in from Singapore, despite the connection source being in China.
Figure 2: Darktrace/Email identified that the email had been sent by a user who had logged in from Singapore, despite the connection source being in China.

The Emails

Darktrace/Email autonomously analyzed the suspicious emails and identified that they were likely phishing emails containing a malicious multistage payload.

Darktrace/Email identifying the presence of a malicious phishing link and a multistage payload.
Figure 3: Darktrace/Email identifying the presence of a malicious phishing link and a multistage payload.

There has been a significant increase in multistage payload attacks in recent years, whereby a malicious email attempts to elicit recipients to follow a series of steps, such as clicking a link or scanning a QR code, before delivering a malicious payload or attempting to harvest credentials [2].

In this case, the malicious actor had embedded a suspicious link into a QR code inside a Microsoft Word document which was then attached to the email in order to direct targets to a malicious domain. While this attempt to utilize a malicious QR code may have bypassed traditional email security tools that do not scan for QR codes, Darktrace was able to identify the presence of the QR code and scan its destination, revealing it to be a suspicious domain that had never previously been seen on the network, “sssafjeuihiolsw[.]bond”.

Suspicious link embedded in QR Code, which was detected and extracted by Darktrace.
Figure 4: Suspicious link embedded in QR Code, which was detected and extracted by Darktrace.

At the time of the attack, there was no open-source intelligence (OSINT) on the domain in question as it had only been registered earlier the same day. This is significant as newly registered domains are typically much more likely to bypass gateways until traditional security tools have enough intelligence to determine that these domains are malicious, by which point a malicious actor may likely have already gained access to internal systems [4]. Despite this, Darktrace’s Self-Learning AI enabled it to recognize the activity surrounding these unusual emails as suspicious and indicative of a malicious phishing campaign, without needing to rely on existing threat intelligence.

The most commonly used sender name line for the observed phishing emails was “财务部”, meaning “finance department”, and Darktrace observed subject lines including “The document has been delivered”, “Income Tax Return Notice” and “The file has been released”, all written in Chinese.  The emails also contained an attachment named “通知文件.docx” (“Notification document”), further indicating that they had been crafted to pass for emails related to financial transaction documents.

 Darktrace/Email took autonomous mitigative action against the suspicious emails by holding the message from recipient inboxes.
Figure 5: Darktrace/Email took autonomous mitigative action against the suspicious emails by holding the message from recipient inboxes.

Conclusion

Although this phishing attack was ultimately thwarted by Darktrace/Email, it serves to demonstrate the potential risks of relying on solely language-trained models to detect suspicious email activity. Darktrace’s behavioral and contextual learning-based detection ensures that any deviations in expected email activity, be that a new sender, unusual locations or unexpected attachments or link, are promptly identified and actioned to disrupt the attacks at the earliest opportunity.

In this example, attackers attempted to use non-English language phishing emails containing a multistage payload hidden behind a QR code. As traditional email security measures typically rely on pre-trained language models or the signature-based detection of blacklisted senders or known malicious endpoints, this multistage approach would likely bypass native protection.  

Darktrace/Email, meanwhile, is able to autonomously scan attachments and detect QR codes within them, whilst also identifying the embedded links. This ensured that the customer’s email environment was protected against this phishing threat, preventing potential financial and reputation damage.

Credit to: Rajendra Rushanth, Cyber Analyst, Steven Haworth, Head of Threat Modelling, Email

Appendices  

List of Indicators of Compromise (IoCs)  

IoC – Type – Description

sssafjeuihiolsw[.]bond – Domain Name – Suspicious Link Domain

通知文件.docx – File - Payload  

References

[1] https://darktrace.com/blog/stopping-phishing-attacks-in-enter-language  

[2] https://darktrace.com/blog/attacks-are-getting-personal

[3] https://darktrace.com/blog/phishing-with-qr-codes-how-darktrace-detected-and-blocked-the-bait

[4] https://darktrace.com/blog/the-domain-game-how-email-attackers-are-buying-their-way-into-inboxes

Continue reading
About the author
Rajendra Rushanth
Cyber Analyst

Blog

No items found.

The State of AI in Cybersecurity: The Impact of AI on Cybersecurity Solutions

Default blog imageDefault blog image
13
May 2024

About the AI Cybersecurity Report

Darktrace surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog continues the conversation from “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on cybersecurity solutions.

To access the full report, click here.

The effects of AI on cybersecurity solutions

Overwhelming alert volumes, high false positive rates, and endlessly innovative threat actors keep security teams scrambling. Defenders have been forced to take a reactive approach, struggling to keep pace with an ever-evolving threat landscape. It is hard to find time to address long-term objectives or revamp operational processes when you are always engaged in hand-to-hand combat.                  

The impact of AI on the threat landscape will soon make yesterday’s approaches untenable. Cybersecurity vendors are racing to capitalize on buyer interest in AI by supplying solutions that promise to meet the need. But not all AI is created equal, and not all these solutions live up to the widespread hype.  

Do security professionals believe AI will impact their security operations?

Yes! 95% of cybersecurity professionals agree that AI-powered solutions will level up their organization’s defenses.                                                                

Not only is there strong agreement about the ability of AI-powered cybersecurity solutions to improve the speed and efficiency of prevention, detection, response, and recovery, but that agreement is nearly universal, with more than 95% alignment.

This AI-powered future is about much more than generative AI. While generative AI can help accelerate the data retrieval process within threat detection, create quick incident summaries, automate low-level tasks in security operations, and simulate phishing emails and other attack tactics, most of these use cases were ranked lower in their impact to security operations by survey participants.

There are many other types of AI, which can be applied to many other use cases:

Supervised machine learning: Applied more often than any other type of AI in cybersecurity. Trained on attack patterns and historical threat intelligence to recognize known attacks.

Natural language processing (NLP): Applies computational techniques to process and understand human language. It can be used in threat intelligence, incident investigation, and summarization.

Large language models (LLMs): Used in generative AI tools, this type of AI applies deep learning models trained on massively large data sets to understand, summarize, and generate new content. The integrity of the output depends upon the quality of the data on which the AI was trained.

Unsupervised machine learning: Continuously learns from raw, unstructured data to identify deviations that represent true anomalies. With the correct models, this AI can use anomaly-based detections to identify all kinds of cyber-attacks, including entirely unknown and novel ones.

What are the areas of cybersecurity AI will impact the most?

Improving threat detection is the #1 area within cybersecurity where AI is expected to have an impact.                                                                                  

The most frequent response to this question, improving threat detection capabilities in general, was top ranked by slightly more than half (57%) of respondents. This suggests security professionals hope that AI will rapidly analyze enormous numbers of validated threats within huge volumes of fast-flowing events and signals. And that it will ultimately prove a boon to front-line security analysts. They are not wrong.

Identifying exploitable vulnerabilities (mentioned by 50% of respondents) is also important. Strengthening vulnerability management by applying AI to continuously monitor the exposed attack surface for risks and high-impact vulnerabilities can give defenders an edge. If it prevents threats from ever reaching the network, AI will have a major downstream impact on incident prevalence and breach risk.

Where will defensive AI have the greatest impact on cybersecurity?

Cloud security (61%), data security (50%), and network security (46%) are the domains where defensive AI is expected to have the greatest impact.        

Respondents selected broader domains over specific technologies. In particular, they chose the areas experiencing a renaissance. Cloud is the future for most organizations,
and the effects of cloud adoption on data and networks are intertwined. All three domains are increasingly central to business operations, impacting everything everywhere.

Responses were remarkably consistent across demographics, geographies, and organization sizes, suggesting that nearly all survey participants are thinking about this similarly—that AI will likely have far-reaching applications across the broadest fields, as well as fewer, more specific applications within narrower categories.

Going forward, it will be paramount for organizations to augment their cloud and SaaS security with AI-powered anomaly detection, as threat actors sharpen their focus on these targets.

How will security teams stop AI-powered threats?            

Most security stakeholders (71%) are confident that AI-powered security solutions are better able to block AI-powered threats than traditional tools.

There is strong agreement that AI-powered solutions will be better at stopping AI-powered threats (71% of respondents are confident in this), and there’s also agreement (66%) that AI-powered solutions will be able to do so automatically. This implies significant faith in the ability of AI to detect threats both precisely and accurately, and also orchestrate the correct response actions.

There is also a high degree of confidence in the ability of security teams to implement and operate AI-powered solutions, with only 30% of respondents expressing doubt. This bodes well for the acceptance of AI-powered solutions, with stakeholders saying they’re prepared for the shift.

On the one hand, it is positive that cybersecurity stakeholders are beginning to understand the terms of this contest—that is, that only AI can be used to fight AI. On the other hand, there are persistent misunderstandings about what AI is, what it can do, and why choosing the right type of AI is so important. Only when those popular misconceptions have become far less widespread can our industry advance its effectiveness.  

To access the full report, click here.

Continue reading
About the author
The Darktrace Community
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.