Blog

Email

Comparing different AI approaches to email security

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
01
Feb 2021
01
Feb 2021
AI has fundamentally changed email security in recent years, but there is significant distinction to be made in the application of the technology which may determine genuine and future-proof protection from a backward-looking model incapable of catching novel attacks.

Innovations in artificial intelligence (AI) have fundamentally changed the email security landscape in recent years, but it can often be hard to determine what makes one system different to the next. In reality, under that umbrella term there exists a significant distinction in approach which may determine whether the technology provides genuine protection or simply a perceived notion of defense.

One backward-looking approach involves feeding a machine thousands of emails that have already been deemed to be malicious, and training it to look for patterns in these emails in order to spot future attacks. The second approach uses an AI system to analyze the entirety of an organization’s real-world data, enabling it to establish a notion of what is ‘normal’ and then spot subtle deviations indicative of an attack.

In the below, we compare the relative merits of each approach, with special consideration to novel attacks that leverage the latest news headlines to bypass machine learning systems trained on data sets. Training a machine on previously identified ‘known bads’ is only advantageous in certain, specific contexts that don’t change over time: to recognize the intent behind an email, for example. However, an effective email security solution must also incorporate a self-learning approach that understands ‘normal’ in the context of an organization in order to identify unusual and anomalous emails and catch even the novel attacks.

Signatures – a backward-looking approach

Over the past few decades, cyber security technologies have looked to mitigate risk by preventing previously seen attacks from occurring again. In the early days, when the lifespan of a given strain of malware or the infrastructure of an attack was in the range of months and years, this method was satisfactory. But the approach inevitably results in playing catch-up with malicious actors: it always looks to the past to guide detection for the future. With decreasing lifetimes of attacks, where a domain could be used in a single email and never seen again, this historic-looking signature-based approach is now being widely replaced by more intelligent systems.

Training a machine on ‘bad’ emails

The first AI approach we often see in the wild involves harnessing an extremely large data set with thousands or millions of emails. Once these emails have come through, an AI is trained to look for common patterns in malicious emails. The system then updates its models, rules set, and blacklists based on that data.

This method certainly represents an improvement to traditional rules and signatures, but it does not escape the fact that it is still reactive, and unable to stop new attack infrastructure and new types of email attacks. It is simply automating that flawed, traditional approach – only instead of having a human update the rules and signatures, a machine is updating them instead.

Relying on this approach alone has one basic but critical flaw: it does not enable you to stop new types of attacks that it has never seen before. It accepts that there has to be a ‘patient zero’ – or first victim – in order to succeed.

The industry is beginning to acknowledge the challenges with this approach, and huge amounts of resources – both automated systems and security researchers – are being thrown into minimizing its limitations. This includes leveraging a technique called “data augmentation” that involves taking a malicious email that slipped through and generating many “training samples” using open-source text augmentation libraries to create “similar” emails – so that the machine learns not only the missed phish as ‘bad’, but several others like it – enabling it to detect future attacks that use similar wording, and fall into the same category.

But spending all this time and effort into trying to fix an unsolvable problem is like putting all your eggs in the wrong basket. Why try and fix a flawed system rather than change the game altogether? To spell out the limitations of this approach, let us look at a situation where the nature of the attack is entirely new.

The rise of ‘fearware’

When the global pandemic hit, and governments began enforcing travel bans and imposing stringent restrictions, there was undoubtedly a collective sense of fear and uncertainty. As explained previously in this blog, cyber-criminals were quick to capitalize on this, taking advantage of people’s desire for information to send out topical emails related to COVID-19 containing malware or credential-grabbing links.

These emails often spoofed the Centers for Disease Control and Prevention (CDC), or later on, as the economic impact of the pandemic began to take hold, the Small Business Administration (SBA). As the global situation shifted, so did attackers’ tactics. And in the process, over 130,000 new domains related to COVID-19 were purchased.

Let’s now consider how the above approach to email security might fare when faced with these new email attacks. The question becomes: how can you train a model to look out for emails containing ‘COVID-19’, when the term hasn’t even been invented yet?

And while COVID-19 is the most salient example of this, the same reasoning follows for every single novel and unexpected news cycle that attackers are leveraging in their phishing emails to evade tools using this approach – and attracting the recipient’s attention as a bonus. Moreover, if an email attack is truly targeted to your organization, it might contain bespoke and tailored news referring to a very specific thing that supervised machine learning systems could never be trained on.

This isn’t to say there’s not a time and a place in email security for looking at past attacks to set yourself up for the future. It just isn’t here.

Spotting intention

Darktrace uses this approach for one specific use which is future-proof and not prone to change over time, to analyze grammar and tone in an email in order to identify intention: asking questions like ‘does this look like an attempt at inducement? Is the sender trying to solicit some sensitive information? Is this extortion?’ By training a system on an extremely large data set collected over a period of time, you can start to understand what, for instance, inducement looks like. This then enables you to easily spot future scenarios of inducement based on a common set of characteristics.

Training a system in this way works because, unlike news cycles and the topics of phishing emails, fundamental patterns in tone and language don’t change over time. An attempt at solicitation is always an attempt at solicitation, and will always bear common characteristics.

For this reason, this approach only plays one small part of a very large engine. It gives an additional indication about the nature of the threat, but is not in itself used to determine anomalous emails.

Detecting the unknown unknowns

In addition to using the above approach to identify intention, Darktrace uses unsupervised machine learning, which starts with extracting and extrapolating thousands of data points from every email. Some of these are taken directly from the email itself, while others are only ascertainable by the above intention-type analysis. Additional insights are also gained from observing emails in the wider context of all available data across email, network and the cloud environment of the organization.

Only after having a now-significantly larger and more comprehensive set of indicators, with a more complete description of that email, can the data be fed into a topic-indifferent machine learning engine to start questioning the data in millions of ways in order to understand if it belongs, given the wider context of the typical ‘pattern of life’ for the organization. Monitoring all emails in conjunction allows the machine to establish things like:

  • Does this person usually receive ZIP files?
  • Does this supplier usually send links to Dropbox?
  • Has this sender ever logged in from China?
  • Do these recipients usually get the same emails together?

The technology identifies patterns across an entire organization and gains a continuously evolving sense of ‘self’ as the organization grows and changes. It is this innate understanding of what is and isn’t ‘normal’ that allows AI to spot the truly ‘unknown unknowns’ instead of just ‘new variations of known bads.’

This type of analysis brings an additional advantage in that it is language and topic agnostic: because it focusses on anomaly detection rather than finding specific patterns that indicate threat, it is effective regardless of whether an organization typically communicates in English, Spanish, Japanese, or any other language.

By layering both of these approaches, you can understand the intention behind an email and understand whether that email belongs given the context of normal communication. And all of this is done without ever making an assumption or having the expectation that you’ve seen this threat before.

Years in the making

It’s well established now that the legacy approach to email security has failed – and this makes it easy to see why existing recommendation engines are being applied to the cyber security space. On first glance, these solutions may be appealing to a security team, but highly targeted, truly unique spear phishing emails easily skirt these systems. They can’t be relied on to stop email threats on the first encounter, as they have a dependency on known attacks with previously seen topics, domains, and payloads.

An effective, layered AI approach takes years of research and development. There is no single mathematical model to solve the problem of determining malicious emails from benign communication. A layered approach accepts that competing mathematical models each have their own strengths and weaknesses. It autonomously determines the relative weight these models should have and weighs them against one another to produce an overall ‘anomaly score’ given as a percentage, indicating exactly how unusual a particular email is in comparison to the organization’s wider email traffic flow.

It is time for email security to well and truly drop the assumption that you can look at threats of the past to predict tomorrow’s attacks. An effective AI cyber security system can identify abnormalities with no reliance on historical attacks, enabling it to catch truly unique novel emails on the first encounter – before they land in the inbox.

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Dan Fein
VP, Product

Based in New York, Dan joined Darktrace’s technical team in 2015, helping customers quickly achieve a complete and granular understanding of Darktrace’s product suite. Dan has a particular focus on Darktrace/Email, ensuring that it is effectively deployed in complex digital environments, and works closely with the development, marketing, sales, and technical teams. Dan holds a Bachelor’s degree in Computer Science from New York University.

Book a 1-1 meeting with one of our experts
share this article
COre coverage

More in this series

No items found.

Blog

Cloud

Securing the cloud: Using business context to improve visibility and prioritize cyber risk

Default blog imageDefault blog image
26
Mar 2024

Why are businesses shifting to the cloud?

Businesses are increasingly migrating to cloud, due to its potential to streamline operations, reduce costs, and enhance scalability and flexibility. By shifting their infrastructure to the cloud, either as a whole or, more commonly in a hybrid model, organizations can access a wide array of services, such as storage, compute and software applications, without the need for extensive on-premises hardware. However, this transition isn't without challenges.  

Security challenges of cloud migration

Data security, compliance, integration with existing systems, and ensuring consistent performance are critical concerns that need to be addressed. Therefore, companies must develop robust oversight, implement comprehensive security measures, and invest in staff training to successfully navigate the transition to the cloud all while minimizing potential disruptions.

Implementing security measures within a company, however, is a complex endeavour that involves coordination among numerous internal stakeholders two of the most pivotal players involved in cloud security investment, are the security team, entrusted with crafting a business's defensive strategy, and the DevOps engineering team, architects of the infrastructure underpinning the organization's business operations.

Key questions to ask when securing the cloud

Which team is responsible for maintaining the application?  

What do they consider normal?  

How are potential misconfigurations increasing the potential risk of an incident?

Best practices of cloud security

Contextual awareness of the business is a crucial facet for securing a company's cloud infrastructure, as it enables organizations to align security measures with specific business objectives, risks, and regulatory requirements. Understanding the context of the business operations, its goals, critical assets, and compliance obligations, allows security teams to tailor their strategies and controls accordingly.

How does Darktrace help secure the cloud?

In response to the difficulties outlined above, Darktrace has adopted a holistic approach to security with an ActiveAI security platform that is context-aware. This platform enables stakeholders to effectively detect and respond to threats that may arise within their cloud or on premises environments.  

By monitoring your network and identity activity, Darktrace can identify what is considered “normal” within your organization. This however doesn’t tell the whole story. It is also important to understand where these actions are occurring within the context of the business.  

Visibility in the cloud

Without visibility into the individual assets that make up the cloud environment, how these are configured, and how they operate at run time, security is incredibly difficult to maintain. Visibility allows security teams to identify potential vulnerabilities, misconfigurations, or unauthorized access points that could be exploited by malicious actors. It enables proactive monitoring and rapid response to security incidents, ensuring that any threats are promptly identified and mitigated before they can cause significant damage.  

Building architecture diagrams

The cornerstone of our strategy lies in the architecture diagrams, which serve as a framework for organizing resources within our cloud environment. An architecture comprises of interconnected resources governed by access controls and network routing mechanisms. Its purpose is to logically group these resources into the applications they support.  

Achieving this involves compiling a comprehensive inventory of the cloud environment, analyzing resource permissions—including both outbound and inbound access—and considering any overarching organizational policies. For networked devices, we delve into route tables, firewalls, and subnet access control policies. This information is then utilized to build a graph of interconnected assets, wherein each resource constitutes a node, and the possible connections between resources are represented as edges.

Once we have built up an inventory of all the resources within your environments, we can then start building architectures based on the graph. We do this by selecting distinct starting points for graph traversal, which we infer from our deep understanding of the cloud, an example would be a Virtual Private Cloud (VPC) - A VPC is a virtual network that closely resembles a traditional network that you'd operate in your own data center.  

All networked devices are usually housed within a VPC, with applications typically grouped into one or more VPCs. If multiple VPCs are detected with peering connections between them, we consider them as distinct parts of the same system. This approach enables us to comprehend applications across regions and accounts, rather than solely from the isolated viewpoint of a single VPC.

However, the cloud isn’t all about compute instances, serverless is a popular architecture. In fact, for many developers serverless architectures offer greater scalability and flexibility. Reviewing prevalent serverless architecture patterns, we've chosen some common fundamental resources as our starting point, Lambda functions and Elastic Container Service (ECS) clusters are prime examples, serving as crucial components in various serverless systems with distinct yet similar characteristics.

Prioritize risk in the cloud

Once we have built up an inventory of all the cloud asset, Darktrace/Cloud utilizes an ‘outlier’ detection machine learning model. This looks to categorize all the assets and identifies the ones that look different or ‘odd’ when compared with the assets around it, this is based on a wide range of characteristics some of which will include, Name, VPC ID, Host Region etc, whilst also incorporating contextual knowledge of where these assets are found, and how they fit into the architecture they are in.  

Once outliers are identified, we can use this information to assess the potential risk posed by the asset. Context plays a crucial role in this stage, as incorporating observations about the asset enables effective scoring. For instance, detecting a misconfiguration, anomalous network connections, or unusual user activity can significantly raise the asset's score. Consequently, the architecture it belongs to can be flagged for further investigation.

Adapting to a dynamic cloud environment

The cloud is incredibly dynamic. Therefore, Darktrace does not see architectures as fixed entities. Instead, we're always on the lookout for changes, driven by user and service activity. This prompts us to dive back in, update our architectural view, and keep a living record of the cloud's ever-changing landscape, providing near real-time insights into what's happening within it.  

Darktrace/Cloud doesn’t just consider isolated detections, it identifies assets that have misconfigurations and anomalous activity across the network and management plane and adjusts the priority of the alerting to match the potential risk that these assets could be leveraged to enable an attack.  

While in isolation misconfigurations don’t have much meaningful impact, when they are combined with real time updates and anomaly detection within the context of the architecture you see a very important and impactful perspective.  

Combining all of this into one view where security and dev ops teams can collaborate ensures continuity across teams, playing a vital role in providing effective security.

Continue reading
About the author
Adam Stevens
Analyst Technical Director

Blog

Inside the SOC

Socks5Systemz: How Darktrace’s Anomaly Detection Unraveled a Stealthy Botnet

Default blog imageDefault blog image
22
Mar 2024

What are botnets?

Although not a recent addition to the threat landscape, botnets persist as a significant concern for organizations, with many threat actors utilizing them for political, strategic, or financial gain. Botnets pose a particularly persistent threat to security teams; even if one compromised device is detected, attackers will likely have infected multiple devices and can continue to operate. Moreover, threat actors are able to easily replace the malware communication channels between infected devices and their command-and-control (C2) servers, making it incredibly difficult to remove the infection.

Botnet example: Socks5Systemz

One example of a botnet recently investigated by the Darktrace Threat Research team is Socks5Systemz. Socks5Systemz is a proxy-for-rent botnet, whereby actors can rent blocks of infected devices to perform proxying services.  Between August and November 2023, Darktrace detected indicators of Socks5Systemz botnet compromise within a cross-industry section of the customer base. Although open-source intelligence (OSINT) research of the botnet only appeared in November 2023, the anomaly-based approach of Darktrace DETECT™ allowed it to identify multiple stages of the network-based activity on affected customer systems well before traditional rules and signatures would have been implemented.

Darktrace’s Cyber AI Analyst™ complemented DETECT’s successful identification of Socks5Systemz activity on customer networks, playing a pivotal role in piecing together the seemingly separate events that comprised the wider compromise. This allowed Darktrace to build a clearer picture of the attack, empowering its customers with full visibility over emerging incidents.

In the customer environments highlighted in this blog, Darktrace RESPOND™ was not configured to operate autonomously. As a result, Socks5Systemz attacks were able to advance through their kill chains until customer security teams acted upon Darktrace’s detections and began their remediation procedures.

What is Socks5Systemz?

The Socks5Systemz botnet is a proxy service where individuals can use infected devices as proxy servers.

These devices act as ‘middlemen’, forwarding connections from malicious actors on to their intended destination. As this additional connectivity conceals the true origin of the connections, threat actors often use botnets to increase their anonymity. Although unauthorized proxy servers on a corporate network may not appear at first glance to be a priority for organizations and their security teams, complicity in proxy botnets could result in reputational damage and significant financial losses.

Since it was first observed in the wild in 2016, the Socks5Systemz botnet has grown steadily, seemingly unnoticed by cyber security professionals, and has infected a reported 10,000 devices worldwide [1]. Cyber security researchers noted a high concentration of compromised devices in India, with lower concentrations of devices infected in the United States, Latin America, Australia and multiple European and African countries [2]. Renting sections of the Socks5Systemz botnet costs between 1 USD and 4,000 USD, with options to increase the threading and time-range of the rentals [2]. Due to the lack of affected devices in Russia, some threat researchers have concluded that the botnet’s operators are likely Russian [2].

Darktrace’s Coverage of Socks5Systemz

The Darktrace Threat Research team conducted investigations into campaign-like activity across the customer base between August and November 2023, where multiple indicators of compromise (IoCs) relating to the Socks5Systemz proxy botnet were observed. Darktrace identified several stages of the attack chain described in static malware analysis by external researchers. Darktrace was also able to uncover additional IoCs and stages of the Socks5Systemz attack chain that had not featured in external threat research.

Delivery and Execution

Prior research on Socks5Systemz notes how the malware is typically delivered via user input, with delivery methods including phishing emails, exploit kits, malicious ads, and trojanized executables downloaded from peer-to-peer (P2P) networks [1].

Threat actors have also used separate malware loaders such as PrivateLoader and Amadey deliver the Socks5Systemz payload. These loaders will drop executable files that are responsible for setting up persistence and injecting the proxy bot into the infected device’s memory [2]. Although evidence of initial payload delivery did not appear during its investigations, Darktrace did discover IoCs relating to PrivateLoader and Amadey on multiple customer networks. Such activity included HTTP POST requests using PHP to rare external IPs and HTTP connections with a referrer header field, indicative of a redirected connection.

However, additional adjacent activity that may suggest initial user execution and was observed during Darktrace’s investigations. For example, an infected device on one deployment made a HTTP GET request to a rare external domain with a “.fun” top-level domain (TLD) for a PDF file. The URI also appears to have contained a client ID. While this download and HTTP request likely corresponded to the gathering and transmission of further telemetry data and infection verification [2], the downloaded PDF file may have represented a malicious payload.

Advanced Search log details highlighting a device infected by Socks5Systemz downloading a suspicious PDF file.
Figure 1: Advanced Search log details highlighting a device infected by Socks5Systemz downloading a suspicious PDF file.

Establishing C2 Communication  

Once the proxy bot has been injected into the device’s memory, the malware attempts to contact servers owned by the botnet’s operators. Across several customer environments, Darktrace identified infected devices attempting to establish connections with such C2 servers. First, affected devices would make repeated HTTP GET requests over port 80 to rare external domains; these endpoints typically had “.ua” and “.ru” TLDs. The majority of these connection attempts were not preceded by a DNS host lookup, suggesting that the domains were already loaded in the device’s cache memory or hardcoded into the code of running processes.

Figure 2: Breach log data connections identifying repeated unusual HTTP connections over port 80 for domains without prior DNS host lookup.

While most initial HTTP GET requests across investigated incidents did not feature DNS host lookups, Darktrace did identify affected devices on a small number of customer environments performing a series of DNS host lookups for seemingly algorithmically generated domains (DGA). These domains feature the same TLDs as those seen in connections without prior DNS host lookups.  

Figure 3: Cyber AI Analyst data indicating a subset of DGAs queried via DNS by infected devices.

These DNS requests follow the activity reported by researchers, where infected devices query a hardcoded DNS server controlled by the threat actor for an DGA domain [2]. However, as the bulk of Darktrace’s investigations presented HTTP requests without a prior DNS host lookup, this activity indicates a significant deviation from the behavior reported by OSINT sources. This could indicate that multiple variations of the Socks5Systemz botnet were circulating at the time of investigation.

Most hostnames observed during this time of investigation follow a specific regular expression format: /[a-z]{7}\.(ua|net|info|com|ru)/ or /[a-z0-9]{15}\.(ua)/. Darktrace also noticed the HTTP GET requests for DGA domains followed a consistent URI pattern: /single.php?c=<STRING>. The requests were also commonly made using the “Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)” user agent over port 80.

This URI pattern observed during Darktrace’s investigations appears to reflect infected devices contacting Socks5Systemz C2 servers to register the system and details of the host, and signal it is ready to receive further instructions [2]. These URIs are encrypted with a RC4 stream cipher and contain information relating to the device’s operating system and architecture, as well as details of the infection.

The HTTP GET requests during this time, which involved devices made to a variety a variety of similar DGA domains, appeared alongside IP addresses that were later identified as Socks5Systemz C2 servers.

Figure 4: Cyber AI Analyst investigation details highlighting HTTP GET activity whereby RC4 encrypted data is sent to proxy C2 domains.

However, not all affected devices observed by Darktrace used DGA domains to transmit RC4 encoded data. Some investigated systems were observed making similar HTTP GET requests over port 80, albeit to the external domain: “bddns[.]cc”, using the aforementioned Mozilla user agent. During these requests, Darktrace identified a consistent URI pattern, similar to that seen in the DGA domain GET requests: /sign/<RC4 cipher text>.  

Darktrace DETECT recognized the rarity of the domains and IPs that were connected to by affected devices, as well as the usage of the new Mozilla user agent.  The HTTP connections, and the corresponding Darktrace DETECT model breaches, parallel the analysis made by external researchers: if the initial DGA DNS requests do not return a valid C2 server, infected devices connect to, and request the IP address of a server from, the above-mentioned domain [2].

Connection to Proxy

After sending host and infection details via HTTP and receiving commands from the C2 server, affected devices were frequently observed initiating activity to join the Sock5Systemz botnet. Infected hosts would first make HTTP GET requests to an IP identified as Socks5Systemz’s proxy checker application, usually sending the URI “proxy-activity.txt” to the domain over the HTTP protocol. This likely represents an additional validation check to confirm that the infected device is ready to join the botnet.

Figure 5: Cyber AI Analyst investigation detailing HTTP GET requests over port 80 to the Socks5Systemz Proxy Checker Application.

Following the final validation checks, devices would then attempt TCP connections to a range of IPs, which have been associated with BackConnect proxy servers, over port 1074. At this point, the device is able to receive commands from actors who login to and operate the corresponding BackConnect server. This BackConnect server will transmit traffic from the user renting the segment of the botnet [2].

Darktrace observed a range of activity associated with this stage of the attack, including the use of new or unusual user agents, connections to suspicious IPs, and other anomalous external connectivity which represented a deviation from affected devices’ expected behavior.

Additional Activities Following Proxy Addition

The Darktrace Threat Research team found evidence of the possible deployment of additional malware strains during their investigation into devices affected by Socks5Systemz. IoCs associated with both the Amadey and PrivateLoader loader malware strains, both of which are known to distribute Socks5Systemz, were also observed on affected devices. Additionally, Darktrace observed multiple infected systems performing cryptocurrency mining operations around the time of the Sock5Systemz compromise, utilizing the MinerGate protocol to conduct login and job functions, as well as making DNS requests for mining pools.

While such behavior would fall outside of the expected activity for Socks5Systemz and cannot be definitively attributed to it, Darktrace did observe devices affected by the botnet performing additional malicious downloads and operations during its investigations.

Conclusion

Ultimately, Darktrace’s anomaly-based approach to threat detection enabled it to effectively identify and alert for malicious Socks5Systemz botnet activity long before external researchers had documented its IoCs and tactics, techniques, and procedures (TTPs).  

In fact, Darktrace not only identified multiple distinct attack phases later outlined in external research but also uncovered deviations from these expected patterns of behavior. By proactively detecting emerging threats through anomaly detection rather than relying on existing threat intelligence, Darktrace is well positioned to detect evolving threats like Socks5Systemz, regardless of what their future iterations might look like.

Faced with the threat of persistent botnets, it is crucial for organizations to detect malicious activity in its early stages before additional devices are compromised, making it increasingly difficult to remediate. Darktrace’s suite of products enables the swift and effective detection of such threats. Moreover, when enabled in autonomous response mode, Darktrace RESPOND is uniquely positioned to take immediate, targeted actions to contain these attacks from the onset.

Credit to Adam Potter, Cyber Security Analyst, Anna Gilbertson, Cyber Security Analyst

Appendices

DETECT Model Breaches

  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Compromise / Beaconing Activity To External Rare
  • Compromise / DGA Beacon
  • Compromise / Beacon to Young Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Agent Beacon (Long Period)
  • Device / New User Agent
  • Device / New User Agent and New IP

Cyber AI Analyst Incidents

  • Possible HTTP Command and Control
  • Possible HTTP Command and Control to Multiple Endpoints
  • Unusual Repeated Connections
  • Unusual Repeated Connections to Multiple Endpoints
  • Multiple DNS Requests for Algorithmically Generated Domains

Indicators of Compromise

IoC - Type - Description

185.141.63[.]172 - IP Address - Socks5Systemz C2 Endpoint

193.242.211[.]141 - IP Address - Socks5Systemz C2 Endpoint

109.230.199[.]181 - IP Address - Socks5Systemz C2 Endpoint

109.236.88[.]134 - IP Address - Socks5Systemz C2 Endpoint

217.23.5[.]14 - IP Address - Socks5Systemz Proxy Checker App

88.80.148[.]8 - IP Address - Socks5Systemz Backconnect Endpoint

88.80.148[.]219 - IP Address - Socks5Systemz Backconnect Endpoint

185.141.63[.]4 - IP Address - Socks5Systemz Backconnect Endpoint

185.141.63[.]2 - IP Address - Socks5Systemz Backconnect Endpoint

195.154.188[.]211 - IP Address - Socks5Systemz Backconnect Endpoint

91.92.111[.]132 - IP Address - Socks5Systemz Backconnect Endpoint

91.121.30[.]185 - IP Address - Socks5Systemz Backconnect Endpoint

94.23.58[.]173 - IP Address - Socks5Systemz Backconnect Endpoint

37.187.148[.]204 - IP Address - Socks5Systemz Backconnect Endpoint

188.165.192[.]18 - IP Address - Socks5Systemz Backconnect Endpoint

/single.php?c=<RC4 data hex encoded> - URI - Socks5Systemz HTTP GET Request

/sign/<RC4 data hex encoded> - URI - Socks5Systemz HTTP GET Request

/proxy-activity.txt - URI - Socks5Systemz HTTP GET Request

datasheet[.]fun - Hostname - Socks5Systemz C2 Endpoint

bddns[.]cc - Hostname - Socks5Systemz C2 Endpoint

send-monitoring[.]bit - Hostname - Socks5Systemz C2 Endpoint

MITRE ATT&CK Mapping

Command and Control

T1071 - Application Layer Protocol

T1071.001 – Web protocols

T1568 – Dynamic Resolution

T1568.002 – Domain Generation Algorithms

T1132 – Data Encoding

T1132 – Non-Standard Encoding

T1090 – Proxy

T1090.002 – External Proxy

Exfiltration

T1041 – Exfiltration over C2 channel

Impact

T1496 – Resource Hijacking

References

1. https://www.bleepingcomputer.com/news/security/socks5systemz-proxy-service-infects-10-000-systems-worldwide/

2. https://www.bitsight.com/blog/unveiling-socks5systemz-rise-new-proxy-service-privateloader-and-amadey

Continue reading
About the author
Adam Potter
Cyber Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.