Blog

Threat Finds

RESPOND

Ransomware

How AI stopped a WastedLocker intrusion

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
21
Dec 2020
21
Dec 2020
Darktrace recently detected and investigated a WastedLocker attack. This blog explores how this high-speed, high-stakes ransomware uses ‘Living off the Land’ techniques to bypass traditional security tools, and how Darktrace Antigena can autonomously stop this threat in its earliest stages, before encryption has begun.

Since first being discovered in May 2020, WastedLocker has made quite a name for itself, quickly becoming an issue for businesses and cyber security firms around the world. WastedLocker is known for its sophisticated methods of obfuscation and steep ransom demands.

Its use of ‘Living off the Land’ techniques makes a WastedLocker attack extremely difficult for legacy security tools to detect. An ever-decreasing dwell time – the time between initial intrusion and final execution – means human responders alone struggle to contain the ransomware variant before damage is done.

This blog examines the anatomy of a WastedLocker intrusion that targeted a US agricultural organization in December. Darktrace’s AI detected and investigated the incident in real time, and we can see how Darktrace RESPOND would have autonomously taken action to stop the attack before encryption had begun.

As ransomware dwell time shrinks to hours rather than days, security teams are increasingly relying on artificial intelligence to stop threats from escalating at the earliest signs of compromise – containing attacks even when they strike at night or on the weekend.

How the WastedLocker attack unfolded

Figure 1: A timeline of the attack

Initial intrusion

The initial infection appears to have taken place when an employee was deceived into downloading a fake browser update. Darktrace AI was monitoring the behavior of around 5,000 devices at the organization, continuously adapting its understanding of the evolving ‘pattern of life’. It detected the first signs of a threat when a virtual desktop device started making HTTP and HTTPS connections to external destinations that were deemed unusual for the organization. The graph below depicts how the patient zero device exhibited a spike in internal connections around December 4.

Figure 2: The patient zero device exhibiting a spike in internal connections, with orange dots indicating model breaches of varying severity

Reconnaissance

Attempted reconnaissance began just 11 minutes after the initial intrusion. Again, Darktrace immediately picked up on the activity, detecting unusual ICMP ping scans and targeted address scans on ports 135, 139 and 445; presumably as the attacker looked for potential further Windows targets. The below demonstrates the scanning detections based on the unusual number of new failed connections.

Figure 3: Darktrace detecting an unusual number of failed connections

Lateral movement

The attacker used an existing administrative credential to authenticate against a Domain Controller, initiating new service control over SMB. Darktrace picked this up immediately, identifying it as unusual behavior.

Figure 4: Darktrace identifying the DCE-RPC requests
Figure 5: Darktrace surfacing the SMB writes

Several hours later – and in the early hours of the morning – the attacker used a temporary admin account ‘tempadmin’ to move to another Domain Controller over SMB. Darktrace instantly detected this as it was highly unusual to use a temporary admin account to connect from a virtual desktop to a Domain Controller.

Figure 6: Further anomalous connections detected the following day

Lock and load: WastedLocker prepares to strike

During the beaconing activity, the attacker also conducted internal reconnaissance and managed to establish successful administrative and remote connections to other internal devices by using tools already present. Soon after, a transfer of suspicious .csproj files was detected by Darktrace, and at least four other devices began exhibiting similar command and control (C2) communications.

However, with Darktrace’s real-time detections – and Cyber AI Analyst investigating and reporting on the incident in a number of minutes, the security team were able to contain the attack, taking the infected devices offline.

Automated investigations with Cyber AI Analyst

Darktrace’s Cyber AI Analyst launched an automatic investigation around every anomaly detection, forming hypotheses, asking questions about its own findings, and forming accurate answers at machine speed. It then generated high-level, intuitive incident summaries for the security team. Over the 48 hour period, the AI Analyst surfaced just six security incidents in total, with three of these directly relating to the WastedLocker intrusion.

Figure 7: The Cyber AI Analyst threat tray

The snapshot below shows a VMWare device (patient zero) making repeated external connections to rare destinations, scanning the network and using new admin credentials.

Figure 8: Cyber AI Analyst investigates

Darktrace RESPOND: AI that responds when the security team cannot

Darktrace RESPOND – the world’s first and only Autonomous Response technology – was configured in passive mode, meaning it did not actively interfere with the attack, but if we dive back into the Threat Visualizer we can see that Antigena in fully autonomous mode would have responded to the attack at this early stage, buying the security team valuable time.

In this case, after the initial unusual SSL C2 detection (based on a combination of destination rarity, JA3 unusualness and frequency analysis), RESPOND (formerly known as 'Antigena', as shown in the screenshots below) suggested instantly blocking the C2 traffic on port 443 and parallel internal scanning on port 135.

Figure 9: The Threat Visualizer reveals the action Antigena would have taken

When beaconing was later observed to bywce.payment.refinedwebs[.]com, this time over HTTP to /updateSoftwareVersion, RESPOND escalated its response by blocking the further C2 channels.

Figure 10: Antigena escalates its response

The vast majority of response tools rely on hard-coded, pre-defined rules, formulated as ‘If X, do Y’. This can lead to false positives that unnecessarily take devices offline and hamper productivity. Darktrace RESPOND's actions are proportionate, bespoke to the organization, and not created in advance. Darktrace Antigena autonomously chose what to block and the severity of the blocks based on the context of the intrusion, without a human pre-eminently hard-coding any commands or set responses.

Every response over the 48 hours was related to the incident – RESPOND did not try to take action on anything else during the intrusion period. It simply would have actioned a surgical response to contain the threat, while allowing the rest of the business to carry on as usual. There were a total of 59 actions throughout the incident time period – excluding the ‘Watched Domain Block’ actions shown below – which are used during incident response to proactively shut down C2 communication.

Figure 11: All Antigena action attempts during the intrusion period across the whole organization

RESPOND would have delivered those blocks via whatever integration is most suitable for the organization – whether that be Firewall integrations, NACL integrations or other native integrations. The technology would have blocked the malicious activity on the relevant ports and protocols for several hours – surgically interrupting the threat actors’ intrusion activity, thus preventing further escalation and giving the security team air cover.

Stopping WastedLocker ransomware before encryption ensues

This attack used many notable Tools, Techniques and Procedures (TTPs) to bypass signature-based tools. It took advantage of ‘Living off the Land’ techniques, including Windows Management Instrumentation (WMI), Powershell, and default admin credential use. Only one of the involved C2 domains had a single hit on Open Source Intelligence Lists (OSINT); the others were unknown at the time. The C2 was also encrypted with legitimate Thawte SSL Certificates.

For these reasons, it is plausible that without Darktrace in place, the ransomware would have been successful in encrypting files, preventing business operations at a critical time and possibly inflicting huge financial and reputational losses to the organization in question.

Darktrace’s AI detects and stops ransomware in its tracks without relying on threat intelligence. Ransomware has thrived this year, with attackers constantly coming up with new attack TTPs. However, the above threat find demonstrates that even targeted, sophisticated strains of ransomware can be stopped with AI technology.

Thanks to Darktrace analyst Signe Zaharka for her insights on the above threat find.

Learn more about Autonomous Response

Darktrace model detections:

  • Compliance / High Priority Compliance Model Breach
  • Compliance / Weak Active Directory Ticket Encryption
  • Anomalous Connection / Cisco Umbrella Block Page
  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Compliance / Default Credential Usage
  • Compromise / Suspicious TLS Beaconing To Rare External
  • Anomalous Server Activity / Rare External from Server
  • Device / Lateral Movement and C2 Activity
  • Compromise / SSL Beaconing to Rare Destination
  • Device / New or Uncommon WMI Activity
  • Compromise / Watched Domain
  • Antigena / Network / External Threat / Antigena Watched Domain Block
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Slow Beaconing Activity To External Rare
  • Device / Multiple Lateral Movement Model Breaches
  • Compromise / High Volume of Connections with Beacon Score
  • Device / Large Number of Model Breaches
  • Compromise / Beaconing Activity To External Rare
  • Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach
  • Anomalous Connection / New or Uncommon Service Control
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Compromise / SSL or HTTP Beacon
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Compromise / Sustained SSL or HTTP Increase
  • Unusual Activity / Unusual Internal Connections
  • Device / ICMP Address Scan


INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Max Heinemeyer
Chief Product Officer

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

Book a 1-1 meeting with one of our experts
share this article
PRODUCT SPOTLIGHT
No items found.
COre coverage
No items found.

More in this series

No items found.

Blog

Inside the SOC

Identifying the Imposter: Darktrace’s Detection of Simulated Malware vs the Real Thing

Default blog imageDefault blog image
13
Mar 2024

Distinguishing attack simulations from the real thing

In an era marked by the omnipresence of digital technologies and the relentless advancement of cyber threats, organizations face an ongoing battle to safeguard their digital environment. Although red and blue team exercises have long served as cornerstones in evaluating organizational defenses, their reliance on manual processes poses significant constraints [1]. Led by seasoned security professionals, these tests offer invaluable insights into security readiness but can be marred by their resource-intensive and infrequent testing cycles. The gaps between assessments leave organizations open to undetected vulnerabilities, compromising the true state of their security environment. In response to the ever-changing threat landscape, organizations are adopting a proactive stance towards cyber security to fortify their defenses.

At the forefront, these efforts tend to revolve around simulated attacks, a process designed to test an organization's security posture against both known and emerging threats in a safe and controlled environment [2]. These meticulously orchestrated simulations imitate the tactics, techniques, and procedures (TTPs) employed by actual adversaries and provide organizations with invaluable insights into their security resilience and vulnerabilities. By immersing themselves in simulated attack scenarios, security teams can proactively probe for vulnerabilities, adopt a more aggressive defense posture, and stay ahead of evolving cyber threats.

Distinguishing between simulated malware observations and authentic malware activities stands as a critical imperative for organizations bolstering their cyber defenses. While simulated platforms offer controlled scenarios for testing known attack patterns, Darktrace’s Self-Learning AI can detect known and unknown threats, identify zero-day threats, and previously unseen malware variants, including attack simulations. Whereas simulated platforms focus on specific known attack vectors, Darktrace DETECT™ and Darktrace RESPOND™ can identify and contain both known and unknown threats across the entire attack surface, providing unparalleled protection of the cyber estate.

Darktrace’s Coverage of Simulated Attacks

In January 2024, the Darktrace Security Operations Center (SOC) received a high volume of alerts relating to an unspecified malware strain that was affecting multiple customers across the fleet, raising concerns, and prompting the Darktrace Analyst team to swiftly investigate the multitude of incident. Initially, these activities were identified as malicious, exhibiting striking resemblance to the characteristics of Remcos, a sophisticated remote access trojan (RAT) that can be used to fully control and monitor any Windows computer from XP and onwards [3]. However, further investigation revealed that these activities were intricately linked to a simulated malware provider.

This discovery underscores a pivotal insight into Darktrace’s capabilities. To this point, leveraging advanced AI, Darktrace operates with a sophisticated framework that extends beyond conventional threat detection. By analyzing network behavior and anomalies, Darktrace not only discerns between simulated threats, such as those orchestrated by breach and attack simulation platforms and genuine malicious activities but can also autonomously respond to these threats with RESPOND. This showcases Darktrace’s advanced capabilities in effectively mitigating cyber threats.

Attack Simulation Process: Initial Access and Intrusion

Darktrace initially observed devices breaching several DETECT models relating to the hostname “new-tech-savvy[.]com”, an endpoint that was flagged as malicious by multiple open-source intelligence (OSINT) vendors [4].

In addition, multiple HTML Application (HTA) file downloads were observed from the malicious endpoint, “new-tech-savvy[.]com/5[.]hta”. HTA files are often seen as part of the UAC-0050 campaign, known for its cyber-attacks against Ukrainian targets, which tends to leverage the Remcos RAT with advanced evasion techniques [5] [6]. Such files are often critical components of a malware operation, serving as conduits for the deployment of malicious payloads onto a compromised system. Often, within the HTA file resides a VBScript which, upon execution, triggers a PowerShell script. This PowerShell script is designed to facilitate the download of a malicious payload, namely “word_update.exe”, from a remote server. Upon successful execution, “word_update.exe” is launched, invoking cmd.exe and initiating the sharing of malicious data. This process results in the execution of explorer.exe, with the malicious RemcosRAT concealed within the memory of explorer.exe. [7].

As the customers were subscribed to Darktrace’s Proactive Threat Notification (PTN) service, an Enhanced Monitoring model was breached upon detection of the malicious HTA file. Enhanced Monitoring models are high-fidelity DETECT models designed to identify activity likely to be indicative of compromise. These PTN alerts were swiftly investigated by Darktrace’s round the clock SOC team.

Following this successful detection, Darktrace RESPOND took immediate action by autonomously blocking connections to the malicious endpoint, effectively preventing additional download attempts. Similar activity may be seen in the case of a legitimate malware attack; however, in this instance, the hostname associated with the download confirmed the detected malicious activity was the result of an attack simulation.

Figure 1: The Breach Log displays the model breach, “Anomalous File/Incoming HTA File”, where a device was detected downloading the HTA file, “5.hta” from the endpoint, “new-tech-savvy[.]com”.
'
Figure 2: The Model Breach Event Log shows a device making connections to the endpoint, “new-tech-savvy[.]com”. As a result, theRESPOND model, “Antigena/Network/External Threat/Antigena File then New Outbound Block", breached and connections to this malicious endpoint were blocked.
Figure 3: The Breach Log further showcases another RESPOND model, “Antigena/Network/External Threat/Antigena Suspicious File Block", which was triggered when the device downloaded a  HTA file from the malicious endpoint, “new-tech-savvy[.]com".

In other cases, Darktrace observed SSL and HTTP connections also attributed to the same simulated malware provider, highlighting Darktrace’s capability to distinguish between legitimate and simulated malware attack activity.

Figure 4: The Model Breach “Anomalous Connection/Low and Slow Exfiltration" displays the hostname of a simulated malware provider, confirming the detected malicious activity as the result of an attack simulation.
Figure 5: The Model Breach Event Log shows the SSL connections made to an endpoint associated with the simulated malware provider.
Figure 6: Darktrace’s Advanced Search displays SSL connection logs to the endpoint of the simulated malware provider around the time the simulation activity was observed.

Upon detection of the malicious activity occurring within affected customer networks, Darktrace’s Cyber AI Analyst™ investigated and correlated the events at machine speed. Figure 8 illustrates the synopsis and additional technical information that AI Analyst generated on one customer’s environment, detailing that over 220 HTTP queries to 18 different endpoints for a single device were seen. The investigation process can also be seen in the screenshot, showcasing Darktrace’s ability to provide ‘explainable AI’ detail. AI Analyst was able to autonomously search for all HTTP connections made by the breach device and identified a single suspicious software agent making one HTTP request to the endpoint, 45.95.147[.]236.

Furthermore, the malicious endpoints, 45.95.147[.]236, previously observed in SSH attacks using brute-force or stolen credentials, and “tangible-drink.surge[.]sh”, associated with the Androxgh0st malware [8] [9] [10], were detected to have been requested by another device.

This highlights Darktrace’s ability to link and correlate seemingly separate events occurring on different devices, which could indicate a malicious attack spreading across the network.  AI Analyst was also able to identify a username associated with the simulated malware prior to the activity through Kerberos Authentication Service (AS) requests. The device in question was also tagged as a ‘Security Device’ – such tags provide human analysts with valuable context about expected device activity, and in this case, the tag corroborates with the testing activity seen. This exemplifies how Darktrace’s Cyber AI Analyst takes on the labor-intensive task of analyzing thousands of connections to hundreds of endpoints at a rapid pace, then compiling results into a single pane that provides customer security teams with the information needed to evaluate activities observed on a device.

All in all, this demonstrates how Darktrace’s Self-Learning AI is capable of offering an unparalleled level of awareness and visibility over any anomalous and potentially malicious behavior on the network, saving security teams and administrators a great deal of time.

Figure 7: Cyber AI Analyst Incident Log containing a summary of the attack simulation activity,, including relevant technical details, and the AI investigation process.

Conclusion

Simulated cyber-attacks represent the ever-present challenge of testing and validating security defenses, while the threat of legitimate compromise exemplifies the constant risk of cyber threats in today’s digital landscape. Darktrace emerges as the solution to this conflict, offering real-time detection and response capabilities that identify and mitigate simulated and authentic threats alike.

While simulations are crafted to mimic legitimate threats within predefined parameters and controlled environments, the capabilities of Darktrace DETECT transcend these limitations. Even in scenarios where intent is not malicious, Darktrace’s ability to identify anomalies and raise alerts remains unparalleled. Moreover, Darktrace’s AI Analyst and autonomous response technology, RESPOND, underscore Darktrace’s indispensable role in safeguarding organizations against emerging threats.

Credit to Priya Thapa, Cyber Analyst, Tiana Kelly, Cyber Analyst & Analyst Team Lead

Appendices

Model Breaches

Darktrace DETECT Model Breach Coverage

Anomalous File / Incoming HTA File

Anomalous Connection / Low and Slow Exfiltration

Darktrace RESPOND Model Breach Coverage

§  Antigena / Network/ External Threat/ Antigena File then New Outbound Block

Cyber AI Analyst Incidents

• Possible HTTP Command and Control

• Suspicious File Download

List of IoCs

IP Address

38.52.220[.]2 - Malicious Endpoint

46.249.58[.]40 - Malicious Endpoint

45.95.147[.]236 - Malicious Endpoint

Hostname

tangible-drink.surge[.]sh - Malicious Endpoint

new-tech-savvy[.]com - Malicious Endpoint

References

1.     https://xmcyber.com/glossary/what-are-breach-and-attack-simulations/

2.     https://www.picussecurity.com/resource/glossary/what-is-an-attack-simulation

3.     https://success.trendmicro.com/dcx/s/solution/1123281-remcos-malware-information?language=en_US&sfdcIFrameOrigin=null

4.     https://www.virustotal.com/gui/url/c145cf7010545791602e9585f447347c75e5f19a0850a24e12a89325ded88735

5.     https://www.virustotal.com/gui/url/7afd19e5696570851e6413d08b6f0c8bd42f4b5a19d1e1094e0d1eb4d2e62ce5

6.     https://thehackernews.com/2024/01/uac-0050-group-using-new-phishing.html

7.     https://www.uptycs.com/blog/remcos-rat-uac-0500-pipe-method

8.     https://www.virustotal.com/gui/ip-address/45.95.147.236/community

9.     https://www.virustotal.com/gui/domain/tangible-drink.surge.sh/community

10.  https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-016a

Continue reading
About the author
Priya Thapa
Cyber Analyst

Blog

No items found.

Mastering Cloud Migration: Strategies, Services, and Risks

Default blog imageDefault blog image
12
Mar 2024

What is cloud migration?

Cloud migration, in its simplest form, refers to the process of moving digital assets, such as data, applications, and IT resources, from on-premises infrastructure or legacy systems to cloud computing environments. There are various flavours of migration and utilization, but according to a survey conducted by IBM, one of the most common is the 'Hybrid' approach, with around 77% of businesses adopting a hybrid cloud approach.

There are three key components of a hybrid cloud migration model:

  1. On-Premises (On-Prem): Physical location with some amount of hardware and networking, traditionally a data centre.
  2. Public Cloud: Third-party providers like AWS, Azure, and Google, who offer multiple services such as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS).
  3. Private Cloud: A cloud computing environment where resources are isolated for one customer.

Why does cloud migration matter for enterprises?

Cloud adoption provides many benefits to businesses, including:

  1. Scalability: Cloud environments allow enterprises to scale resources up or down based on demand, enabling them to quickly adapt to changing business requirements.
  2. Flexibility and Agility: Cloud platforms provide greater flexibility and agility, enabling enterprises to innovate and deploy new services more rapidly compared to traditional on-premises infrastructure.
  3. Cost Efficiency: Pay-as-you-go model, allowing enterprises to reduce capital expenditures on hardware and infrastructure.
  4. Enhanced Security: Cloud service providers invest heavily in security measures to protect data and infrastructure, offering advanced security features and compliance certifications.

The combination of these benefits provides significant potential for businesses to innovate and move quickly, ultimately allowing them to be flexible and adapt to changing market conditions, customer demands, and technological advancements with greater agility and efficiency.

Cloud migration strategy

There are multiple migration strategies a business can adopt, including:

  1. Rehosting (Lift-and-shift): Quickly completed but may lead to increased costs for running workloads.
  2. Refactoring (Cloud Native): Designed specifically for the cloud but requires a steep learning curve and staff training on new processes.
  3. Hybrid Cloud: Mix of on-premises and public cloud use, offering flexibility and scalability while keeping data secure on-premises. This can introduce complexities in setup and management overhead and requires ensuring security and compliance in both environments.

It is important to note that each strategy has its trade-offs and there is no single gold standard for a one size fits all cloud migration strategy. Different businesses will prioritize and leverage different benefits, for instance while some might prefer a rehosting strategy as it gets them migrated the fastest, it typically ends up also being the most costly strategy as “lift-and-shift” doesn’t take advantage of many key benefits that the cloud has to offer. Conversely, refactoring is a strategy optimized at making the most of the benefits that cloud providers have to offer, however the process of redesigning applications requires cloud expertise and based on the scale of applications that are required to be refactored this strategy might not be the quickest when it comes to moving applications from being hosted on premise to in the cloud.  

Phases of a cloud migration

At the highest level, there are four main steps in a successful migration:

  1. Discover: Identify and categorize IT assets, applications, and critical dependencies.
  2. Plan: Develop a detailed migration plan, including timelines, resource allocation, and risk management strategies.
  3. Migrate: Execute the migration plan, minimizing disruption to business operations.
  4. Optimize: Continuously optimize the cloud environment using automation, performance monitoring, and cost management tools to improve efficiency, performance, and scalability.

While it is natural to race towards the end goals of a cloud migration, most successful cloud migration strategies allocate the appropriate timelines to each phase.  

The “Discover” phase specifically is where most businesses can set themselves up for success. Having a complete understanding of assets, applications, services, and dependencies needed to migrate however is much easier said than done. Given the pace of change and how laborious of a task inventorying everything can be to manage and maintain, most mistakes at this stage will propagate and amplify through the migration journey.  

Risks and challenges of cloud migration

Though cloud migration offers a wealth of benefits, it also introduces new risks that need to be accounted for and managed effectively. Security should be considered a fundamental part of the process, not an additional measure that can be ‘bolted’ on at the end.

Let’s consider the most popular migration strategy, using a ‘Hybrid Cloud’. A recent report by the industry analyst group Forrester cited that Cloud Security Posture Management (CSPM) tools are just one facet of security, stating:

"No matter how good it is, using a CSPM solution alone will not provide you with full visibility, detection, and effective remediation capabilities for all threats. Your adversaries are also targeting operating systems, existing on-prem network infrastructure, and applications in their quest to steal valuable data".

Unpacking some of the risks here, it’s clear they fall into a range of categories, including:

  1. Security Concerns: Ensuring security across both on-premises and cloud environments, addressing potential misconfigurations and vulnerabilities.
  2. Contextual Understanding: Effective security requires a deep understanding of the organization's business processes and the context in which data and applications operate.
  3. Threat Detection and Response: Identifying and responding to threats in real-time requires advanced capabilities such as AI and anomaly detection.
  4. Platform Approach: Deploying integrated security solutions that provide end-to-end visibility, centralized management, and automated responses across hybrid infrastructure.

Since the cloud doesn’t operate in a vacuum, businesses will always have a myriad of 3rd party applications, users, endpoints, external services, and partners connecting and interacting with their cloud environments. From this perspective, being able to correlate and understand behaviors and activity both within the cloud and its surroundings becomes imperative.

It then follows that context from a business wide perspective is necessary. This has two distinct implications, the first is application or workload specific context (i.e. where do the assets, services, and functions alerted on reside within the cloud application) and the second is business wide context. Given the volume of alerts that security practitioners need to manage, findings that lack the appropriate context to fully understand and resolve the issue create additional strain on teams that are already managing a difficult challenge.  

Conclusion

With that in mind, Darktrace’s approach to security, with its existing and new advances in Cloud Detection and Response capabilities, anomaly detection across SaaS applications, and native ability to leverage many AI techniques to understand the business context within your dynamic cloud environment and on-premises infrastructure. It provides you with the integrated building blocks to provide the ‘360’ degree view required to detect and respond to threats before, during, and long after your enterprise migrates to the cloud.

References

IBM Transformation Index: State of Cloud https://www.ibm.com/blog/hybrid-cloud-use-cases/

https://www.forrester.com/report/the-top-trends-shaping-cloud-security-posture-management-cspm-in-2024/RES180379  

Continue reading
About the author
Adam Stevens
Analyst Technical Director
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.