What’s New

How profitable is crypto-mining malware?

Max Heinemeyer, Director of Threat Hunting | Monday April 16, 2018

One of the top malware trends in recent months has been the stellar growth of crypto-mining malware. Of the various crypto-currencies, the most prominent malware used for illegal mining activities is Monero, a crypto-currency that can be profitably mined on commodity hardware such as laptops and workstations. Moreover, a related trend observed recently is that of laterally moving malware which, as its name suggests, moves between devices to execute its payloads in a variety of different ways. This malware, used in attacks such as WannaCry, NotPetya and BadRabbit, uses techniques such as encrypting hard drives with ransomware while also deploying Monero miners.

As Darktrace regularly detects crypto-mining attempts the moment they occur on a network, we can estimate the cash flow stream a cyber-criminal earned on a laterally moving Monero-miner infection that Darktrace identified.

How it began

Last month, a customer’s device – which we will call patient zero – became infected with a Monero-miner. After a short time, patient zero started looking for accessible SMB drives by scanning the internal network for devices on port 445. As the device had not conducted any network scanning activity in the past, Darktrace flagged the process as an unusual network scan and an anomalous SMB enumeration:

The network scan (device names are redacted)

Once patient zero identified accessible IPC$, ADMIN$ or C$ SMB drives, it transferred an executable to the drive. After the file transfer, the malware used PsExec to connect to the device and execute the malicious software. As patient zero had not made any SMB drive writes and had not used PsExec in this fashion before, alerts were raised immediately:

Lateral movement (device names are redacted)

Spread and containment

The now-infected device started mining Monero and attempted to communicate over Tor2Web with Command & Control (C2) servers:

C2 traffic (device names are redacted)

Using Darktrace, the security team identified the infection within minutes and assessed the complete extent of the infection in less than an hour. Within three hours from initial detection, the security team had run a clean-up script on their network which stopped the spread.

Revenue estimates

We have estimated the hypothetical revenue for this particular attack. To make the mining less detectable, some of the current Monero-mining malware applies restrictions to both the number of threads that can be used and the maximum CPU usage capacity. As a result, we have estimated the figures below on a worst-case scenario basis.

We know that 300 machines were infected and that the Monero miners were running for around 4 hours.

Mining profitability is commonly measured in the amount of hashes calculated per second per CPU core or GPU. This number, known as hashes per second (H/S), can differ based on the hardware used. A common number on the lower end of the scale for H/S on a single CPU is 20 H/S for the CryptoNight algorithm used to mine Monero.

GPUs, being more efficient for the CryptoNight algorithm, can yield 2-3x the H/S rate of CPUs and beyond. Keeping with a worst-case scenario basis, we will assume all infected devices had only 2 CPU cores and no GPUs, meaning a single infected machine yielded 40 H/S. This leads us to the following calculation: 300 infected devices x 40 H/S = 12000 H/S.

A Monero-mining revenue calculation tool produced the following results: with a Monero price of $202.43 at the time of infection (disregarding electricity costs), the criminal would have earned roughly $15.85 in 24h. As the miners only ran for around 4 hours, the resulting revenue would have only been $2.64. So how is this profitable?

It’s a numbers game

Cryptocurrency-mining operations are designed to last for months, not hours. If this infection had gone undetected, the criminal would have earned $15.85 per day, or $475.62 per month. Furthermore, victims with larger networks are much less likely to notice the infection. As attacks spreading this kind of malware are often indiscriminate in nature, they will often hit thousands of organizations at the same time, giving them the capacity to generate much more than just half a dollar.

Max Heinemeyer

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max oversees global threat hunting efforts, working with strategic customers to investigate and respond to cyber-threats. He works closely with the R&D team at Darktrace’s Cambridge UK headquarters, leading research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. When living in Germany, he was an active member of the Chaos Computer Club. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.