The ‘Matrix Banker’ Reloaded

Max Heinemeyer, Director of Threat Hunting | Thursday October 12, 2017


Over the last few weeks, Darktrace has confidently identified traces of the resurgence of a stealthy attack targeting Latin American companies. This targeted campaign was first observed between March and June this year. Arbor Networks initially labelled the malware used in the campaign ‘Matrix Banker’. The name used by Proofpoint is ‘Win32/RediModiUpd’. The malware used by the attackers appeared to be still under development when the last report came out in June 2017.

Darktrace has observed an attack wave targeting Mexican companies in August and September 2017. Some of the TTPs (tools, techniques, procedures) observed bear close resemblance to those seen in the ‘Matrix Banker’ attacks earlier this year. The campaign is crafted to be particularly stealthy and to blend into certain networks in Latin America, confirming the suspicion of its targeted nature. Darktrace’s machine learning and AI algorithms were able to identify the infected devices almost instantaneously, despite apparent efforts by the malware author to be covert and stealthy.

Between August and October 2017, Darktrace detected highly anomalous behavior on five seemingly unrelated networks in Mexico. Unlike the original strain of this attack, which was believed to target financial institutions almost exclusively, this latest variant affected customers across a number of industry verticals, suggesting that the threat actors are diversifying their targets. Darktrace has seen the attack hit companies in the healthcare, telecommunications, food and retail sectors.

Infection process

The initial infection vector appears to be phishing emails. The users downloaded the initial piece of malware from compromised Mexican websites. The infected files were Windows executables masqueraded as .mp3 and .gif files. Example downloads are listed below. Darktrace instantly detected the highly anomalous behavior of these downloads, which occurred from 100% rare external domains for the networks, and alerted the respective security teams.

hxxp://[.]mx/images/sss/sound.mp3 [1]
hxxp://[.]mx/inicio/wp-includes/kk/sound.mp3 [2]

The actual file names of the downloads are ‘logo.gif’.

The ‘Matrix Bankers’ attack tried to conceal malware downloads using masqueraded files in previous attacks. What is interesting about the hacked websites serving the malware is that they are using the .mx top level domain. This localised and targeted technique is used to conceal the traffic and make it blend in with normal network traffic on networks in Mexico.

Following the initial infection, in some cases a second stage malware was downloaded. Darktrace detected this as more anomalous activity since the downloads took place from more 100% rare external destinations:

hxxp://dackdack[.]club/APIv3/modules/nn_grabber_x64.dll [3]
hxxp://dackdack[.]club/APIv3/modules/nn_grabber_x32.dll [4]

Successful second stage downloads were seen to be followed by suspicious HTTP POST beaconing behavior, resembling command and control communication to various domains:


Not all targeted companies were seen to receive a second-stage malware download. This might indicate a sophisticated attack plan where the initial generic, covert backdoor is followed by a targeted second-stage payload that is chosen based on the victim and its potential value to the cyber criminals (long term data exfiltration, ransomware, banking Trojan…). Customers reported that infected devices had their anti-virus disabled, or removed by the malware. This showcases that companies cannot solely rely on signature based systems to catch novel, evolving threats.

The beaconing behavior to these 100% unusual external domains was immediately detected as it represented a strong deviation from the devices’ normal ‘pattern of life’. The use of domains hosted on .cat (top level domain used for the Catalan culture and language) indicates that the attackers are highly aware of the cultural context of their target victims and try to make the malware communication blend in with network traffic.

This graphic illustrates the strong detection Darktrace showed during the initial ‘Matrix Banker’ infection. Every colored dot represents a Darktrace detection. A clear deviation from the previous ‘pattern of life’ can be seen around the time of the infection.

Compromised machines made further repeated DNS requests to the domains below:


At the time of our investigation, the domains below resolved to the following IP address:


Closing thoughts

Although final attribution is impossible, the evidence strongly suggests that the campaign described here is similar to the ‘Matrix Banker’ campaign observed in March and June 2017 and might be a continuation of it.

The initial malware was concealing its file types by using different file extensions than their MIME type. More precisely, the use of ‘logo.gif’ has been seen in previous ‘Matrix Banker’ attacks.

There are 3,000 deployments of Darktrace’s AI technology across 70 countries, but all identified instances of this type of compromise are in Latin American organizations.

The ‘Matrix Bankers’ have used Catalan top-level domains in past attacks. In fact, some of the domains used previously are very similar to domains observed here. One domain seen in September was the exact same domain as seen in an earlier attack – just with an additional ‘s’ appended:

Example domains from March/June 2017


Example domains from August/October 2017


Although the domains appear to be randomly generated, a closer look reveals that the ‘Matrix Bankers’ seem to favor generating domain names by using keys that are physically close together on a keyboard, or by repeating phrases one might type in a hurry, when lacking creativity for naming a temporary download (e.g. asdasd.jpeg). We saw this pattern for domain name generation in the March - June ‘Matrix Bankers’ campaign as well as here.

Darktrace’s AI technology was able to detect these stealthy and sophisticated attacks because the way in which they manifest themselves represents a sharp deviation from the normal ‘pattern of life’ within an organization. The threat actors applied a number of techniques to blend into the normal noise of networks, but the self-learning algorithms were quick in detecting the anomalous behavior automatically and in real time.


List of IoCs


[1] VirusTotal analysis of this file
[2] SHA-1: 88f3bdc84908c1fb844b337c535eef2d2b31e1dc
[3] VirusTotal analysis of this file
[4] VirusTotal analysis of this file

Blog Archive

Thursday January 10, 2019
Monday December 3, 2018
Thursday November 22, 2018
Thursday October 25, 2018
Thursday October 4, 2018
Monday August 20, 2018
Monday July 16, 2018
Friday June 22, 2018
Wednesday May 9, 2018
Monday April 16, 2018
Wednesday March 7, 2018
Tuesday February 13, 2018
Friday February 2, 2018
Monday January 22, 2018
Friday December 8, 2017
Monday November 27, 2017
Monday October 30, 2017
Wednesday October 25, 2017
Thursday October 12, 2017
Monday October 2, 2017
Monday September 18, 2017
Monday July 31, 2017
Thursday June 29, 2017
Wednesday June 21, 2017
Wednesday May 17, 2017
Monday May 8, 2017
Wednesday April 5, 2017
Monday March 6, 2017
Monday February 13, 2017
Monday January 30, 2017
Monday January 9, 2017
Friday December 16, 2016
Monday December 5, 2016
Friday November 18, 2016
Friday November 4, 2016
Monday October 24, 2016

About the authors

Justin Fier

Justin Fier is the Director for Cyber Intelligence & Analytics at Darktrace, based in Washington D.C. Justin is one of the US’s leading cyber intelligence experts, and his insights have been widely reported in leading media outlets, including Wall Street Journal, CNN, the Washington Post, and VICELAND. With over 10 years of experience in cyber defense, Justin has supported various elements in the US intelligence community, holding mission-critical security roles with Lockheed Martin, Northrop Grumman Mission Systems and Abraxas. Justin is also a highly-skilled technical specialist, and works with Darktrace’s strategic global customers on threat analysis, defensive cyber operations, protecting IoT, and machine learning.

Dave Palmer

Dave Palmer is the Director of Technology at Darktrace, overseeing the mathematics and engineering teams and project strategies. With over ten years of experience at the forefront of government intelligence operations, Palmer has worked across UK intelligence agencies GCHQ & MI5, where he delivered mission-critical infrastructure services, including the replacement and security of entire global networks, the development of operational internet capabilities and the management of critical disaster recovery incidents. He holds a first-class degree in Computer Science and Software Engineering from the University of Birmingham.

Andrew Tsonchev

Andrew advises Darktrace’s strategic Fortune 500 customers on advanced threat detection, machine learning and autonomous response. He has a technical background in threat analysis and research, and holds a first-class degree in physics from Oxford University and a first-class degree in philosophy from King’s College London. He was most recently featured on BBC World, BBC Morning and Al Jazeera to comment on the news regarding the GRU.

Max Heinemeyer

Max is a cyber security expert with over eight years’ experience in the field specializing in network monitoring and offensive security. At Darktrace, Max works with strategic customers to help them investigate and respond to threats as well as overseeing the cyber security analyst team in the Cambridge UK headquarters. Prior to his current role, Max led the Threat and Vulnerability Management department for Hewlett-Packard in Central Europe. He was a member of the German Chaos Computer Club, working as a white hat hacker in penetration testing and red teaming engagements. Max holds a MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.