Blog

Ransomware

ヘルスケア企業を標的としたMazeランサムウェアをAIがキャッチ

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
21
Oct 2020
21
Oct 2020
Attackers are targeting increasingly high-stakes environments with ransomware. This blog post explores how AI can be used to detect and autonomously neutralize machine-speed attacks – looking in particular at how Darktrace caught Maze ransomware targeting a healthcare organization.

より深刻な被害を及ぼしますます高額な標的を狙うようになったランサムウェアは、世界中のさまざまな組織に対して引き続きカオスと破壊をもたらしています。今年初め、‘Maze’ と呼ばれる種類のランサムウェアが急激に拡大しました。これは大手光学製品メーカーであるキヤノンの操業を中断させ、Cognizant社などのFortune 500企業に大損害をもたらしました。

ヘルスケア業界を標的とするランサムウェア

つい先月も、ドイツでデュッセルドルフ大学病院にランサムウェアが侵入し、女性が死亡したというニュースが話題になったばかりで、人命への脅威はもはや理論上だけのものではないことが確認されました。

ランサムウェアはあらゆる産業に影響を及ぼしますが、2020年においてはサイバー犯罪者達はますますヘルスケア、地方自治体重要インフラなどの生活に不可欠なサービスに被害を及ぼすようになっています。これには意図的なものも巻き添え被害もあります。リスクが高まる中、これらの壊滅的かつ蔓延する攻撃をどう防止するかを理解する必要性も高まっています。

ランサムウェアは、いったん侵入すると、組織のデジタルインフラを通って数秒で水平方向に広がり、数分でシステム全体をオフラインにすることも可能です。攻撃者はしばしば夜間や週末を狙って攻撃します。その時間はセキュリティチームの対応が遅くなることを知っているからです。マシンスピードの攻撃にはマシンスピードの防御、すなわち人間の指示を必要とせずにこの脅威に対応し、脅威を自律的に阻止できる防御が必要です。

本稿ではEメール、SaaSアプリケーション、ネットワーククラウドIoT産業用制御システムまでのデジタルエステート全体において「正常」を学習することによりランサムウェアをどのように検知し阻止するのかについて、Darktraceにより顧客環境で検知されたMazeランサムウェアの例を使って説明します。

Darktraceの自己学習型AIは脅威が発生すると即座にそれを検知しましたが、自動対処機能はPassiveモードに設定されていたため、脅威を無害化するには人間によるアクションが必要でした。つまり、攻撃者達は組織内を素早く水平移動し、セキュリティチームが介入する前にファイルの暗号化を開始することができたのです。Activeモードに設定されていれば、Antigena Networkは最も早い段階でこのアクティビティを封じ込めていたでしょう。

DarktraceはMazeのようなランサムウェアをどのように検知するか?

Darktraceは(仮想的にまたはオンプレミスで)導入されるとすぐに、AIが組織全体のあらゆるユーザーとデバイスの「生活パターン」の学習を始めます。これによりサイバー脅威の兆候かもしれない異常なアクティビティを検知することができるのです。これはハードコードされたルールやシグネチャに頼ることなく行われます。ルールやシグネチャを使用するアプローチでは、これらのリストを更新してその後の同様の脅威を封じ込めるために「第一号患者」が必要です。新種のランサムウェアが組織全体に広がり何百台ものデバイスを数秒で感染させるような状況では、そのようなアプローチは役に立ちません。

組織の「生活パターン」の理解を持つことにより、DarktraceのAIは通常と異なるアクティビティをリアルタイムに認識することができます。そうしたアクティビティには次のようなものがあります:

ActivityDarktrace detectionsUnusual downloads from C2 serversEXE from Rare Destination / Masqueraded File TransferBrute forcing publicly accessible RDP serversIncoming RDP brute force modelsBrute forcing access to web portal user accounts with weak passwords or lacking MFAVarious brute force modelsC2 via Cobalt Strike / Empire PowershellSSL Beaconing to Rare Endpoint / Empire Powershell and Cobalt Strike modelsNetwork scanning for reconnaissance & EternalBlue exploitSuspicious Network Scan model known to download Advanced IP Scanner after successful exploitMimikatz usage for privilege escalationUnusual Admin SMB Session / Unusual RDP Admin Session (Procdump, PingCastle, and Bloodhound)Psexec / ‘Living off the Land’ for lateral movementUnusual Remote Command Execution / Unusual PSexec / Unusual DCE RPCData exfiltration to C2 serversData Sent to Rare Domain / Unusual Internal Download / Unusual External UploadEncryptionSuspicious SMB Activity / Additional File Extensions AppendedExfiltration of passwords through various cloud storage servicesData Sent to New External DomainRDP tunnels using NgrokOutbound RDP / Various beaconing models

さらに、Darktraceはインターネットに接続されたサーバーに対するブルートフォースアクセスの試みも識別することができます。また、プレーンテキスト形式で保存されたパスワード、およびさまざまなパスワード管理データベースを狙った検索を検知することができます。

実際の感染事例からの考察

図1: 攻撃のタイムライン

最近では、DarktraceのAIが、医療機関を標的としたMazeランサムウェアのケースを検知しました。DarktraceのCyber AI Analystは直ちにインシデント全体の自動調査を開始し、セキュリティチームに対して自然言語で書かれた実用的な要約を即座に提示しました。

最初の感染ベクトルはスピアフィッシングでした。Mazeはパンデミックをテーマにしたフィッシングメールを使って医療機関に頻繁に配信されています。DarktraceはMicrosoft 365のユーザー毎の正常な行動を学習・理解し、フィッシングの兆候となる異常を自律的に発見するAI搭載のEメールセキュリティも提供していますが、この保護機能を導入していなかったため、Eメールは従来のゲートウェイをすり抜けていました。

攻撃者はネットワークスキャニングアクティビティと列挙を開始し、研究開発部門のサブネット内でアクセスをエスカレートさせました。DarktraceのAIはadminレベルの認証情報の侵害、珍しいRDPアクティビティおよびKerberos認証の試みを検知しました。

Darktraceは攻撃者がドメインコントローラをアップロードしていることを検知しましたが、次いでバッチファイルが複数のファイル共有に書き込まれ、それが暗号化プロセスに使用されました。

感染したデバイスはその後Maze mazedecrypt[.]topに関連した不審なドメインに接続され、TORブラウザバンドルがおそらくC2目的でダウンロードされました。その後、研究開発部門のサブネットから大量の機密データが未知のドメインにアップロードされました。これはMazeランサムウェアに特徴的な動作であり、重要なファイルを暗号化しようとするばかりか、そのコピーを攻撃者に送信するという点で「二重の脅威」と言われる所以です。

このdoxwareとも言われる攻撃形態は、身代金の支払いが拒否されたときにも攻撃者が力を持てるようにするものです。たとえばこのデータをダークウェブに売ったり、知的財産を競合他社にリークすると脅したりすることができるからです。

Cyber AI Analystを使ったリアルタイムの自動化された調査

攻撃ライフサイクル全体を通じて、複数の高確度のアラートがDarktraceのAIによって生成され、これによりCyber AI Analystが自動的にバックグラウンドで調査を開始し、さまざまなイベントをつなぎ合わせて1つの包括的なセキュリティインシデントにまとめ、セキュリティチームがレビューできるよう単一の画面に表示しました。

図2:未知の外部ドメインに対するデータ流出

図3:Darktraceのユーザーインターフェイスはランサムウェア攻撃に直接関係したドメインコントローラ上の異常なアクティビティおよびModel Breachを明確に表示

Mazeのような標的型の二重脅威攻撃は増えつつあり、きわめて危険です。それらはますますリスクの高い環境を標的にするようになっています。数千社の組織が、上記のようなランサムウェアの侵入を検知し調査するためだけではなく、イベント発生時に自律的に対応させるためにAIを選択しています。このようなランサムウェア攻撃は、アクティブモードに設定された自動対処機能が単に「あると助かる」ものではなく「ぜひとも必要な」ものであることを証明しています。動きの速い脅威に対してはマシンスピードの対応が要求されるからです。

前回のブログでは、新種のゼロデイ攻撃が従来型のセキュリティツールをすり抜けたものの、Antigena Networkがアクティブモードに設定されていたため脅威の進行が自律的に阻止された事例を紹介しました。この独自の機能は、ますます巧妙化する攻撃手法の標的となっているあらゆる業界の組織にとってきわめて重要なものとなりつつあります。

この脅威検知についての考察はDarktraceアナリストAdam Stevens が協力しました。

自動遮断技術についてもっと知る

Darktraceによるモデル検知

  • Device / Suspicious Network Scan Activity
  • Device / Network Scan
  • Device / ICMP Address Scan
  • Unusual Activity / Unusual Internal Connections
  • Device / Multiple Lateral Movement Model Breaches
  • Experimental / Executable Uploaded to DC
  • Compromise / Ransomware::Suspicious SMB Activity
  • Compromise / Ransomware::Ransom or Offensive Words Written to SMB
  • Compliance / SMB Drive Write
  • Compliance / High Priority Compliance Model Breach
  • Anomalous Connection / SMB Enumeration
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Device / New or Unusual Remote Command Execution
  • Anomalous Connection / New or Uncommon Service Control
  • Anomalous Connection / SMB Enumeration
  • Compromise / Ransomware::Ransom or Offensive Words Written to SMB
  • Anomalous Connection / High Volume of New or Uncommon Service Control
  • Experimental / Possible Ransom Note
  • Anomalous File / Internal::Additional Extension Appended to SMB File
  • Compliance / Tor Package Download
  • Device / Suspicious Domain
  • Device / Long Agent Connection to New Endpoint
  • Anomalous Connection / Data Sent to Rare Domain

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Max Heinemeyer
Chief Product Officer

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

Book a 1-1 meeting with one of our experts
この記事を共有
USE CASES
該当する項目はありません。
PRODUCT SPOTLIGHT
該当する項目はありません。
COre coverage
該当する項目はありません。

More in this series

該当する項目はありません。

Blog

該当する項目はありません。

The State of AI in Cybersecurity: How AI will impact the cyber threat landscape in 2024

Default blog imageDefault blog image
22
Apr 2024

About the AI Cybersecurity Report

We surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog is continuing the conversation from our last blog post “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on the cyber threat landscape.

To access the full report click here.

Are organizations feeling the impact of AI-powered cyber threats?

Nearly three-quarters (74%) state AI-powered threats are now a significant issue. Almost nine in ten (89%) agree that AI-powered threats will remain a major challenge into the foreseeable future, not just for the next one to two years.

However, only a slight majority (56%) thought AI-powered threats were a separate issue from traditional/non AI-powered threats. This could be the case because there are few, if any, reliable methods to determine whether an attack is AI-powered.

Identifying exactly when and where AI is being applied may not ever be possible. However, it is possible for AI to affect every stage of the attack lifecycle. As such, defenders will likely need to focus on preparing for a world where threats are unique and are coming faster than ever before.

a hypothetical cyber attack augmented by AI at every stage

Are security stakeholders concerned about AI’s impact on cyber threats and risks?

The results from our survey showed that security practitioners are concerned that AI will impact organizations in a variety of ways. There was equal concern associated across the board – from volume and sophistication of malware to internal risks like leakage of proprietary information from employees using generative AI tools.

What this tells us is that defenders need to prepare for a greater volume of sophisticated attacks and balance this with a focus on cyber hygiene to manage internal risks.

One example of a growing internal risks is shadow AI. It takes little effort for employees to adopt publicly-available text-based generative AI systems to increase their productivity. This opens the door to “shadow AI”, which is the use of popular AI tools without organizational approval or oversight. Resulting security risks such as inadvertent exposure of sensitive information or intellectual property are an ever-growing concern.

Are organizations taking strides to reduce risks associated with adoption of AI in their application and computing environment?

71.2% of survey participants say their organization has taken steps specifically to reduce the risk of using AI within its application and computing environment.

16.3% of survey participants claim their organization has not taken these steps.

These findings are good news. Even as enterprises compete to get as much value from AI as they can, as quickly as possible, they’re tempering their eager embrace of new tools with sensible caution.

Still, responses varied across roles. Security analysts, operators, administrators, and incident responders are less likely to have said their organizations had taken AI risk mitigation steps than respondents in other roles. In fact, 79% of executives said steps had been taken, and only 54% of respondents in hands-on roles agreed. It seems that leaders believe their organizations are taking the needed steps, but practitioners are seeing a gap.

Do security professionals feel confident in their preparedness for the next generation of threats?

A majority of respondents (six out of every ten) believe their organizations are inadequately prepared to face the next generation of AI-powered threats.

The survey findings reveal contrasting perceptions of organizational preparedness for cybersecurity threats across different regions and job roles. Security administrators, due to their hands-on experience, express the highest level of skepticism, with 72% feeling their organizations are inadequately prepared. Notably, respondents in mid-sized organizations feel the least prepared, while those in the largest companies feel the most prepared.

Regionally, participants in Asia-Pacific are most likely to believe their organizations are unprepared, while those in Latin America feel the most prepared. This aligns with the observation that Asia-Pacific has been the most impacted region by cybersecurity threats in recent years, according to the IBM X-Force Threat Intelligence Index.

The optimism among Latin American respondents could be attributed to lower threat volumes experienced in the region, but it's cautioned that this could change suddenly (1).

What are biggest barriers to defending against AI-powered threats?

The top-ranked inhibitors center on knowledge and personnel. However, issues are alluded to almost equally across the board including concerns around budget, tool integration, lack of attention to AI-powered threats, and poor cyber hygiene.

The cybersecurity industry is facing a significant shortage of skilled professionals, with a global deficit of approximately 4 million experts (2). As organizations struggle to manage their security tools and alerts, the challenge intensifies with the increasing adoption of AI by attackers. This shift has altered the demands on security teams, requiring practitioners to possess broad and deep knowledge across rapidly evolving solution stacks.

Educating end users about AI-driven defenses becomes paramount as organizations grapple with the shortage of professionals proficient in managing AI-powered security tools. Operationalizing machine learning models for effectiveness and accuracy emerges as a crucial skill set in high demand. However, our survey highlights a concerning lack of understanding among cybersecurity professionals regarding AI-driven threats and the use of AI-driven countermeasures indicating a gap in keeping pace with evolving attacker tactics.

The integration of security solutions remains a notable problem, hindering effective defense strategies. While budget constraints are not a primary inhibitor, organizations must prioritize addressing these challenges to bolster their cybersecurity posture. It's imperative for stakeholders to recognize the importance of investing in skilled professionals and integrated security solutions to mitigate emerging threats effectively.

To access the full report click here.

参考文献

1. IBM, X-Force Threat Intelligence Index 2024, Available at: https://www.ibm.com/downloads/cas/L0GKXDWJ

2. ISC2, Cybersecurity Workforce Study 2023, Available at: https://media.isc2.org/-/media/Project/ISC2/Main/Media/ documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf?rev=28b46de71ce24e6ab7705f6e3da8637e

続きを読む
著者について

Blog

Inside the SOC

Sliver C2: How Darktrace Provided a Sliver of Hope in the Face of an Emerging C2 Framework

Default blog imageDefault blog image
17
Apr 2024

Offensive Security Tools

As organizations globally seek to for ways to bolster their digital defenses and safeguard their networks against ever-changing cyber threats, security teams are increasingly adopting offensive security tools to simulate cyber-attacks and assess the security posture of their networks. These legitimate tools, however, can sometimes be exploited by real threat actors and used as genuine actor vectors.

What is Sliver C2?

Sliver C2 is a legitimate open-source command-and-control (C2) framework that was released in 2020 by the security organization Bishop Fox. Silver C2 was originally intended for security teams and penetration testers to perform security tests on their digital environments [1] [2] [5]. In recent years, however, the Sliver C2 framework has become a popular alternative to Cobalt Strike and Metasploit for many attackers and Advanced Persistence Threat (APT) groups who adopt this C2 framework for unsolicited and ill-intentioned activities.

The use of Sliver C2 has been observed in conjunction with various strains of Rust-based malware, such as KrustyLoader, to provide backdoors enabling lines of communication between attackers and their malicious C2 severs [6]. It is unsurprising, then, that it has also been leveraged to exploit zero-day vulnerabilities, including critical vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

In early 2024, Darktrace observed the malicious use of Sliver C2 during an investigation into post-exploitation activity on customer networks affected by the Ivanti vulnerabilities. Fortunately for affected customers, Darktrace DETECT™ was able to recognize the suspicious network-based connectivity that emerged alongside Sliver C2 usage and promptly brought it to the attention of customer security teams for remediation.

How does Silver C2 work?

Given its open-source nature, the Sliver C2 framework is extremely easy to access and download and is designed to support multiple operating systems (OS), including MacOS, Windows, and Linux [4].

Sliver C2 generates implants (aptly referred to as ‘slivers’) that operate on a client-server architecture [1]. An implant contains malicious code used to remotely control a targeted device [5]. Once a ‘sliver’ is deployed on a compromised device, a line of communication is established between the target device and the central C2 server. These connections can then be managed over Mutual TLS (mTLS), WireGuard, HTTP(S), or DNS [1] [4]. Sliver C2 has a wide-range of features, which include dynamic code generation, compile-time obfuscation, multiplayer-mode, staged and stageless payloads, procedurally generated C2 over HTTP(S) and DNS canary blue team detection [4].

Why Do Attackers Use Sliver C2?

Amidst the multitude of reasons why malicious actors opt for Sliver C2 over its counterparts, one stands out: its relative obscurity. This lack of widespread recognition means that security teams may overlook the threat, failing to actively search for it within their networks [3] [5].

Although the presence of Sliver C2 activity could be representative of authorized and expected penetration testing behavior, it could also be indicative of a threat actor attempting to communicate with its malicious infrastructure, so it is crucial for organizations and their security teams to identify such activity at the earliest possible stage.

Darktrace’s Coverage of Sliver C2 Activity

Darktrace’s anomaly-based approach to threat detection means that it does not explicitly attempt to attribute or distinguish between specific C2 infrastructures. Despite this, Darktrace was able to connect Sliver C2 usage to phases of an ongoing attack chain related to the exploitation of zero-day vulnerabilities in Ivanti Connect Secure VPN appliances in January 2024.

Around the time that the zero-day Ivanti vulnerabilities were disclosed, Darktrace detected an internal server on one customer network deviating from its expected pattern of activity. The device was observed making regular connections to endpoints associated with Pulse Secure Cloud Licensing, indicating it was an Ivanti server. It was observed connecting to a string of anomalous hostnames, including ‘cmjk3d071amc01fu9e10ae5rt9jaatj6b.oast[.]live’ and ‘cmjft14b13vpn5vf9i90xdu6akt5k3pnx.oast[.]pro’, via HTTP using the user agent ‘curl/7.19.7 (i686-redhat-linux-gnu) libcurl/7.63.0 OpenSSL/1.0.2n zlib/1.2.7’.

Darktrace further identified that the URI requested during these connections was ‘/’ and the top-level domains (TLDs) of the endpoints in question were known Out-of-band Application Security Testing (OAST) server provider domains, namely ‘oast[.]live’ and ‘oast[.]pro’. OAST is a testing method that is used to verify the security posture of an application by testing it for vulnerabilities from outside of the network [7]. This activity triggered the DETECT model ‘Compromise / Possible Tunnelling to Bin Services’, which breaches when a device is observed sending DNS requests for, or connecting to, ‘request bin’ services. Malicious actors often abuse such services to tunnel data via DNS or HTTP requests. In this specific incident, only two connections were observed, and the total volume of data transferred was relatively low (2,302 bytes transferred externally). It is likely that the connections to OAST servers represented malicious actors testing whether target devices were vulnerable to the Ivanti exploits.

The device proceeded to make several SSL connections to the IP address 103.13.28[.]40, using the destination port 53, which is typically reserved for DNS requests. Darktrace recognized that this activity was unusual as the offending device had never previously been observed using port 53 for SSL connections.

Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.
Figure 1: Model Breach Event Log displaying the ‘Application Protocol on Uncommon Port’ DETECT model breaching in response to the unusual use of port 53.

Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.
Figure 2: Model Breach Event Log displaying details pertaining to the ‘Application Protocol on Uncommon Port’ DETECT model breach, including the 100% rarity of the port usage.

Further investigation into the suspicious IP address revealed that it had been flagged as malicious by multiple open-source intelligence (OSINT) vendors [8]. In addition, OSINT sources also identified that the JARM fingerprint of the service running on this IP and port (00000000000000000043d43d00043de2a97eabb398317329f027c66e4c1b01) was linked to the Sliver C2 framework and the mTLS protocol it is known to use [4] [5].

An Additional Example of Darktrace’s Detection of Sliver C2

However, it was not just during the January 2024 exploitation of Ivanti services that Darktrace observed cases of Sliver C2 usages across its customer base.  In March 2023, for example, Darktrace detected devices on multiple customer accounts making beaconing connections to malicious endpoints linked to Sliver C2 infrastructure, including 18.234.7[.]23 [10] [11] [12] [13].

Darktrace identified that the observed connections to this endpoint contained the unusual URI ‘/NIS-[REDACTED]’ which contained 125 characters, including numbers, lower and upper case letters, and special characters like “_”, “/”, and “-“, as well as various other URIs which suggested attempted data exfiltration:

‘/upload/api.html?c=[REDACTED] &fp=[REDACTED]’

  • ‘/samples.html?mx=[REDACTED] &s=[REDACTED]’
  • ‘/actions/samples.html?l=[REDACTED] &tc=[REDACTED]’
  • ‘/api.html?gf=[REDACTED] &x=[REDACTED]’
  • ‘/samples.html?c=[REDACTED] &zo=[REDACTED]’

This anomalous external connectivity was carried out through multiple destination ports, including the key ports 443 and 8888.

Darktrace additionally observed devices on affected customer networks performing TLS beaconing to the IP address 44.202.135[.]229 with the JA3 hash 19e29534fd49dd27d09234e639c4057e. According to OSINT sources, this JA3 hash is associated with the Golang TLS cipher suites in which the Sliver framework is developed [14].

結論

Despite its relative novelty in the threat landscape and its lesser-known status compared to other C2 frameworks, Darktrace has demonstrated its ability effectively detect malicious use of Sliver C2 across numerous customer environments. This included instances where attackers exploited vulnerabilities in the Ivanti Connect Secure and Policy Secure services.

While human security teams may lack awareness of this framework, and traditional rules and signatured-based security tools might not be fully equipped and updated to detect Sliver C2 activity, Darktrace’s Self Learning AI understands its customer networks, users, and devices. As such, Darktrace is adept at identifying subtle deviations in device behavior that could indicate network compromise, including connections to new or unusual external locations, regardless of whether attackers use established or novel C2 frameworks, providing organizations with a sliver of hope in an ever-evolving threat landscape.

Credit to Natalia Sánchez Rocafort, Cyber Security Analyst, Paul Jennings, Principal Analyst Consultant

付録

DETECT Model Coverage

  • Compromise / Repeating Connections Over 4 Days
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Server Activity / Server Activity on New Non-Standard Port
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Quick and Regular Windows HTTP Beaconing
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Large Number of Suspicious Failed Connections
  • Compromise / SSL or HTTP Beacon
  • Compromise / Possible Malware HTTP Comms
  • Compromise / Possible Tunnelling to Bin Services
  • Anomalous Connection / Low and Slow Exfiltration to IP
  • Device / New User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric File Download
  • Anomalous Connection / Powershell to Rare External
  • Anomalous Server Activity / New Internet Facing System

侵害指標(IoC)一覧

18.234.7[.]23 - Destination IP - Likely C2 Server

103.13.28[.]40 - Destination IP - Likely C2 Server

44.202.135[.]229 - Destination IP - Likely C2 Server

参考文献

[1] https://bishopfox.com/tools/sliver

[2] https://vk9-sec.com/how-to-set-up-use-c2-sliver/

[3] https://www.scmagazine.com/brief/sliver-c2-framework-gaining-traction-among-threat-actors

[4] https://github[.]com/BishopFox/sliver

[5] https://www.cybereason.com/blog/sliver-c2-leveraged-by-many-threat-actors

[6] https://securityaffairs.com/158393/malware/ivanti-connect-secure-vpn-deliver-krustyloader.html

[7] https://www.xenonstack.com/insights/out-of-band-application-security-testing

[8] https://www.virustotal.com/gui/ip-address/103.13.28.40/detection

[9] https://threatfox.abuse.ch/browse.php?search=ioc%3A107.174.78.227

[10] https://threatfox.abuse.ch/ioc/1074576/

[11] https://threatfox.abuse.ch/ioc/1093887/

[12] https://threatfox.abuse.ch/ioc/846889/

[13] https://threatfox.abuse.ch/ioc/1093889/

[14] https://github.com/projectdiscovery/nuclei/issues/3330

続きを読む
著者について
Natalia Sánchez Rocafort
Cyber Security Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

無償トライアルを開始
Darktrace AI protecting a business from cyber threats.