Blog

Threat Finds

RESPOND

東京オリンピックの妨害を狙ったIoT攻撃をAIが無害化

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
Sep 2021
19
Sep 2021
When a cyber-attack struck a national sporting body one week before the start of the Tokyo Olympics, Darktrace was on hand to autonomously stop the threat. This blog breaks down the attack in detail.

セキュリティにおける最大の問題の1つは、大規模な侵害が発生した際の高ストレス事態にどう対処するかです。するべき事はあまりにも多く、時間はあまりにも少ないのです。あらゆるCISOにとっての悪夢のシナリオは、組織にとってクリティカルな瞬間にこれが発生することです。たとえば、重要な企業買収、大事なニュース発表、あるいはこのケースのように、何百万もの視聴者を引き付ける世界的なスポーツイベントなどです。

脅威アクター達はしばしばこれらのイベントにかかるプレッシャーを悪用して、中断を引き起こしあるいは大金をせしめようとするのです。スポーツイベント、特にF1レース、スーパーボウル、そしてオリンピックは犯罪者達の大きな関心を集めます。

試合の開始

今年のオリンピックではいくつかの攻撃とデータ侵害が記録されています。これには、バレーボールの解説者が自分のコンピューターパスワードを、オンエア中であることに気づかずに同僚に尋ねたというインシデントも含まれています。

Darktrace が発見したより悪質なケースとしては、オリンピックに直接関与していたある競技連盟に対して密かにRaspberry Piデバイスを仕込み、機密データを盗み出そうとした事例がありました。インシデントはオリンピック開幕1週間前に発生し、この時期にデータ流出が起こっていれば組織の評判、計画の秘密性、ひいてはアスリートの安全にも多大な影響が発生していた可能性があります。

Darktrace AIは組織の「自己」に対する変化する理解に基づいてこのアクティビティを悪意あるものと識別し、Darktraceの自動対処機能であるAntigenaがマシンスピードでアクションを起こして脅威を遮断、人間のセキュリティチームが事態に追いつき攻撃を無害化するための貴重な時間を作り出しました。

以下にこの攻撃を分解して説明します。

1:合計の滞留時間は3日間

攻撃の分解

7月15日 14:09- 最初の侵入

この組織のデジタル環境に、不正なRaspberry Piデバイスが接続されましたが、このデバイスは組織内の命名規則に従ったような名前で偽装されていました。小型のIoTデバイスであるRaspberry Piは簡単に隠すことができ、大規模な環境においては物理的に見つけることが困難です。Raspberry Piは 2018年のNASAへの侵入を含め、これまでもさまざまな有名なハッキング事例で使われています。

IoT devices – from printers to fish tanks – pose a serious risk to security, as they can be exploited to gather information, move laterally, and escalate privileges.

7月15日 15:25- 外部VPNアクティビティ

異常なUDP接続が外部エンドポイントに対して1194番ポートを介して行われました(Open VPNアクティビティ)。 URIは、デバイスがOpen VPNコンフィギュレーションファイルに関係あると思われるデータをダウンロードしたことを示しています。これは、データ抜き出しなどの悪意あるアクティビティのためにセキュアなチャネルを確立しようとしていたものかも知れません。

送信VPNを確立することにより、攻撃者は自らのアクティビティを見えにくくし、この組織のシグネチャベース検知セキュリティをすり抜けました。システムはこの暗号化されたトラフィックを検知できなかったのです。Antigenaは暗号化とは関係なくこの疑わしい接続を即座にブロックしました。このアクティビティが新しいデバイスの「生活パターン」から逸脱していることを識別したためです。

7月15日 16:04 - C2 アクティビティの可能性

Raspberry Piはすぐに、新しい外部エンドポイントに対して繰り返しHTTP接続を開始し、オクテットストリーム、ツールをダウンロードしました。 このアクティビティはWebブラウザではなく、スタンドアロンソフトウェアプロセスにより開始されたように見えます。

Darktraceはこのデバイスが同じエンドポイントに対して不審な外部データ転送を行っており、新しいロケーションとデバイスの名前についてのコールホームデータが含まれると思われる7.5 MBものデータをアップロードしていることを明らかにしました。

7月15日 16:41- 内部偵察

デバイスは3つの内部IPアドレスに対しさまざまなポートを使ってTCPスキャニングを実行しました。ネットワークスキャンは3台の内部サーバーのみに対するものでしたが、このアクティビティはDarktraceによって疑わしい内部接続の増加と内部接続の失敗として識別されました。

Antigena はこのRaspberry Piがスキャニングアクティビティに関係していたポートを使って内部接続を行うのを即座に停止させるとともに、デバイスの「生活パターン」を強制しました。

Darktraceによるネットワークスキャニング検知を可能にしたコンポーネントを示すデバイスイベントログ

7月15日 18:14 - 複数の内部偵察テクニック

Raspberry Piはその後SMBポート445番を使って多数のデバイスをスキャンし、古いSMBバージョン1プロトコルの不審な使用が見られました。これは悪用可能な脆弱性を探すためのより深い偵察を行ったものと思われます。

このスキャニングアクティビティと、安全ではないSMBv1プロトコルの使用に反応してAntigenaはこのソースデバイスからデスティネーションIPへの接続を1時間に渡りブロックしました。

分後、デバイスはオープンソースの脆弱性スキャナー、Nmapへの接続を行いました。Nmapは脆弱性スキャンの目的で正しく使われることもあるため、従来型のセキュリティツールでは警告されないことがしばしばです。しかし、DarktraceのAIはこのツールの使用がきわめて異常であることを検知し、10分間に渡ってすべての送信トラフィックをブロックしました。

7月15日 22:03- 最終的な偵察

3時間後、Raspberry Pi は6個の外部IPに対して別のネットワークスキャンを開始しました。これは最終的なデータ抜き出しの準備を行ったものです。Antigenaはデバイスが接続しようとしていたこの外部IPに対する正確なブロックで瞬時に対応し、データの抜き出しを阻止しました。

異常なUDP接続が外部エンドポイントに対して1194番ポートを介して行われました(Open VPNアクティビティ)。 URIは、デバイスがOpen VPNコンフィギュレーションファイルに関係あると思われるデータをダウンロードしたことを示しています。これは、データ抜き出しなどの悪意あるアクティビティのためにセキュアなチャネルを確立しようとしていたものかも知れません。

この時点までに、Antigenaはセキュリティチームが対処を行うのに十分な時間を稼いでいました。チームはこのRaspberry Piに対して、デバイスの設置されている物理的な場所を見つけ出しネットワークから切断するまでの間、Antigenaの隔離ルール(Antigenaが取ることのできる最も厳しいアクション)を適用しました。

AI Analystはこのインシデントをどうつなぎ合わせたか

Cyber AI Analyst は、この攻撃の3つの主要な場面について自律的にレポートを生成しました:

  • Unusual External Data Transfer
  • HTTP コマンド&コントロールの可能性
  • TCP Scanning of Multiple Devices (the attempted data exfiltration)

Cyber AI Analystは複数日に渡るアクティビティをつなぎ合わせましたが、人間のアナリストであれば見逃されていた可能性も大いにあります。AI はスキャニングアクティビティの範囲も含め、重要な情報を提供しました。こうした情報は人手で計算しようとすると時間がかかるものです。

図3:C2アクティビティの可能性を提示するCyber AI Analystの画面

自律遮断技術

Antigenaは疑わしい挙動を無害化するために、一貫して的を絞ったアクションを取り、通常の業務は妨げられることなく継続することができました。

広範囲なブロックを行うのではなく、 Antigenaは状況に応じて様々なきめ細かい対応を実施し、常に脅威に対処する上で最も小さくて済むアクションを取りました。

図4:データ抜き出しの試みと、Antigenaによる的を絞ったアクションを示すDarktraceのUI

Raspberry Pi: IoTの脅威

オリンピックは206の国と11,000人のアスリートが参加するイベントであり、多くのハクティビスト、犯罪者グループ、国家からの攻撃に直面しており、また多数の放送局が遠方で番組を作り、何百万人もの人が自宅で視聴しています。オリンピックに関わる組織にはこの重圧に耐えられるセキュリティソリューションが必要でした。

このような世界最大のイベントにおいても、脅威は非常に小さなところからやってくることがあります。許可されていないIoTデバイスを検知し、デジタルエステート内のすべてのアクティビティに対する可視性を維持する能力はきわめて重要です。

Autonomous Responseは予期せぬイベントに対する防御を提供し、ユーザーからの入力を何ら必要とすることなく悪意あるアクティビティをマシンスピードで阻止します。このことは特にリソースが逼迫した社内セキュリティチームにとって、迅速な対処と修正のために必要です。システムを防御し攻撃者に先んじることにかけては、AIが常に勝者となります。

この脅威についての考察はDarktraceアナリストEmma FoulgerおよびGreg Chapmanが協力しました

2台のRaspberry Piデバイスがヘルスケア企業を感染させた事例について知る

Darktraceによるモデル検知:

  • Compromise / Ransomware / Suspicious SMB Activity
  • Tags / New Raspberry Pi Device
  • Device / Network Scan
  • Unusual Activity / Unusual Raspberry Pi Activity
  • Antigena / Network / Insider Threat / Antigena Network Scan Block
  • Device / Suspicious Network Scan Activity
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach
  • Device / Suspicious SMB Scanning Activity
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Device / Attack and Recon Tools
  • Device / New Device with Attack Tools
  • Device / Anomalous Nmap Activity
  • Device / External Network Scan
  • Device / SMB Session Bruteforce
  • Antigena / Network / Manual / Block All Outgoing Connections
INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Oakley Cox
Analyst Technical Director, APAC

Oakley is a technical expert with 5 years’ experience as a Cyber Analyst. After leading a team of Cyber Analysts at the Cambridge headquarters, he relocated to New Zealand and now oversees the defense of critical infrastructure and industrial control systems across the APAC region. His research into cyber-physical security has been published by Cyber Security journals and CISA. Oakley is GIAC certified in Response and Industrial Defense (GRID), and has a Doctorate (PhD) from the University of Oxford.

Book a 1-1 meeting with one of our experts
この記事を共有

More in this series

該当する項目はありません。

Blog

Inside the SOC

A Thorn in Attackers’ Sides: How Darktrace Uncovered a CACTUS Ransomware Infection

Default blog imageDefault blog image
24
Apr 2024

What is CACTUS Ransomware?

In May 2023, Kroll Cyber Threat Intelligence Analysts identified CACTUS as a new ransomware strain that had been actively targeting large commercial organizations since March 2023 [1]. CACTUS ransomware gets its name from the filename of the ransom note, “cAcTuS.readme.txt”. Encrypted files are appended with the extension “.cts”, followed by a number which varies between attacks, e.g. “.cts1” and “.cts2”.

As the cyber threat landscape adapts to ever-present fast-paced technological change, ransomware affiliates are employing progressively sophisticated techniques to enter networks, evade detection and achieve their nefarious goals.

How does CACTUS Ransomware work?

In the case of CACTUS, threat actors have been seen gaining initial network access by exploiting Virtual Private Network (VPN) services. Once inside the network, they may conduct internal scanning using tools like SoftPerfect Network Scanner, and PowerShell commands to enumerate endpoints, identify user accounts, and ping remote endpoints. Persistence is maintained by the deployment of various remote access methods, including legitimate remote access tools like Splashtop, AnyDesk, and SuperOps RMM in order to evade detection, along with malicious tools like Cobalt Strike and Chisel. Such tools, as well as custom scripts like TotalExec, have been used to disable security software to distribute the ransomware binary. CACTUS ransomware is unique in that it adopts a double-extortion tactic, stealing data from target networks and then encrypting it on compromised systems [2].

At the end of November 2023, cybersecurity firm Arctic Wolf reported instances of CACTUS attacks exploiting vulnerabilities on the Windows version of the business analytics platform Qlik, specifically CVE-2023-41266, CVE-2023-41265, and CVE-2023-48365, to gain initial access to target networks [3]. The vulnerability tracked as CVE-2023-41266 can be exploited to generate anonymous sessions and perform HTTP requests to unauthorized endpoints, whilst CVE-2023-41265 does not require authentication and can be leveraged to elevate privileges and execute HTTP requests on the backend server that hosts the application [2].

Darktrace’s Coverage of CACTUS Ransomware

In November 2023, Darktrace observed malicious actors leveraging the aforementioned method of exploiting Qlik to gain access to the network of a customer in the US, more than a week before the vulnerability was reported by external researchers.

Here, Qlik vulnerabilities were successfully exploited, and a malicious executable (.exe) was detonated on the network, which was followed by network scanning and failed Kerberos login attempts. The attack culminated in the encryption of numerous files with extensions such as “.cts1”, and SMB writes of the ransom note “cAcTuS.readme.txt” to multiple internal devices, all of which was promptly identified by Darktrace DETECT™.

While traditional rules and signature-based detection tools may struggle to identify the malicious use of a legitimate business platform like Qlik, Darktrace’s Self-Learning AI was able to confidently identify anomalous use of the tool in a CACTUS ransomware attack by examining the rarity of the offending device’s surrounding activity and comparing it to the learned behavior of the device and its peers.

Unfortunately for the customer in this case, Darktrace RESPOND™ was not enabled in autonomous response mode during their encounter with CACTUS ransomware meaning that attackers were able to successfully escalate their attack to the point of ransomware detonation and file encryption. Had RESPOND been configured to autonomously act on any unusual activity, Darktrace could have prevented the attack from progressing, stopping the download of any harmful files, or the encryption of legitimate ones.

Cactus Ransomware Attack Overview

Holiday periods have increasingly become one of the favoured times for malicious actors to launch their attacks, as they can take advantage of the festive downtime of organizations and their security teams, and the typically more relaxed mindset of employees during this period [4].

Following this trend, in late November 2023, Darktrace began detecting anomalous connections on the network of a customer in the US, which presented multiple indicators of compromise (IoCs) and tactics, techniques and procedures (TTPs) associated with CACTUS ransomware. The threat actors in this case set their attack in motion by exploiting the Qlik vulnerabilities on one of the customer’s critical servers.

Darktrace observed the server device making beaconing connections to the endpoint “zohoservice[.]net” (IP address: 45.61.147.176) over the course of three days. This endpoint is known to host a malicious payload, namely a .zip file containing the command line connection tool PuttyLink [5].

Darktrace’s Cyber AI Analyst was able to autonomously identify over 1,000 beaconing connections taking place on the customer’s network and group them together, in this case joining the dots in an ongoing ransomware attack. AI Analyst recognized that these repeated connections to highly suspicious locations were indicative of malicious command-and-control (C2) activity.

Cyber AI Analyst Incident Log showing the offending device making over 1,000 connections to the suspicious hostname “zohoservice[.]net” over port 8383, within a specific period.
Figure 1: Cyber AI Analyst Incident Log showing the offending device making over 1,000 connections to the suspicious hostname “zohoservice[.]net” over port 8383, within a specific period.

The infected device was then observed downloading the file “putty.zip” over a HTTP connection using a PowerShell user agent. Despite being labelled as a .zip file, Darktrace’s detection capabilities were able to identify this as a masqueraded PuttyLink executable file. This activity resulted in multiple Darktrace DETECT models being triggered. These models are designed to look for suspicious file downloads from endpoints not usually visited by devices on the network, and files whose types are masqueraded, as well as the anomalous use of PowerShell. This behavior resembled previously observed activity with regards to the exploitation of Qlik Sense as an intrusion technique prior to the deployment of CACTUS ransomware [5].

The downloaded file’s URI highlighting that the file type (.exe) does not match the file's extension (.zip). Information about the observed PowerShell user agent is also featured.
Figure 2: The downloaded file’s URI highlighting that the file type (.exe) does not match the file's extension (.zip). Information about the observed PowerShell user agent is also featured.

Following the download of the masqueraded file, Darktrace observed the initial infected device engaging in unusual network scanning activity over the SMB, RDP and LDAP protocols. During this activity, the credential, “service_qlik” was observed, further indicating that Qlik was exploited by threat actors attempting to evade detection. Connections to other internal devices were made as part of this scanning activity as the attackers attempted to move laterally across the network.

Numerous failed connections from the affected server to multiple other internal devices over port 445, indicating SMB scanning activity.
Figure 3: Numerous failed connections from the affected server to multiple other internal devices over port 445, indicating SMB scanning activity.

The compromised server was then seen initiating multiple sessions over the RDP protocol to another device on the customer’s network, namely an internal DNS server. External researchers had previously observed this technique in CACTUS ransomware attacks where an RDP tunnel was established via Plink [5].

A few days later, on November 24, Darktrace identified over 20,000 failed Kerberos authentication attempts for the username “service_qlik” being made to the internal DNS server, clearly representing a brute-force login attack. There is currently a lack of open-source intelligence (OSINT) material definitively listing Kerberos login failures as part of a CACTUS ransomware attack that exploits the Qlik vulnerabilities. This highlights Darktrace’s ability to identify ongoing threats amongst unusual network activity without relying on existing threat intelligence, emphasizing its advantage over traditional security detection tools.

Kerberos login failures being carried out by the initial infected device. The destination device detected was an internal DNS server.
Figure 4: Kerberos login failures being carried out by the initial infected device. The destination device detected was an internal DNS server.

In the month following these failed Kerberos login attempts, between November 26 and December 22, Darktrace observed multiple internal devices encrypting files within the customer’s environment with the extensions “.cts1” and “.cts7”. Devices were also seen writing ransom notes with the file name “cAcTuS.readme.txt” to two additional internal devices, as well as files likely associated with Qlik, such as “QlikSense.pdf”. This activity detected by Darktrace confirmed the presence of a CACTUS ransomware infection that was spreading across the customer’s network.

The model, 'Ransom or Offensive Words Written to SMB', triggered in response to SMB file writes of the ransom note, ‘cAcTuS.readme.txt’, that was observed on the customer’s network.
Figure 5: The model, 'Ransom or Offensive Words Written to SMB', triggered in response to SMB file writes of the ransom note, ‘cAcTuS.readme.txt’, that was observed on the customer’s network.
CACTUS ransomware extensions, “.cts1” and “.cts7”, being appended to files on the customer’s network.
Figure 6: CACTUS ransomware extensions, “.cts1” and “.cts7”, being appended to files on the customer’s network.

Following this initial encryption activity, two affected devices were observed attempting to remove evidence of this activity by deleting the encrypted files.

Attackers attempting to remove evidence of their activity by deleting files with appendage “.cts1”.
Figure 7: Attackers attempting to remove evidence of their activity by deleting files with appendage “.cts1”.

結論

In the face of this CACTUS ransomware attack, Darktrace’s anomaly-based approach to threat detection enabled it to quickly identify multiple stages of the cyber kill chain occurring in the customer’s environment. These stages ranged from ‘initial access’ by exploiting Qlik vulnerabilities, which Darktrace was able to detect before the method had been reported by external researchers, to ‘actions on objectives’ by encrypting files. Darktrace’s Self-Learning AI was also able to detect a previously unreported stage of the attack: multiple Kerberos brute force login attempts.

If Darktrace’s autonomous response capability, RESPOND, had been active and enabled in autonomous response mode at the time of this attack, it would have been able to take swift mitigative action to shut down such suspicious activity as soon as it was identified by DETECT, effectively containing the ransomware attack at the earliest possible stage.

Learning a network’s ‘normal’ to identify deviations from established patterns of behaviour enables Darktrace’s identify a potential compromise, even one that uses common and often legitimately used administrative tools. This allows Darktrace to stay one step ahead of the increasingly sophisticated TTPs used by ransomware actors.

Credit to Tiana Kelly, Cyber Analyst & Analyst Team Lead, Anna Gilbertson, Cyber Analyst

付録

参考文献

[1] https://www.kroll.com/en/insights/publications/cyber/cactus-ransomware-prickly-new-variant-evades-detection

[2] https://www.bleepingcomputer.com/news/security/cactus-ransomware-exploiting-qlik-sense-flaws-to-breach-networks/

[3] https://explore.avertium.com/resource/new-ransomware-strains-cactus-and-3am

[4] https://www.soitron.com/cyber-attackers-abuse-holidays/

[5] https://arcticwolf.com/resources/blog/qlik-sense-exploited-in-cactus-ransomware-campaign/

Darktrace DETECT Models

Compromise / Agent Beacon (Long Period)

Anomalous Connection / PowerShell to Rare External

Device / New PowerShell User Agent

Device / Suspicious SMB Scanning Activity

Anomalous File / EXE from Rare External Location

Anomalous Connection / Unusual Internal Remote Desktop

User / Kerberos Password Brute Force

Compromise / Ransomware / Ransom or Offensive Words Written to SMB

Unusual Activity / Anomalous SMB Delete Volume

Anomalous Connection / Multiple Connections to New External TCP Port

Compromise / Slow Beaconing Activity To External Rare  

Compromise / SSL Beaconing to Rare Destination  

Anomalous Server Activity / Rare External from Server  

Compliance / Remote Management Tool On Server

Compromise / Agent Beacon (Long Period)  

Compromise / Suspicious File and C2  

Device / Internet Facing Device with High Priority Alert  

Device / Large Number of Model Breaches  

Anomalous File / Masqueraded File Transfer

Anomalous File / Internet facing System File Download  

Anomalous Server Activity / Outgoing from Server

Device / Initial Breach Chain Compromise  

Compromise / Agent Beacon (Medium Period)  

Compromise / Agent Beacon (Long Period)  

IoC一覧

IoC - Type - Description

zohoservice[.]net: 45.61.147[.]176 - Domain name: IP Address - Hosting payload over HTTP

Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.17763.2183 - User agent -PowerShell user agent

.cts1 - File extension - Malicious appendage

.cts7- File extension - Malicious appendage

cAcTuS.readme.txt - Filename -Ransom note

putty.zip – Filename - Initial payload: ZIP containing PuTTY Link

MITRE ATT&CK マッピング

Tactic - Technique  - SubTechnique

Web Protocols: COMMAND AND CONTROL - T1071 -T1071.001

Powershell: EXECUTION - T1059 - T1059.001

Exploitation of Remote Services: LATERAL MOVEMENT - T1210 – N/A

Vulnerability Scanning: RECONAISSANCE     - T1595 - T1595.002

Network Service Scanning: DISCOVERY - T1046 - N/A

Malware: RESOURCE DEVELOPMENT - T1588 - T1588.001

Drive-by Compromise: INITIAL ACCESS - T1189 - N/A

Remote Desktop Protocol: LATERAL MOVEMENT – 1021 -T1021.001

Brute Force: CREDENTIAL ACCESS        T – 1110 - N/A

Data Encrypted for Impact: IMPACT - T1486 - N/A

Data Destruction: IMPACT - T1485 - N/A

File Deletion: DEFENSE EVASION - T1070 - T1070.004

続きを読む
著者について
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst

Blog

該当する項目はありません。

The State of AI in Cybersecurity: How AI will impact the cyber threat landscape in 2024

Default blog imageDefault blog image
22
Apr 2024

About the AI Cybersecurity Report

We surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog is continuing the conversation from our last blog post “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on the cyber threat landscape.

To access the full report click here.

Are organizations feeling the impact of AI-powered cyber threats?

Nearly three-quarters (74%) state AI-powered threats are now a significant issue. Almost nine in ten (89%) agree that AI-powered threats will remain a major challenge into the foreseeable future, not just for the next one to two years.

However, only a slight majority (56%) thought AI-powered threats were a separate issue from traditional/non AI-powered threats. This could be the case because there are few, if any, reliable methods to determine whether an attack is AI-powered.

Identifying exactly when and where AI is being applied may not ever be possible. However, it is possible for AI to affect every stage of the attack lifecycle. As such, defenders will likely need to focus on preparing for a world where threats are unique and are coming faster than ever before.

a hypothetical cyber attack augmented by AI at every stage

Are security stakeholders concerned about AI’s impact on cyber threats and risks?

The results from our survey showed that security practitioners are concerned that AI will impact organizations in a variety of ways. There was equal concern associated across the board – from volume and sophistication of malware to internal risks like leakage of proprietary information from employees using generative AI tools.

What this tells us is that defenders need to prepare for a greater volume of sophisticated attacks and balance this with a focus on cyber hygiene to manage internal risks.

One example of a growing internal risks is shadow AI. It takes little effort for employees to adopt publicly-available text-based generative AI systems to increase their productivity. This opens the door to “shadow AI”, which is the use of popular AI tools without organizational approval or oversight. Resulting security risks such as inadvertent exposure of sensitive information or intellectual property are an ever-growing concern.

Are organizations taking strides to reduce risks associated with adoption of AI in their application and computing environment?

71.2% of survey participants say their organization has taken steps specifically to reduce the risk of using AI within its application and computing environment.

16.3% of survey participants claim their organization has not taken these steps.

These findings are good news. Even as enterprises compete to get as much value from AI as they can, as quickly as possible, they’re tempering their eager embrace of new tools with sensible caution.

Still, responses varied across roles. Security analysts, operators, administrators, and incident responders are less likely to have said their organizations had taken AI risk mitigation steps than respondents in other roles. In fact, 79% of executives said steps had been taken, and only 54% of respondents in hands-on roles agreed. It seems that leaders believe their organizations are taking the needed steps, but practitioners are seeing a gap.

Do security professionals feel confident in their preparedness for the next generation of threats?

A majority of respondents (six out of every ten) believe their organizations are inadequately prepared to face the next generation of AI-powered threats.

The survey findings reveal contrasting perceptions of organizational preparedness for cybersecurity threats across different regions and job roles. Security administrators, due to their hands-on experience, express the highest level of skepticism, with 72% feeling their organizations are inadequately prepared. Notably, respondents in mid-sized organizations feel the least prepared, while those in the largest companies feel the most prepared.

Regionally, participants in Asia-Pacific are most likely to believe their organizations are unprepared, while those in Latin America feel the most prepared. This aligns with the observation that Asia-Pacific has been the most impacted region by cybersecurity threats in recent years, according to the IBM X-Force Threat Intelligence Index.

The optimism among Latin American respondents could be attributed to lower threat volumes experienced in the region, but it's cautioned that this could change suddenly (1).

What are biggest barriers to defending against AI-powered threats?

The top-ranked inhibitors center on knowledge and personnel. However, issues are alluded to almost equally across the board including concerns around budget, tool integration, lack of attention to AI-powered threats, and poor cyber hygiene.

The cybersecurity industry is facing a significant shortage of skilled professionals, with a global deficit of approximately 4 million experts (2). As organizations struggle to manage their security tools and alerts, the challenge intensifies with the increasing adoption of AI by attackers. This shift has altered the demands on security teams, requiring practitioners to possess broad and deep knowledge across rapidly evolving solution stacks.

Educating end users about AI-driven defenses becomes paramount as organizations grapple with the shortage of professionals proficient in managing AI-powered security tools. Operationalizing machine learning models for effectiveness and accuracy emerges as a crucial skill set in high demand. However, our survey highlights a concerning lack of understanding among cybersecurity professionals regarding AI-driven threats and the use of AI-driven countermeasures indicating a gap in keeping pace with evolving attacker tactics.

The integration of security solutions remains a notable problem, hindering effective defense strategies. While budget constraints are not a primary inhibitor, organizations must prioritize addressing these challenges to bolster their cybersecurity posture. It's imperative for stakeholders to recognize the importance of investing in skilled professionals and integrated security solutions to mitigate emerging threats effectively.

To access the full report click here.

参考文献

1. IBM, X-Force Threat Intelligence Index 2024, Available at: https://www.ibm.com/downloads/cas/L0GKXDWJ

2. ISC2, Cybersecurity Workforce Study 2023, Available at: https://media.isc2.org/-/media/Project/ISC2/Main/Media/ documents/research/ISC2_Cybersecurity_Workforce_Study_2023.pdf?rev=28b46de71ce24e6ab7705f6e3da8637e

続きを読む
著者について
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

無償トライアルを開始
Darktrace AI protecting a business from cyber threats.