Blog

Inside the SOC

Modern Extortion: Detecting Data Theft From the Cloud

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Sep 2022
20
Sep 2022
Darktrace highlights a handful of data theft incidents on shared cloud platforms, showing that cloud computing can be a vulnerable place for modern extortion.

Ransomware Industry

The ransomware industry has benefitted from a number of factors in recent years: inadequate cyber defenses, poorly regulated cryptocurrency markets, and geopolitical tensions have allowed gangs to extort increasingly large ransoms while remaining sheltered from western law enforcement [1]. However, one of the biggest success stories of the ransomware industry has been the adaptability and evolution of attacker TTPs (tactics, techniques and procedures). The WannaCry and NotPetya attacks of 2017 popularized a form of ransomware which used encryption algorithms to hold data to ransom in exchange for a decryption key. Last year in 2021, almost all ransomware strains evolved to use double extortion tactics: holding stolen data to ransom as well as encrypted data [2]. Now, some ransomware gangs have dropped encryption entirely, and are using data theft as their sole means of extortion. 

Using data theft for extortion is not new. In 2020 the Finnish psychotherapy center Vastaamo had over 40,000 patient records stolen. Impacted patients were told that their psychiatric transcripts would be published online if they failed to pay a Bitcoin ransom. [3]. A later report by BlackFog in May 2021 predicted data theft extortion would become one of the key emerging cybersecurity trends that year [4]. Adoption of offline back-ups and endpoint detection had made encryption harder, while a large-scale move to Cloud and SaaS platforms offered new vectors for data theft. By moving from data encryption to data exfiltration, ransomware attackers pivoted from targeting data availability within the CIA triad (Confidentiality, Integrity, Availability) to threatening data confidentiality.

In November 2021, Darktrace detected a data theft incident following the compromise of two SaaS accounts within an American tech customer’s Office365 environment. The client was a longstanding user of Darktrace DETECT/Network, and was in the process of expanding their coverage by trialing Darktrace DETECT+RESPOND/ Apps + Cloud.

Attack Overview

On November 23rd 2021, an Ask the Expert (ATE) ticket was raised prompting investigation into a breached SaaS model, ‘SaaS / Access / Unusual External Source for SaaS Credential Use’, and the activities of a user (censored as UserA) over the prior week.

1. Office365: UserA 

The account UserA had been logging in from an unusual location in Nigeria on November 21st. At the time of the incident there were no flags of malicious activity from this IP in widely used OSINT sources. It is also highly probable the attacker was not located in Nigeria but using Nigerian infrastructure in order to hide their true location. Regardless, the location of the login from this IP and ASN was considered highly unusual for users within the customer’s digital estate. The specific user in question most commonly accessed their account from IP ranges located in the US.

Figure 1: In the Geolocation tab of the External Sites Summary on the SaaS Console, UserA was seen logging in from Nigeria when previous logins were exclusively from USA

Further investigation revealed an additional anomaly in the Outlook Web activity of UserA. The account was using the Firefox browser to access their account for the first time in at least 4 weeks (the maximum period for which the customer stored such data). SaaS logs detailing the access of confidential folders and other suspicious actions were identified using the Advanced Search (AS) query:

@fields.saas_actor:"UserA@[REDACTED]" AND @fields.saas_software:"Firefox"

Most actions were ‘MailItemsAccessed’ events originating from IPs located in Nigeria [5,6] and one other potentially malicious IP located in the US [7].

‘MailItemsAccessed’ is part of the new Advanced Audit functionality from Microsoft and can be used to determine when email data is accessed by mail protocols and clients. A bind mail access type denotes an individual access to an email message [8]. 

Figure 2: AS logs shows UserA had not used Firefox to access Office365 for at least 4 weeks prior to the unusual login on the 21st November

Below are details of the main suspicious SaaS activities: 

·      Time: 2021-11-21 09:05:25 - 2021-11-22 16:57:39 UTC

·      SaaS Actor: UserA@[REDACTED]

·      SaaS Service: Office365

·      SaaS Service Product: Exchange

·      SaaS Software: Firefox

·      SaaS Office365 Parent Folders:

          o   \Accounts/Passwords
          o   \Invoices
          o   \Sent Items
          o   \Inbox
          o   \Recoverable Items\Deletions

·      SaaS Event:

          o   MailItemsAccessed
          o   UserLoggedIn
          o   Update

·      SaaS Office365 Mail Access Type: Bind (47 times)

·      Source IP addresses:

          o   105.112.59[.]83
          o   105.112.36[.]212
          o   154.6.17[.]16
          o   45.130.83[.]129

·      SaaS User Agents: 

          o   Client=OWA;Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:80.0) Gecko/20100101 Firefox/80.0;
          o   Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:80.0) Gecko/20100101 Firefox/80.0

·      Total SaaS logs: 57 

At the start of the month on the 5th November, the user had also been seen logging in from a potentially malicious endpoint [9] in Europe, performing ‘MailItemsAccessed’ and ‘Updates’ events with subjects and a resource location related to invoices and wire transfers from the Sent items folder. This suggests the initial compromise had been earlier in the month, giving the threat actor time to make preparations for the final stages of the attack.

Figure 3: Event log showing the activity of UserA from IP 45.135.187[.]108 

2. Office365: UserB 

Looking into the model breach ‘SaaS / Access / Suspicious Credential Use And Login User-Agent’, it was seen that a second account, UserB, was also observed logging in from a rare and potentially malicious location in Bangladesh [7]. Similar to UserA, this user had previously logged in exclusively from the USA, and no other accounts within the digital estate had been observed interacting with the Bangladeshi IP address. The login event appeared to bypass MFA (Multi-factor Authentication) and a suspicious user agent, BAV2ROPC, was used. Against misconfigured accounts, this Microsoft user agent is commonly used by attackers to bypass MFA on Office365. It targets Exchange’s Basic Authentication (normally used in POP3/IMAP4 conditions) and results in an OAuth flow which circumvents the additional password security brought by MFA [10].  

During the session, additional resources were accessed which appear to be associated with bill and invoice payments. In addition, on the 4th November, two new suspicious email rules named “..” were created from rare IPs (107.10.56[.]48 and 76.189.202[.]66). This type of behavior is commonly seen during SaaS compromises to delete or forward emails. Typically, an email rule created by a human user will be named to reflect the change being made, such as ‘Move emails from Legal to Urgent’. In contrast, malicious email rules are often short and undescriptive. The rule “..” is likely to blend in without arousing suspicion, while also being easy for the attacker to create and remember. 

Details of these rule changes are as follows:

·      Time: 2021-11-04 13:25:06, 2021-11-05 15:50:00 [UTC]
·      SaaS Service: Office365
·      SaaS Service Product: Exchange
·      SaaS Status Message: True
·      SaaS Source IP addresses: 107.10.56[.]48, 76.189.202[.]66
·      SaaS Account Name: O365
·      SaaS Actor: UserB@[REDACTED]
·      SaaS Event: SetInboxRule
·      SaaS Office365 Modified Property Names:
          o   AlwaysDeleteOutlookRulesBlob, Force, Identity, MoveToFolder, Name, FromAddressContainsWords, StopProcessingRules
          o   AlwaysDeleteOutlookRulesBlob, Force, Identity, Name, FromAddressContainsWords, StopProcessingRules
·      SaaS Resource Name: .. 

During cloud account compromises, attackers will often use sync operations to download emails to their local email client. During the operations, these clients typically download a large set of mail items from the cloud to a local computer. If the attacker is able to sync all mail items to their mail client, the entire mailbox can be compromised. The attacker is able to disconnect from the account and review and search the email without generating additional event logs. 

Both accounts UserA and UserB were observed using ‘MailItemsAccessed’ sync operations between the 1st and 23rd November when this attack occurred. However, based on the originating IP of the sync operations, the activity is likely to have been initiated by the legitimate, US-based users. Once the security team were able to confirm the events were expected and legitimate, they could establish that the contents of the mailbox were not a part of the data breach. 

Accomplish Mission

After gaining access to the Office365 accounts, sensitive data was downloaded by the attackers to their local system. Either on or before 14th December, the attacker had seemingly uploaded the documents onto a data leak website. In total, 130MB of data had been made available for download in two separate packages. The packages included audit and accounting financial documents, with file extensions such as DB, XLSX, and PDF.

Figure 4: The two data packages uploaded by the attacker and the extracted contents

In a sample of past SaaS activity of UserA, the subject and attachments appear related to the ‘OUTSTANDING PREPAY WIRES 2021’ excel document found from the data leak website in Figure 4, suggesting a further possibility that the account was associated with the leaked data. 

Historic SaaS activity associated with UserA: 

·      Time: 2021-11-05 21:21:18 [UTC]
·      SaaS Office365 Logon Type: Owner
·      Protocol: OFFICE365
·      SaaS Account Name: O365
·      SaaS Actor: UserA@[REDACTED].com
·      SaaS Event: Send
·      SaaS Service: Office365
·      SaaS Service Product: Exchange
·      SaaS Status Message: Succeeded
·      SaaS Office365 Attachment: WIRE 2021.xlsx (92406b); image.png (9084b); image.png (1454b); image.png (1648b); image.png (1691b); image.png (1909b); image.png (2094b)
·      SaaS Office365 Subject: Wires 11/8/21
·      SaaS Resource Location: \Drafts
·      SaaS User Agent: Client=OWA;Action=ViaProxy 

Based on the available evidence, it is highly likely that the data packages contain the data stolen during the account compromise the previous month.  

Once the credentials of an Office365 account are stolen, an attacker can not only access the user's mailbox, but also a full range of Office365 applications such as SharePoint folders, Teams Chat, or files in the user's OneDrive [11]. For example, files shared in Teams chat are stored in OneDrive for Business in a folder named Microsoft Teams Chat Files in the default Document library on SharePoint. One of the files visible on the data leak website, called ‘[REDACTED] CONTRACT.3.1.2020.pdf’, was also observed in the default document folder of a third user account (UserC) within the victim organization, suggesting the compromised accounts may have been able to access shared files stored on other accounts by moving laterally via other O365 applications such as Teams. 

One example can be seen in the below AS logs: 

·      Time: 2021-11-11 01:58:35 [UTC]
·      SaaS Resource Type: File
·      Protocol: OFFICE365
·      SaaS Account Name: 0365
·      SaaS Actor: UserC@[REDACTED]
·      SaaS Event: FilePreviewed
·      SaaS Service Product: OneDrive
·      SaaS Metric: ResourceViewed
·      SaaS Office365 Application Name: Media Analysis and Transformation Service
·      SaaS Office365 File Extension: pdf
·      SaaS Resource Location: https://[REDACTED]-my.sharepoint.com/personal/userC_[REDACTED]_com/Documents/Microsoft Teams Chat Files/[REDACTED] CONTRACT 3.1.2020.pdf
·      SaaS Resource Name: [REDACTED] CONTRACT 3.1.2020.pdf
·      SaaS Service: Office365
·      SaaS Service Product: OneDrive
·      SaaS User Agent: OneDriveMpc-Transform_Thumbnail/1.0 

In the period between the 1st and 30th November, the customer’s Darktrace DETECT/Apps trial had raised multiple high-level alerts associated with SaaS account compromise, but there was no evidence of file encryption.  

Establish Foothold 

Looking back at the start of the attack, it is unclear exactly how the attacker evaded the customer’s pre-existing security stack. At the time of the incident, the victim was using a Barracuda email gateway and Microsoft 365 Threat Management for their cloud environment. 

Darktrace detected no indication the accounts were compromised via credential bruteforcing, which would have enabled the attacker to bypass the Azure Active Directory smart lockout (if enabled). The credentials may have been harvested via a phishing campaign which successfully evaded the list of known ‘bad’ domains maintained by their email gateway.  

Upon gaining access to the account, the Microsoft Defender for Cloud Apps anomaly detection policies would have been expected to raise an alert [12]. In this instance, the unusual login from Nigeria occurred over 16 hours after the previous login from the US, potentially evading anomaly detection policies such as the ‘Impossible Travel’ rule. 

Figure 5: Event log showing the user accessing mail from USA a day before the suspicious usage from Nigeria 

Darktrace Coverage

Darktrace DETECT 

Throughout this event, high scoring model breaches associated with the attack were visible in the customer’s SaaS Console. In addition, there were two Cyber AI Analyst incidents for ‘Possible Account Hijack’ associated with the two compromised SaaS Office365 accounts, UserA and UserB. The visibility given by Darktrace DETECT also enabled the security team to confirm which files had been accessed and were likely part of the data leak.

Figure 6: Example Cyber AI Analyst incident of UserB SaaS Office365 account

Darktrace RESPOND

In this incident, the attackers successfully compromised O365 accounts in order to exfiltrate customer data. Whilst Darktrace RESPOND/Apps was being trialed and suggested several actions, it was configured in human confirmation mode. The following RESPOND/Apps actions were advised for these activities:  

·      ‘Antigena [RESPOND] Unusual Access Block’ triggered by the successful login from an unusual IP address, would have actioned the ‘Block IP’ inhibitor, preventing access to the account from the unusual IP for up to 24 hours
·      ‘Suspicious Source Activity Block’, triggered by the suspicious user agent used to bypass MFA, would have actioned the ‘Disable User’ inhibitor, disabling the user account for up to 24 hours 

During this incident, Darktrace RESPOND/Network was being used in fully autonomous mode in order to prevent the threat actor from pivoting into the network. The security team were unable to conclusively say if any attempts by the attacker to do this had been made. 

Concluding Thoughts  

Data theft extortion has become a widely used attack technique, and ransomware gangs may increasingly use this technique alone to target organizations without secure data encryption and storage policies.  

This case study describes a SaaS data theft extortion incident which bypassed MFA and existing security tools. The attacker appeared to compromise credentials without bruteforce activity, possibly with the use of social engineering through phishing. However, from the first new login, Darktrace DETECT identified the unusual credential use in spite of it being an existing account. Had Darktrace RESPOND/Apps been configured, it would have autonomously responded to halt this login and prevent the attacker from accomplishing their data theft mission.

Thanks to Oakley Cox, Brianna Leddy and Shuh Chin Goh for their contributions.

Appendices

References 

[1] https://securelist.com/new-ransomware-trends-in-2022/106457/

[2] https://www.itpro.co.uk/security/ransomware/367624/the-rise-of-double-extortion-ransomware

[3] https://www.malwarebytes.com/blog/news/2020/10/vastaamo-psychotherapy-data-breach-sees-the-most-vulnerable-victims-extorted

[4] https://www.blackfog.com/shift-from-ransomware-to-data-theft-extortion/

[5] https://www.abuseipdb.com/check/105.112.59.83

[6] https://www.abuseipdb.com/check/105.112.36.212

[7] https://www.abuseipdb.com/check/45.130.83.129

[8] https://docs.microsoft.com/en-us/microsoft-365/compliance/mailitemsaccessed-forensics-investigations?view=o365-worldwide

[9] https://www.abuseipdb.com/check/45.135.187.108

[10] https://www.virustotal.com/gui/ip-address/45.137.20.65/details

[11] https://tidorg.com/new-bec-phishing-attack-steals-office-365-credentials-and-bypasses-mfa/

[12] https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/responding-to-a-compromised-email-account?view=o365-worldwide

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Adrianne Marques
Senior Research Analyst
Book a 1-1 meeting with one of our experts
share this article
PRODUCT SPOTLIGHT
No items found.
COre coverage
No items found.

More in this series

No items found.

Blog

Inside the SOC

Connecting the Dots: Darktrace’s Detection of the Exploitation of the ConnectWise ScreenConnect Vulnerabilities

Default blog imageDefault blog image
10
May 2024

Introduction

Across an ever changing cyber landscape, it is common place for threat actors to actively identify and exploit newly discovered vulnerabilities within commonly utilized services and applications. While attackers are likely to prioritize developing exploits for the more severe and global Common Vulnerabilities and Exposures (CVEs), they typically have the most success exploiting known vulnerabilities within the first couple years of disclosure to the public.

Addressing these vulnerabilities in a timely manner reduces the effectiveness of known vulnerabilities, decreasing the pace of malicious actor operations and forcing pursuit of more costly and time-consuming methods, such as zero-day related exploits or attacking software supply chain operations. While actors also develop tools to exploit other vulnerabilities, developing exploits for critical and publicly known vulnerabilities gives actors impactful tools at a low cost they are able to use for quite some time.

Between January and March 2024, the Darktrace Threat Research team investigated one such example that involved indicators of compromise (IoCs) suggesting the exploitation of vulnerabilities in ConnectWise’s remote monitoring and management (RMM) software ScreenConnect.

What are the ConnectWise ScreenConnect vulnerabilities?

CVE-2024-1708 is an authentication bypass vulnerability in ScreenConnect 23.9.7 (and all earlier versions) that, if exploited, would enable an attacker to execute remote code or directly impact confidential information or critical systems. This exploit would pave the way for a second ScreenConnect vunerability, CVE-2024-1709, which allows attackers to directly access confidential information or critical systems [1].

ConnectWise released a patch and automatically updated cloud versions of ScreenConnect 23.9.9, while urging security temas to update on-premise versions immediately [3].

If exploited in conjunction, these vulnerabilities could allow a malicious actor to create new administrative accounts on publicly exposed instances by evading existing security measures. This, in turn, could enable attackers to assume an administrative role and disable security tools, create backdoors, and disrupt RMM processes. Access to an organization’s environment in this manner poses serious risk, potentially leading to significant consequences such as deploying ransomware, as seen in various incidents involving the exploitation of ScreenConnect [2]

Darktrace Coverage of ConnectWise Exploitation

Darktrace’s anomaly-based detection was able to identify evidence of exploitation related to CVE-2024-1708 and CVE-2024-1709 across two distinct timelines; these detections included connectivity with endpoints that were later confirmed to be malicious by multiple open-source intelligence (OSINT) vendors. The activity observed by Darktrace suggests that threat actors were actively exploiting these vulnerabilities across multiple customer environments.

In the cases observed across the Darktrace fleet, Darktrace DETECT™ and Darktrace RESPOND™ were able to work in tandem to pre-emptively identify and contain network compromises from the onset. While Darktrace RESPOND was enabled in most customer environments affected by the ScreenConnect vulnerabilities, in the majority of cases it was configured in Human Confirmation mode. Whilst in Human Confirmation mode, RESPOND will provide recommended actions to mitigate ongoing attacks, but these actions require manual approval from human security teams.

When enabled in autonomous response mode, Darktrace RESPOND will take action automatically, shutting down suspicious activity as soon as it is detected without the need for human intervention. This is the ideal end state for RESPOND as actions can be taken at machine speed, without any delays waiting for user approval.

Looking within the patterns of activity observed by Darktrace , the typical  attack timeline included:

Darktrace observed devices on affected customer networks performing activity indicative of ConnectWise ScreenConnect usage, for example connections over 80 and 8041, connections to screenconnect[.]com, and the use of the user agent “LabTech Agent”. OSINT research suggests that this user agent is an older name for ConnectWise Automate [5] which also includes ScreenConnect as standard [6].

Darktrace DETECT model alert highlighting the use of a remote management tool, namely “screenconnect[.]com”.
Figure 1: Darktrace DETECT model alert highlighting the use of a remote management tool, namely “screenconnect[.]com”.

This activity was typically followed by anomalous connections to the external IP address 108.61.210[.]72 using URIs of the form “/MyUserName_DEVICEHOSTNAME”, as well as additional connections to another external, IP 185.62.58[.]132. Both of these external locations have since been reported as potentially malicious [14], with 185.62.58[.]132 in particular linked to ScreenConnect post-exploitation activity [2].

Figure 2: Darktrace DETECT model alert highlighting the unusual connection to 185.62.58[.]132 via port 8041.
Figure 2: Darktrace DETECT model alert highlighting the unusual connection to 185.62.58[.]132 via port 8041.
Figure 3: Darktrace DETECT model alert highlighting connections to 108.61.210[.]72 using a new user agent and the “/MyUserName_DEVICEHOSTNAME” URI.
Figure 3: Darktrace DETECT model alert highlighting connections to 108.61.210[.]72 using a new user agent and the “/MyUserName_DEVICEHOSTNAME” URI.

Same Exploit, Different Tactics?  

While the majority of instances of ConnectWise ScreenConnect exploitation observed by Darktrace followed the above pattern of activity, Darktrace was able to identify some deviations from this.

In one customer environment, Darktrace’s detection of post-exploitation activity began with the same indicators of ScreenConnect usage, including connections to screenconnect[.]com via port 8041, followed by connections to unusual domains flagged as malicious by OSINT, in this case 116.0.56[.]101 [16] [17]. However, on this deployment Darktrace also observed threat actors downloading a suspicious AnyDesk installer from the endpoint with the URI “hxxp[:]//116.0.56[.]101[:]9191/images/Distribution.exe”.

Figure 4: Darktrace DETECT model alert highlighting the download of an unusual executable file from 116.0.56[.]101.
Figure 4: Darktrace DETECT model alert highlighting the download of an unusual executable file from 116.0.56[.]101.

Further investigation by Darktrace’s Threat Research team revealed that this endpoint was associated with threat actors exploiting CVE-2024-1708 and CVE-2024-1709 [1]. Darktrace was additionally able to identify that, despite the customer being based in the United Kingdom, the file downloaded came from Pakistan. Darktrace recognized that this represented a deviation from the device’s expected pattern of activity and promptly alerted for it, bringing it to the attention of the customer.

Figure 5: External Sites Summary within the Darktrace UI pinpointing the geographic locations of external endpoints, in this case highlighting a file download from Pakistan.
Figure 5: External Sites Summary within the Darktrace UI pinpointing the geographic locations of external endpoints, in this case highlighting a file download from Pakistan.

Darktrace’s Autonomous Response

In this instance, the customer had Darktrace enabled in autonomous response mode and the post-exploitation activity was swiftly contained, preventing the attack from escalating.

As soon as the suspicious AnyDesk download was detected, Darktrace RESPOND applied targeted measures to prevent additional malicious activity. This included blocking connections to 116.0.56[.]101 and “*.56.101”, along with blocking all outgoing traffic from the device. Furthermore, RESPOND enforced a “pattern of life” on the device, restricting its activity to its learned behavior, allowing connections that are considered normal, but blocking any unusual deviations.

Figure 6: Darktrace RESPOND enforcing a “pattern of life” on the offending device after detecting the suspicious AnyDesk download.
Figure 6: Darktrace RESPOND enforcing a “pattern of life” on the offending device after detecting the suspicious AnyDesk download.
Figure 7: Darktrace RESPOND blocking connections to the suspicious endpoint 116.0.56[.]101 and “*.56.101” following the download of the suspicious AnyDesk installer.
Figure 7: Darktrace RESPOND blocking connections to the suspicious endpoint 116.0.56[.]101 and “*.56.101” following the download of the suspicious AnyDesk installer.

The customer was later able to use RESPOND to manually quarantine the offending device, ensuring that all incoming and outgoing traffic to or from the device was prohibited, thus preventing ay further malicious communication or lateral movement attempts.

Figure 8: The actions applied by Darktrace RESPOND in response to the post-exploitation activity related to the ScreenConnect vulnerabilities, including the manually applied “Quarantine device” action.

Conclusion

In the observed cases of the ConnectWise ScreenConnect vulnerabilities being exploited across the Darktrace fleet, Darktrace was able to pre-emptively identify and contain network compromises from the onset, offering vital protection against disruptive cyber-attacks.

While much of the post-exploitation activity observed by Darktrace remained the same across different customer environments, important deviations were also identified suggesting that threat actors may be adapting their tactics, techniques and procedures (TTPs) from campaign to campaign.

While new vulnerabilities will inevitably surface and threat actors will continually look for novel ways to evolve their methods, Darktrace’s Self-Learning AI and behavioral analysis offers organizations full visibility over new or unknown threats. Rather than relying on existing threat intelligence or static lists of “known bads”, Darktrace is able to detect emerging activity based on anomaly and respond to it without latency, safeguarding customer environments whilst causing minimal disruption to business operations.

Credit: Emma Foulger, Principal Cyber Analyst for their contribution to this blog.

Appendices

Darktrace Model Coverage

DETECT Models

Compromise / Agent Beacon (Medium Period)

Compromise / Agent Beacon (Long Period)

Anomalous File / EXE from Rare External Location

Device / New PowerShell User Agent

Anomalous Connection / Powershell to Rare External

Anomalous Connection / New User Agent to IP Without Hostname

User / New Admin Credentials on Client

Device / New User Agent

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Compromise / Suspicious Request Data

Compliance / Remote Management Tool On Server

Anomalous File / Anomalous Octet Stream (No User Agent)

RESPOND Models

Antigena / Network::External Threat::Antigena Suspicious File Block

Antigena / Network::External Threat::Antigena File then New Outbound Block

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

Antigena / Network::Significant Anomaly::Antigena Controlled and Model Breach

Antigena / Network::Insider Threat::Antigena Unusual Privileged User Activities Block

Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Pattern of Life Block

List of IoCs

IoC - Type - Description + Confidence

185.62.58[.]132 – IP- IP linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

108.61.210[.]72- IP - IP linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

116.0.56[.]101    - IP - IP linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

/MyUserName_ DEVICEHOSTNAME – URI - URI linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

/images/Distribution.exe – URI - URI linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

24780657328783ef50ae0964b23288e68841a421 - SHA1 Filehash - Filehash linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

a21768190f3b9feae33aaef660cb7a83 - MD5 Filehash - Filehash linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

MITRE ATT&CK Mapping

Technique – Tactic – ID - Sub-technique of

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Web Services      - RESOURCE DEVELOPMENT - T1583.006 - T1583

Drive-by Compromise - INITIAL ACCESS - T1189 – NA

Ingress Tool Transfer   - COMMAND AND CONTROL - T1105 - NA

Malware - RESOURCE DEVELOPMENT - T1588.001- T1588

Exploitation of Remote Services - LATERAL MOVEMENT - T1210 – NA

PowerShell – EXECUTION - T1059.001 - T1059

Pass the Hash      - DEFENSE EVASION, LATERAL MOVEMENT     - T1550.002 - T1550

Valid Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078 – NA

Man in the Browser – COLLECTION - T1185     - NA

Exploit Public-Facing Application - INITIAL ACCESS - T1190         - NA

Exfiltration Over C2 Channel – EXFILTRATION - T1041 – NA

IP Addresses – RECONNAISSANCE - T1590.005 - T1590

Remote Access Software - COMMAND AND CONTROL - T1219 – NA

Lateral Tool Transfer - LATERAL MOVEMENT - T1570 – NA

Application Layer Protocol - COMMAND AND CONTROL - T1071 – NA

References:

[1] https://unit42.paloaltonetworks.com/connectwise-threat-brief-cve-2024-1708-cve-2024-1709/  

[2] https://www.huntress.com/blog/slashandgrab-screen-connect-post-exploitation-in-the-wild-cve-2024-1709-cve-2024-1708    

[3] https://www.huntress.com/blog/a-catastrophe-for-control-understanding-the-screenconnect-authentication-bypass

[4] https://www.speedguide.net/port.php?port=8041  

[5] https://www.connectwise.com/company/announcements/labtech-now-connectwise-automate

[6] https://www.connectwise.com/solutions/software-for-internal-it/automate

[7] https://www.securityweek.com/slashandgrab-screenconnect-vulnerability-widely-exploited-for-malware-delivery/

[8] https://arcticwolf.com/resources/blog/cve-2024-1709-cve-2024-1708-follow-up-active-exploitation-and-pocs-observed-for-critical-screenconnect-vulnerabilities/https://success.trendmicro.com/dcx/s/solution/000296805?language=en_US&sfdcIFrameOrigin=null

[9] https://www.connectwise.com/company/trust/security-bulletins/connectwise-screenconnect-23.9.8

[10] https://socradar.io/critical-vulnerabilities-in-connectwise-screenconnect-postgresql-jdbc-and-vmware-eap-cve-2024-1597-cve-2024-22245/

[11] https://www.trendmicro.com/en_us/research/24/b/threat-actor-groups-including-black-basta-are-exploiting-recent-.html

[12] https://otx.alienvault.com/indicator/ip/185.62.58.132

[13] https://www.virustotal.com/gui/ip-address/185.62.58.132/community

[14] https://www.virustotal.com/gui/ip-address/108.61.210.72/community

[15] https://otx.alienvault.com/indicator/ip/108.61.210.72

[16] https://www.virustotal.com/gui/ip-address/116.0.56[.]101/community

[17] https://otx.alienvault.com/indicator/ip/116.0.56[.]101

Continue reading
About the author
Justin Torres
Cyber Analyst

Blog

Email

How Empowering End Users can Improve Your Email Security and Decrease the Burden on the SOC

Default blog imageDefault blog image
08
May 2024

Why do we pay attention to the end user?

Every email security solution filters inbound mail, then typically hands over false positives and false negatives to the security team for manual triage. A crucial problem with this lifecycle is that it ignores the inevitability of end users being at the front line of any organization. Employees may receive point in time security awareness training, but it is rarely engaging or contextualized to their reality. While an employee may report a suspicious-looking email to the security team, they will rarely get to understand the outcome or impact of that decision. This means that the quality of reporting never improves, so the burden on the security team of triaging these emails – of which 90% are falsely reported – persists and grows with the business over time.

At Darktrace, we recognize that employees will always be on the front line of email security. That’s why we aim to improve end-user reporting from the ground up, reducing the overall number of emails needing triage and saving security team resource.

How does Darktrace improve the quality of end-user reporting?

Darktrace prioritizes improving users’ security awareness to increase the quality of end-user reporting from day one. We train users and optimize their experience, which in turn provides better detection. 

That starts with training and security awareness. Traditionally, organizations oblige employees to attend point-in-time training sessions which interrupt their daily work schedules. With Darktrace/Email, if a message contains some potentially suspicious markers but is most likely safe, Darktrace takes a specific action to neutralize the risky components and presents it to the user with a simple narrative explaining why certain elements have been held back. The user can then decide whether to report this email to the security team. 

AI shares its analysis in context and in real time at the moment a user is questioning an email
Figure 1: AI shares its analysis in context and in real time at the moment a user is questioning an email

The AI narrative gives the user context for why their specific email may carry risk, putting their security awareness training into practice. This creates an element of trust with the security solution, rather than viewing it as outside of daily workflows. Users may also receive a daily or weekly digest of their held emails and make a decision on whether to release or report them.  

Whatever the user’s existing workflow is for reporting emails, Darktrace/Email can integrate with it and improve its quality. Our add-in for Outlook gives users a fully optimized experience, allowing them to engage with the narratives for each email, as well as non-productive mail management. However, if teams want to integrate Darktrace into an existing workflow, it can analyze emails reported to an internal SOC mailbox, the native email provider’s 'Report Phish’ button, or the ‘Knowbe4’ button.

By empowering the user with contextual feedback on each unique email, we foster employee engagement and elevate both reporting quality and security awareness. In fact, 60% fewer benign emails are reported because of the extra context supplied by Darktrace to end users. The eventual report is then fed back to the detection algorithm, improving future decision-making.  

Reducing the amount of emails that reach the SOC

Out of the higher-quality emails that do end up being reported by users, the next step is to reduce the amount of emails that reach the SOC.   

Once a user reports an email, Darktrace will independently determine if the mail should be automatically remediated based on second level triage. Darktrace/Email’s Mailbox Security Assistant automates secondary triage by combining additional behavioral signals and the most advanced link analysis engine we have ever built. It detects 70% more sophisticated malicious phishing links by looking at an additional twenty times more context than at the primary analysis stage, revealing the hidden intent within interactive and dynamic webpages. This directly alleviates the burden of manual triage for security analysts.

Following this secondary triage the emails that are deemed worthy of security team attention are then passed over, resulting in a lower quantity and higher quality of emails for SOC manual triage.

Centralizing and speeding analysis for investigations

For those emails that are received by the SOC, Darktrace also helps to improve triage time for manual remediation.  

AI-generated narratives and automated remediation actions empower teams to fast-track manual triage and remediation, while still providing security analysts with the necessary depth. With live inbox view, security teams gain access to a centralized platform that combines intuitive search capabilities, Cyber AI Analyst reports, and mobile application access. With all security workflows consolidated within a unified interface, users can analyze and take remediation actions without the need to navigate multiple tools, such as e-discovery platforms – eliminating console hopping and accelerating incident response.

Our customers tell us that our AI allows them to go in-depth quickly for investigations, versus other solutions that only provide a high-level view.

Cyber AI Analyst provides a simple language narrative for each reported email, allowing teams to quickly understand why it may be suspicious
Figure 2: Cyber AI Analyst provides a simple language narrative for each reported email, allowing teams to quickly understand why it may be suspicious

Conclusion

Unlike our competitors, we believe that improving the quality of users’ experience is not only a nice-to-have, but a fundamental means for improving security. Any modern solution should consider end users as a key source of information as well as an opportunity for defense. Darktrace does both – optimizing the user experience as well as our AI learning from the user to augment detection.  

The benefits of empowering users are ultimately felt by the security team, who benefit from improved detection, a reduction in manual triage of benign emails, and faster investigation workflows.

Augmented end user reporting is just one of a range of features new to Darktrace/Email. Check out the latest Innovations to Darktrace/Email in our recent blog.

Continue reading
About the author
Carlos Gray
Product Manager
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Start your free trial
Darktrace AI protecting a business from cyber threats.