Blog
/
Cloud
/
September 20, 2022

Modern Extortion: Detecting Data Theft From the Cloud

Darktrace highlights a handful of data theft incidents on shared cloud platforms, showing that cloud computing can be a vulnerable place for modern extortion.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adrianne Marques
Senior Research Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Sep 2022

Ransomware Industry

The ransomware industry has benefitted from a number of factors in recent years: inadequate cyber defenses, poorly regulated cryptocurrency markets, and geopolitical tensions have allowed gangs to extort increasingly large ransoms while remaining sheltered from western law enforcement [1]. However, one of the biggest success stories of the ransomware industry has been the adaptability and evolution of attacker TTPs (tactics, techniques and procedures). The WannaCry and NotPetya attacks of 2017 popularized a form of ransomware which used encryption algorithms to hold data to ransom in exchange for a decryption key. Last year in 2021, almost all ransomware strains evolved to use double extortion tactics: holding stolen data to ransom as well as encrypted data [2]. Now, some ransomware gangs have dropped encryption entirely, and are using data theft as their sole means of extortion. 

Using data theft for extortion is not new. In 2020 the Finnish psychotherapy center Vastaamo had over 40,000 patient records stolen. Impacted patients were told that their psychiatric transcripts would be published online if they failed to pay a Bitcoin ransom. [3]. A later report by BlackFog in May 2021 predicted data theft extortion would become one of the key emerging cybersecurity trends that year [4]. Adoption of offline back-ups and endpoint detection had made encryption harder, while a large-scale move to Cloud and SaaS platforms offered new vectors for data theft. By moving from data encryption to data exfiltration, ransomware attackers pivoted from targeting data availability within the CIA triad (Confidentiality, Integrity, Availability) to threatening data confidentiality.

In November 2021, Darktrace detected a data theft incident following the compromise of two SaaS accounts within an American tech customer’s Office365 environment. The client was a longstanding user of Darktrace DETECT/Network, and was in the process of expanding their coverage by trialing Darktrace DETECT+RESPOND/ Apps + Cloud.

Attack Overview

On November 23rd 2021, an Ask the Expert (ATE) ticket was raised prompting investigation into a breached SaaS model, ‘SaaS / Access / Unusual External Source for SaaS Credential Use’, and the activities of a user (censored as UserA) over the prior week.

1. Office365: UserA 

The account UserA had been logging in from an unusual location in Nigeria on November 21st. At the time of the incident there were no flags of malicious activity from this IP in widely used OSINT sources. It is also highly probable the attacker was not located in Nigeria but using Nigerian infrastructure in order to hide their true location. Regardless, the location of the login from this IP and ASN was considered highly unusual for users within the customer’s digital estate. The specific user in question most commonly accessed their account from IP ranges located in the US.

Figure 1: In the Geolocation tab of the External Sites Summary on the SaaS Console, UserA was seen logging in from Nigeria when previous logins were exclusively from USA

Further investigation revealed an additional anomaly in the Outlook Web activity of UserA. The account was using the Firefox browser to access their account for the first time in at least 4 weeks (the maximum period for which the customer stored such data). SaaS logs detailing the access of confidential folders and other suspicious actions were identified using the Advanced Search (AS) query:

@fields.saas_actor:"UserA@[REDACTED]" AND @fields.saas_software:"Firefox"

Most actions were ‘MailItemsAccessed’ events originating from IPs located in Nigeria [5,6] and one other potentially malicious IP located in the US [7].

‘MailItemsAccessed’ is part of the new Advanced Audit functionality from Microsoft and can be used to determine when email data is accessed by mail protocols and clients. A bind mail access type denotes an individual access to an email message [8]. 

Figure 2: AS logs shows UserA had not used Firefox to access Office365 for at least 4 weeks prior to the unusual login on the 21st November

Below are details of the main suspicious SaaS activities: 

·      Time: 2021-11-21 09:05:25 - 2021-11-22 16:57:39 UTC

·      SaaS Actor: UserA@[REDACTED]

·      SaaS Service: Office365

·      SaaS Service Product: Exchange

·      SaaS Software: Firefox

·      SaaS Office365 Parent Folders:

          o   \Accounts/Passwords
          o   \Invoices
          o   \Sent Items
          o   \Inbox
          o   \Recoverable Items\Deletions

·      SaaS Event:

          o   MailItemsAccessed
          o   UserLoggedIn
          o   Update

·      SaaS Office365 Mail Access Type: Bind (47 times)

·      Source IP addresses:

          o   105.112.59[.]83
          o   105.112.36[.]212
          o   154.6.17[.]16
          o   45.130.83[.]129

·      SaaS User Agents: 

          o   Client=OWA;Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:80.0) Gecko/20100101 Firefox/80.0;
          o   Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:80.0) Gecko/20100101 Firefox/80.0

·      Total SaaS logs: 57 

At the start of the month on the 5th November, the user had also been seen logging in from a potentially malicious endpoint [9] in Europe, performing ‘MailItemsAccessed’ and ‘Updates’ events with subjects and a resource location related to invoices and wire transfers from the Sent items folder. This suggests the initial compromise had been earlier in the month, giving the threat actor time to make preparations for the final stages of the attack.

Figure 3: Event log showing the activity of UserA from IP 45.135.187[.]108 

2. Office365: UserB 

Looking into the model breach ‘SaaS / Access / Suspicious Credential Use And Login User-Agent’, it was seen that a second account, UserB, was also observed logging in from a rare and potentially malicious location in Bangladesh [7]. Similar to UserA, this user had previously logged in exclusively from the USA, and no other accounts within the digital estate had been observed interacting with the Bangladeshi IP address. The login event appeared to bypass MFA (Multi-factor Authentication) and a suspicious user agent, BAV2ROPC, was used. Against misconfigured accounts, this Microsoft user agent is commonly used by attackers to bypass MFA on Office365. It targets Exchange’s Basic Authentication (normally used in POP3/IMAP4 conditions) and results in an OAuth flow which circumvents the additional password security brought by MFA [10].  

During the session, additional resources were accessed which appear to be associated with bill and invoice payments. In addition, on the 4th November, two new suspicious email rules named “..” were created from rare IPs (107.10.56[.]48 and 76.189.202[.]66). This type of behavior is commonly seen during SaaS compromises to delete or forward emails. Typically, an email rule created by a human user will be named to reflect the change being made, such as ‘Move emails from Legal to Urgent’. In contrast, malicious email rules are often short and undescriptive. The rule “..” is likely to blend in without arousing suspicion, while also being easy for the attacker to create and remember. 

Details of these rule changes are as follows:

·      Time: 2021-11-04 13:25:06, 2021-11-05 15:50:00 [UTC]
·      SaaS Service: Office365
·      SaaS Service Product: Exchange
·      SaaS Status Message: True
·      SaaS Source IP addresses: 107.10.56[.]48, 76.189.202[.]66
·      SaaS Account Name: O365
·      SaaS Actor: UserB@[REDACTED]
·      SaaS Event: SetInboxRule
·      SaaS Office365 Modified Property Names:
          o   AlwaysDeleteOutlookRulesBlob, Force, Identity, MoveToFolder, Name, FromAddressContainsWords, StopProcessingRules
          o   AlwaysDeleteOutlookRulesBlob, Force, Identity, Name, FromAddressContainsWords, StopProcessingRules
·      SaaS Resource Name: .. 

During cloud account compromises, attackers will often use sync operations to download emails to their local email client. During the operations, these clients typically download a large set of mail items from the cloud to a local computer. If the attacker is able to sync all mail items to their mail client, the entire mailbox can be compromised. The attacker is able to disconnect from the account and review and search the email without generating additional event logs. 

Both accounts UserA and UserB were observed using ‘MailItemsAccessed’ sync operations between the 1st and 23rd November when this attack occurred. However, based on the originating IP of the sync operations, the activity is likely to have been initiated by the legitimate, US-based users. Once the security team were able to confirm the events were expected and legitimate, they could establish that the contents of the mailbox were not a part of the data breach. 

Accomplish Mission

After gaining access to the Office365 accounts, sensitive data was downloaded by the attackers to their local system. Either on or before 14th December, the attacker had seemingly uploaded the documents onto a data leak website. In total, 130MB of data had been made available for download in two separate packages. The packages included audit and accounting financial documents, with file extensions such as DB, XLSX, and PDF.

Figure 4: The two data packages uploaded by the attacker and the extracted contents

In a sample of past SaaS activity of UserA, the subject and attachments appear related to the ‘OUTSTANDING PREPAY WIRES 2021’ excel document found from the data leak website in Figure 4, suggesting a further possibility that the account was associated with the leaked data. 

Historic SaaS activity associated with UserA: 

·      Time: 2021-11-05 21:21:18 [UTC]
·      SaaS Office365 Logon Type: Owner
·      Protocol: OFFICE365
·      SaaS Account Name: O365
·      SaaS Actor: UserA@[REDACTED].com
·      SaaS Event: Send
·      SaaS Service: Office365
·      SaaS Service Product: Exchange
·      SaaS Status Message: Succeeded
·      SaaS Office365 Attachment: WIRE 2021.xlsx (92406b); image.png (9084b); image.png (1454b); image.png (1648b); image.png (1691b); image.png (1909b); image.png (2094b)
·      SaaS Office365 Subject: Wires 11/8/21
·      SaaS Resource Location: \Drafts
·      SaaS User Agent: Client=OWA;Action=ViaProxy 

Based on the available evidence, it is highly likely that the data packages contain the data stolen during the account compromise the previous month.  

Once the credentials of an Office365 account are stolen, an attacker can not only access the user's mailbox, but also a full range of Office365 applications such as SharePoint folders, Teams Chat, or files in the user's OneDrive [11]. For example, files shared in Teams chat are stored in OneDrive for Business in a folder named Microsoft Teams Chat Files in the default Document library on SharePoint. One of the files visible on the data leak website, called ‘[REDACTED] CONTRACT.3.1.2020.pdf’, was also observed in the default document folder of a third user account (UserC) within the victim organization, suggesting the compromised accounts may have been able to access shared files stored on other accounts by moving laterally via other O365 applications such as Teams. 

One example can be seen in the below AS logs: 

·      Time: 2021-11-11 01:58:35 [UTC]
·      SaaS Resource Type: File
·      Protocol: OFFICE365
·      SaaS Account Name: 0365
·      SaaS Actor: UserC@[REDACTED]
·      SaaS Event: FilePreviewed
·      SaaS Service Product: OneDrive
·      SaaS Metric: ResourceViewed
·      SaaS Office365 Application Name: Media Analysis and Transformation Service
·      SaaS Office365 File Extension: pdf
·      SaaS Resource Location: https://[REDACTED]-my.sharepoint.com/personal/userC_[REDACTED]_com/Documents/Microsoft Teams Chat Files/[REDACTED] CONTRACT 3.1.2020.pdf
·      SaaS Resource Name: [REDACTED] CONTRACT 3.1.2020.pdf
·      SaaS Service: Office365
·      SaaS Service Product: OneDrive
·      SaaS User Agent: OneDriveMpc-Transform_Thumbnail/1.0 

In the period between the 1st and 30th November, the customer’s Darktrace DETECT/Apps trial had raised multiple high-level alerts associated with SaaS account compromise, but there was no evidence of file encryption.  

Establish Foothold 

Looking back at the start of the attack, it is unclear exactly how the attacker evaded the customer’s pre-existing security stack. At the time of the incident, the victim was using a Barracuda email gateway and Microsoft 365 Threat Management for their cloud environment. 

Darktrace detected no indication the accounts were compromised via credential bruteforcing, which would have enabled the attacker to bypass the Azure Active Directory smart lockout (if enabled). The credentials may have been harvested via a phishing campaign which successfully evaded the list of known ‘bad’ domains maintained by their email gateway.  

Upon gaining access to the account, the Microsoft Defender for Cloud Apps anomaly detection policies would have been expected to raise an alert [12]. In this instance, the unusual login from Nigeria occurred over 16 hours after the previous login from the US, potentially evading anomaly detection policies such as the ‘Impossible Travel’ rule. 

Figure 5: Event log showing the user accessing mail from USA a day before the suspicious usage from Nigeria 

Darktrace Coverage

Darktrace DETECT 

Throughout this event, high scoring model breaches associated with the attack were visible in the customer’s SaaS Console. In addition, there were two Cyber AI Analyst incidents for ‘Possible Account Hijack’ associated with the two compromised SaaS Office365 accounts, UserA and UserB. The visibility given by Darktrace DETECT also enabled the security team to confirm which files had been accessed and were likely part of the data leak.

Figure 6: Example Cyber AI Analyst incident of UserB SaaS Office365 account

Darktrace RESPOND

In this incident, the attackers successfully compromised O365 accounts in order to exfiltrate customer data. Whilst Darktrace RESPOND/Apps was being trialed and suggested several actions, it was configured in human confirmation mode. The following RESPOND/Apps actions were advised for these activities:  

·      ‘Antigena [RESPOND] Unusual Access Block’ triggered by the successful login from an unusual IP address, would have actioned the ‘Block IP’ inhibitor, preventing access to the account from the unusual IP for up to 24 hours
·      ‘Suspicious Source Activity Block’, triggered by the suspicious user agent used to bypass MFA, would have actioned the ‘Disable User’ inhibitor, disabling the user account for up to 24 hours 

During this incident, Darktrace RESPOND/Network was being used in fully autonomous mode in order to prevent the threat actor from pivoting into the network. The security team were unable to conclusively say if any attempts by the attacker to do this had been made. 

Concluding Thoughts  

Data theft extortion has become a widely used attack technique, and ransomware gangs may increasingly use this technique alone to target organizations without secure data encryption and storage policies.  

This case study describes a SaaS data theft extortion incident which bypassed MFA and existing security tools. The attacker appeared to compromise credentials without bruteforce activity, possibly with the use of social engineering through phishing. However, from the first new login, Darktrace DETECT identified the unusual credential use in spite of it being an existing account. Had Darktrace RESPOND/Apps been configured, it would have autonomously responded to halt this login and prevent the attacker from accomplishing their data theft mission.

Thanks to Oakley Cox, Brianna Leddy and Shuh Chin Goh for their contributions.

Appendices

References 

[1] https://securelist.com/new-ransomware-trends-in-2022/106457/

[2] https://www.itpro.co.uk/security/ransomware/367624/the-rise-of-double-extortion-ransomware

[3] https://www.malwarebytes.com/blog/news/2020/10/vastaamo-psychotherapy-data-breach-sees-the-most-vulnerable-victims-extorted

[4] https://www.blackfog.com/shift-from-ransomware-to-data-theft-extortion/

[5] https://www.abuseipdb.com/check/105.112.59.83

[6] https://www.abuseipdb.com/check/105.112.36.212

[7] https://www.abuseipdb.com/check/45.130.83.129

[8] https://docs.microsoft.com/en-us/microsoft-365/compliance/mailitemsaccessed-forensics-investigations?view=o365-worldwide

[9] https://www.abuseipdb.com/check/45.135.187.108

[10] https://www.virustotal.com/gui/ip-address/45.137.20.65/details

[11] https://tidorg.com/new-bec-phishing-attack-steals-office-365-credentials-and-bypasses-mfa/

[12] https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/responding-to-a-compromised-email-account?view=o365-worldwide

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adrianne Marques
Senior Research Analyst

More in this series

No items found.

Blog

/

AI

/

December 23, 2025

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI