Blog
/
Network
/
April 26, 2023

Gozi ISFB Malware Detection Insights and Analysis

Uncover how Gozi ISFB operates and how Darktrace’s detection capabilities help secure your systems against this versatile malware.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Apr 2023

Mirroring the overall growth of the cybersecurity landscape and the advancement of security tool capabilities, threat actors are continuously forced to keep pace. Today, threat actors are bringing novel malware into the wild, creating new attack vectors, and finding ways to avoid the detection of security tools. 

One notable example of a constantly adapting type of malware can be seen with banking trojans, a type of malware designed to steal confidential information, such as banking credentials, used by attackers for financial gain. Gozi-ISFB is a widespread banking trojan that has previously been referred to as ‘the malware with a thousand faces’ and, as it name might suggest, has been known under various names such as Gozi, Ursnif, Papras and Rovnix to list a few.

Between November 2022 and January 2023, a rise in Gozi-ISFB malware related activity was observed across Darktrace customer environments and was investigated by the Darktrace Threat Research team. Leveraging its Self-Learning AI, Darktrace was able to identify activity related to this banking trojan, regardless of the attack vectors or delivery methods utilized by threat actors.

We have moderate to high confidence that the series of activities observed is associated with Gozi-ISFB malware and high confidence in the indicators of compromise identified which are related to the post-compromise activities from Gozi-ISFB malware. 

Gozi-ISFB Background

The Gozi-ISFB malware was first observed in 2011, stemming from the source code of another family of malware, Gozi v1, which in turn borrowed source code from the Ursnif malware strain.  

Typically, the initial access payloads of Gozi-ISFB would require an endpoint to enable a macro on their device, subsequently allowing a pre-compiled executable file (.exe) to be gathered from an attacker-controlled server, and later executed on the target device.

However, researchers have recently observed Gozi-ISFB actors using additional and more advanced capabilities to gain access to organizations networks. These capabilities range from credential harvest, surveilling user keystrokes, diverting browser traffic from banking websites, remote desktop access, and the use of domain generation algorithms (DGA) to create command-and-control (C2) domains to avoid the detection and blocking of traditional security tools. 

Ultimately, the goal of Gozi-ISFB malware is to gather confidential information from infected devices by connecting to C2 servers and installing additional malware modules on the network. 

Darktrace Coverage of Gozi-ISFB 

Unlike traditional security approaches, Darktrace DETECT/Network™ can identify malicious activity because Darktrace models build an understanding of a device’s usual pattern of behavior, rather than using a static list of indicators of compromise (IoCs) or rules and signatures. As such, Darktrace is able to instantly detect compromised devices that deviate from their expected behavioral patterns, engaging in activity such as unusual SMB connections or connecting to newly created malicious endpoints or C2 infrastructure. In the event that Darktrace detects malicious activity, it would automatically trigger an alert, notifying the customer of an ongoing security concern. 

Regarding the Gozi-ISFB attack process, initial attack vectors commonly include targeted phishing campaigns, where the recipient would receive an email with an attached Microsoft Office document containing macros or a Zip archive file. Darktrace frequently observes malicious emails like this across the customer base and is able to autonomously detect and action them using Darktrace/Email™. In the following cases, the clients who had Darktrace/Email did not have evidence of compromise through their corporate email infrastructure, suggesting devices were likely compromised via the access of personal email accounts. In other cases, the customers did not have Darktrace/Email enabled on their networks.

Upon downloading and opening the malicious attachment included in the phishing email, the payload subsequently downloads an additional .exe or dynamic link library (DLL) onto the device. Following this download, the malware will ultimately begin to collect sensitive data from the infected device, before exfiltrating it to the C2 server associated with Gozi-ISFB. Darktrace was able to demonstrate and detect the retrieval of Gozi-ISFB malware, as well as subsequent malicious communication on multiple customer environments. 

In some attack chains observed, the infected device made SMB connections to the rare external endpoint ’62.173.138[.]28’ via port 445. Darktrace recognized that the device used unusual credentials for this destination endpoint and further identified it performing SMB reads on the share ‘\\62.173.138[.]28\Agenzia’. Darktrace also observed that the device downloaded the executable file ‘entrat.exe’ from this connection as can be seen in Figure 1.

Figure 1: Model breach event log showing an infected device making SMB read actions on the share ‘\\62.173.138[.]28\Agenzia’. Darktrace observed the device downloading the executable file ‘entrat.exe’ from this connection.

Subsequently, the device performed a separate SMB login to the same external endpoint using a credential identical to the device's name. Shortly after, the device performed a SMB directory query from the root share drive for the file path to the same endpoint. 

Figure 2:SMB directory query from the root share drive for the file path to the same endpoint, ’62.173.138[.]28’.

In Gozi-ISFB compromises investigated by the Threat Research team, Darktrace commonly observed model breaches for ‘Multiple HTTP POSTs to Rare Hostname’ and the use of the Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 10.0; Win64; x64)’ user agent. 

Devices were additionally observed making external connections over port 80 (TCP, HTTP) to endpoints associated with Gozi-ISFB. Regarding these connections, C2 communication was observed used configurations of URI path and resource file extension that claimed to be related to images within connections that were actually GET or POST request URIs. This is a commonly used tactic by threat actors to go under the radar and evade the detection of security teams.  

An example of this type of masqueraded URI can be seen below:

In another similar example investigated by the Threat Research team, Darktrace detected similar external connectivity associated with Gozi-ISFB malware. In this case, DETECT identified external connections to two separate hostnames, namely ‘gameindikdowd[.]ru’ and ‘jhgfdlkjhaoiu[.]su’,  both of which have been associated to Gozi-ISFB by OSINT sources. This specific detection included HTTP beaconing connections to endpoint, gameindikdowd[.]ru .

Details observed from this event: 

Destination IP: 134.0.118[.]203

Destination port: 80

ASN: AS197695 Domain names registrar REG.RU, Ltd

User agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 10.0; Win64; x64

The same device later made anomalous HTTP POST requests to a known Gozi-ISFB endpoint, jhgfdlkjhaoiu[.]su. 

Details observed:

Destination port: 80

ASN: AS197695 Domain names registrar REG.RU, Ltd

User agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 10.0; Win64; x64

Figure 3: Packet Capture (PCAP) with the device conducting anomalous HTTP POST requests to a Gozi-ISFB related IOC, ‘jhgfdlkjhaoiu[.]su’.

Conclusions 

With constantly changing attack infrastructure and new methods of exploitation tested and leveraged hour upon hour, it is critical for security teams to employ tools that help them stay ahead of the curve to avoid critical damage from compromise.  

Faced with a notoriously adaptive malware strain like Gozi-ISFB, Darktrace demonstrated its ability to autonomously detect malicious activity based upon more than just known IoCs and attack vectors. Despite the multitude of different attack vectors utilized by threat actors, Darktrace was able to detect Gozi-ISFB activity at various stages of the kill chain using its anomaly-based detection to identify unusual activity or deviations from normal patterns of life. Using its Self-Learning AI, Darktrace successfully identified infected devices and brought them to the immediate attention of customer security teams, ultimately preventing infections from leading to further compromise.  

The Darktrace suite of products, including DETECT/Network, is uniquely placed to offer customers an unrivaled level of network security that can autonomously identify and respond to arising threats against their networks in real time, preventing suspicious activity from leading to damaging network compromises.

Credit to: Paul Jennings, Principal Analyst Consultant and the Threat Research Team

Appendices

List of IOCs

134.0.118[.]203 - IP Address - Gozi-ISFB C2 Endpoint

62.173.138[.]28 - IP Address - Gozi-ISFB  C2 Endpoint

45.130.147[.]89 - IP Address - Gozi-ISFB  C2 Endpoint

94.198.54[.]97 - IP Address - Gozi-ISFB C2 Endpoint

91.241.93[.]111 - IP Address - Gozi-ISFB  C2 Endpoint

89.108.76[.]56 - IP Address - Gozi-ISFB  C2 Endpoint

87.106.18[.]141 - IP Address - Gozi-ISFB  C2 Endpoint

35.205.61[.]67 - IP Address - Gozi-ISFB  C2 Endpoint

91.241.93[.]98 - IP Address - Gozi-ISFB  C2 Endpoint

62.173.147[.]64 - IP Address - Gozi-ISFB C2 Endpoint

146.70.113[.]161 - IP Address - Gozi-ISFB  C2 Endpoint 

iujdhsndjfks[.]ru - Hostname - Gozi-ISFB C2 Hostname

reggy505[.]ru - Hostname - Gozi-ISFB  C2 Hostname

apr[.]intoolkom[.]at - Hostname - Gozi-ISFB  C2 Hostname

jhgfdlkjhaoiu[.]su - Hostname - Gozi-ISFB  C2 Hostname

gameindikdowd[.]ru - Hostname - Gozi-ISFB  Hostname

chnkdgpopupser[.]at - Hostname – Gozi-ISFB C2 Hostname

denterdrigx[.]com - Hostname – Gozi-ISFB C2 Hostname

entrat.exe - Filename – Gozi-ISFB Related Filename

Darktrace Model Coverage

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / Posting HTTP to IP Without Hostname

Anomalous Connection / New User Agent to IP Without Hostname

Compromise / Agent Beacon (Medium Period)

Anomalous File / Application File Read from Rare Endpoint

Device / Suspicious Domain

Mitre Attack and Mapping

Tactic: Application Layer Protocol: Web Protocols

Technique: T1071.001

Tactic: Drive-by Compromise

Technique: T1189

Tactic: Phishing: Spearphishing Link

Technique: T1566.002

Model Detection

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname - T1071.001

Anomalous Connection / Posting HTTP to IP Without Hostname - T1071.001

Anomalous Connection / New User Agent to IP Without Hostname - T1071.001

Compromise / Agent Beacon (Medium Period) - T1071.001

Anomalous File / Application File Read from Rare Endpoint - N/A

Device / Suspicious Domain - T1189, T1566.002

References

https://threatfox.abuse.ch/browse/malware/win.isfb/

https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-216a

https://www.fortinet.com/blog/threat-research/new-variant-of-ursnif-continuously-targeting-italy#:~:text=Ursnif%20(also%20known%20as%20Gozi,Italy%20over%20the%20past%20year

https://medium.com/csis-techblog/chapter-1-from-gozi-to-isfb-the-history-of-a-mythical-malware-family-82e592577fef

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

November 5, 2025

Tracking a Dragon: Investigating a DragonForce-affiliated ransomware attack with Darktrace

Tracking a Dragon: Investigating a DragonForce-affiliated ransomware attack with Darktrace Default blog imageDefault blog image

What is DragonForce?

DragonForce is a Ransomware-as-a-Service (RaaS) platform that emerged in late 2023, offering broad-scale capabilities and infrastructure to threat actors. Recently, DragonForce has been linked to attacks targeting the UK retail sector, resulting in several high-profile cases [1][2]. Moreover, the group launched an affiliate program offering a revenue share of roughly 20%, significantly lower than commissions reported across other RaaS platforms [3].

This Darktrace case study examines a DragonForce-linked RaaS infection within the manufacturing industry. The earliest signs of compromise were observed during working hours in August 2025, where an infected device started performing network scans and attempted to brute-force administrative credentials. After eight days of inactivity, threat actors returned and multiple devices began encrypting files via the SMB protocol using a DragonForce-associated file extension. Ransom notes referencing the group were also dropped, suggesting the threat actor is claiming affiliation with DragonForce, though this has not been confirmed.

Despite Darktrace’s detection of the attack in its early stages, the customer’s deployment did not have Darktrace’s Autonomous Response capability configured, allowing the threat to progress to data exfiltration and file encryption.

Darktrace's Observations

While the initial access vector was not clearly defined in this case study, it was likely achieved through common methods previously employed out by DragonForce affiliates. These include phishing emails leveraging social engineering tactics, exploitation of public-facing applications with known vulnerabilities, web shells, and/or the abuse of remote management tools.

Darktrace’s analysis identified internal devices performing internal network scanning, brute-forcing credentials, and executing unusual Windows Registry operations. Notably, Windows Registry events involving "Schedule\Taskcache\Tasks" contain subkeys for individual tasks, storing GUIDs that can be used to locate and analyze scheduled tasks. Additionally, Control\WMI\Security holds security descriptors for WMI providers and Event Tracing loggers that use non-default security settings respectively.

Furthermore, Darktrace identified data exfiltration activity over SSH, including connections to an ASN associated with a malicious hosting service geolocated in Russia.

1. Network Scan & Brute Force

Darktrace identified anomalous behavior in late August to early September 2025, originating from a source device engaging in internal network scanning followed by brute-force attempts targeting administrator credential, including “administrator”, “Admin”, “rdpadmin”, “ftpadmin”.

Upon further analysis, one of the HTTP connections seen in this activity revealed the use of the user agent string “OpenVAS-VT”, suggesting that the device was using the OpenVAS vulnerability scanner. Subsequently, additional devices began exhibiting network scanning behavior. During this phase, a file named “delete.me” was deleted by multiple devices using SMB protocol. This file is commonly associated with network scanning and penetration testing tool NetScan.

2. Windows Registry Key Update

Following the scanning phase, Darktrace observed the initial device then performing suspicious Winreg operations. This included the use of the ”BaseRegOpenKey” function across multiple registry paths.

Additional operations such as “BaseRegOpenKey” and “BaseRegQueryValue” were also seen around this time. These operations are typically used to retrieve specific registry key values and allow write operations to registry keys.

The registry keys observed included “SYSTEM\CurrentControlSet\Control\WMI\Security” and “Software\Microsoft\Windows NT\CurrentVersion\Schedule\Taskcache\Tasks”. These keys can be leveraged by malicious actors to update WMI access controls and schedule malicious tasks, respectively, both of which are common techniques for establishing persistence within a compromised system.

3. New Administrator Credential Usage

Darktrace subsequently detected the device using a highly privileged credential, “administrator”, via a successful Kerberos login for the first time. Shortly after, the same credential was used again for a successful SMB session.

These marked the first instances of authentication using the “administrator” credential across the customer’s environment, suggesting potential malicious use of the credential following the earlier brute-force activity.

Darktrace’s detection of administrator credentials being used in Kerberos login events by an infected device.
Figure 1: Darktrace’s detection of administrator credentials being used in Kerberos login events by an infected device.
Darktrace’s detection of administrator credentials being used in SMB sessions by an infected device.
Figure 2: Darktrace’s detection of administrator credentials being used in SMB sessions by an infected device.

4. Data Exfiltration

Prior to ransomware deployment, several infected devices were observed exfiltrating data to the malicious IP 45.135.232[.]229 via SSH connections [7][8]. This was followed by the device downloading data from other internal devices and transferring an unusually large volume of data to the same external endpoint.

The IP address was first seen on the network on September 2, 2025 - the same date as the observed data exfiltration activity preceding ransomware deployment and encryption.

Further analysis revealed that the endpoint was geolocated in Russia and registered to the malicious hosting provider Proton66. Multiple external researchers have reported malicious activity involving the same Proton66 ASN (AS198953 Proton66 OOO) as far back as April 2025. These activities notably included vulnerability scanning, exploitation attempts, and phishing campaigns, which ultimately led to malware [4][5][6].

Data Exfiltration Endpoint details.

  • Endpoint: 45.135.232[.]229
  • ASN: AS198953 Proton66 OOO
  • Transport protocol: TCP
  • Application protocol: SSH
  • Destination port: 22
Darktrace’s summary of the external IP 45.135.232[.]229, first detected on September 2, 2025. The right-hand side showcases model alerts triggered related to this endpoint including multiple data exfiltration related model alerts.
Figure 3: Darktrace’s summary of the external IP 45.135.232[.]229, first detected on September 2, 2025. The right-hand side showcases model alerts triggered related to this endpoint including multiple data exfiltration related model alerts.

Further investigation into the endpoint using open-source intelligence (OSINT) revealed that it led to a Microsoft Internet Information Services (IIS) Manager console webpage. This interface is typically used to configure and manage web servers. However, threat actors have been known to exploit similar setups, using fake certificate warnings to trick users into downloading malware, or deploying malicious IIS modules to steal credentials.

Live screenshot of the destination (45.135.232[.]229), captured via OSINT sources, displaying a Microsoft IIS Manager console webpage.
Figure 4: Live screenshot of the destination (45.135.232[.]229), captured via OSINT sources, displaying a Microsoft IIS Manager console webpage.

5. Ransomware Encryption & Ransom Note

Multiple devices were later observed connecting to internal devices via SMB and performing a range of actions indicative of file encryption. This suspicious activity prompted Darktrace’s Cyber AI Analyst to launch an autonomous investigation, during which it pieced together associated activity and provided concrete timestamps of events for the customer’s visibility.

During this activity, several devices were seen writing a file named “readme.txt” to multiple locations, including network-accessible webroot paths such as inetpub\ and wwwroot\. This “readme.txt” file, later confirmed to be the ransom note, claimed the threat actors were affiliated with DragonForce.

At the same time, devices were seen performing SMB Move, Write and ReadWrite actions involving files with the “.df_win” extension across other internal devices, suggesting that file encryption was actively occurring.

Darktrace’s detection of SMB events (excluding Read events) where the device was seen moving or writing files with the “.df_win” extension.
Figure 5: Darktrace’s detection of SMB events (excluding Read events) where the device was seen moving or writing files with the “.df_win” extension.
Darktrace’s detection of a spike in SMB Write events with the filename “readme.txt” on September 9, indicating the start of file encryption.
Figure 6: Darktrace’s detection of a spike in SMB Write events with the filename “readme.txt” on September 9, indicating the start of file encryption.

Conclusion

The rise of Ransomware-as-a-Service (RaaS) and increased attacker customization is fragmenting tactics, techniques, and procedures (TTPs), making it increasingly difficult for security teams to prepare for and defend against each unique intrusion. RaaS providers like DragonForce further complicate this challenge by enabling a wide range of affiliates, each with varying levels of sophistication [9].

In this instance, Darktrace was able to identify several stages of the attack kill chain, including network scanning, the first-time use of privileged credentials, data exfiltration, and ultimately ransomware encryption. Had the customer enabled Darktrace’s Autonomous Response capability, it would have taken timely action to interrupt the attack in its early stages, preventing the eventual data exfiltration and ransomware detonation.

Credit to Justin Torres, Senior Cyber Analyst, Nathaniel Jones, VP, Security & AI Strategy, FCISO, & Emma Foulger, Global Threat Research Operations Lead.

Edited by Ryan Traill (Analyst Content Lead)

Appendices

References:

1. https://www.infosecurity-magazine.com/news/dragonforce-goup-ms-coop-harrods/

2. https://www.picussecurity.com/resource/blog/dragonforce-ransomware-attacks-retail-giants

3. https://blog.checkpoint.com/security/dragonforce-ransomware-redefining-hybrid-extortion-in-2025/

4. https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/proton66-part-1-mass-scanning-and-exploit-campaigns/

5. https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/proton66-part-2-compromised-wordpress-pages-and-malware-campaigns/

6. https://www.broadcom.com/support/security-center/protection-bulletin/proton66-infrastructure-tied-to-expanding-malware-campaigns-and-c2-operations

7. https://www.virustotal.com/gui/ip-address/45.135.232.229

8. https://spur.us/context/45.135.232.229

9. https://www.group-ib.com/blog/dragonforce-ransomware/

IoC - Type - Description + Confidence

·      45.135.232[.]229 - Endpoint Associated with Data Exfiltration

·      .readme.txt – Ransom Note File Extension

·      .df_win – File Encryption Extension Observed

MITRE ATT&CK Mapping

DragonForce TTPs vs Darktrace Models

Initial Access:

·      Anomalous Connection::Callback on Web Facing Device

Command and Control:

·      Compromise::SSL or HTTP Beacon

·      Compromise::Beacon to Young Endpoint

·      Compromise::Beaconing on Uncommon Port

·      Compromise::Suspicious SSL Activity

·      Anomalous Connection::Devices Beaconing to New Rare IP

·      Compromise::Suspicious HTTP and Anomalous Activity

·      DNS Tunnel with TXT Records

Tooling:

·      Anomalous File::EXE from Rare External Location

·      Anomalous File::Masqueraded File Transfer

·      Anomalous File::Numeric File Download

·      Anomalous File::Script from Rare External Location

·      Anomalous File::Uncommon Microsoft File then Exe

·      Anomalous File::Zip or Gzip from Rare External Location

·      Anomalous File::Uncommon Microsoft File then Exe

·      Anomalous File::Internet Facing System File Download

Reconnaissance:

·      Device::Suspicious SMB Query

·      Device::ICMP Address Scan

·      Anomalous Connection::SMB Enumeration

·      Device::Possible SMB/NTLM Reconnaissance

·      Anomalous Connection::Possible Share Enumeration Activity

·      Device::Possible Active Directory Enumeration

·      Anomalous Connection::Large Volume of LDAP Download

·      Device::Suspicious LDAP Search Operation

Lateral Movement:

·      User::Suspicious Admin SMB Session

·      Anomalous Connection::Unusual Internal Remote Desktop

·      Anomalous Connection::Unusual Long Remote Desktop Session

·      Anomalous Connection::Unusual Admin RDP Session

·      User::New Admin Credentials on Client

·      User::New Admin Credentials on Server

·      Multiple Device Correlations::Spreading New Admin Credentials

·      Anomalous Connection::Powershell to Rare External

·      Device::New PowerShell User Agent

·      Anomalous Active Directory Web Services

·      Compromise::Unusual SVCCTL Activity

Evasion:

·      Unusual Activity::Anomalous SMB Delete Volume

·      Persistence

·      Device::Anomalous ITaskScheduler Activity

·      Device::AT Service Scheduled Task

·      Actions on Objectives

·      Compromise::Ransomware::Suspicious SMB Activity (EM)

·      Anomalous Connection::Sustained MIME Type Conversion

·      Compromise::Ransomware::SMB Reads then Writes with Additional Extensions

·      Compromise::Ransomware::Possible Ransom Note Write

·      Data Sent to Rare Domain

·      Uncommon 1 GiB Outbound

·      Enhanced Unusual External Data Transfer

Darktrace Cyber AI Analyst Coverage/Investigation Events:

·      Web Application Vulnerability Scanning of Multiple Devices

·      Port Scanning

·      Large Volume of SMB Login Failures

·      Unusual RDP Connections

·      Widespread Web Application Vulnerability Scanning

·      Unusual SSH Connections

·      Unusual Repeated Connections

·      Possible Application Layer Reconnaissance Activity

·      Unusual Administrative Connections

·      Suspicious Remote WMI Activity

·      Extensive Unusual Administrative Connections

·      Suspicious Directory Replication Service Activity

·      Scanning of Multiple Devices

·      Unusual External Data Transfer

·      SMB Write of Suspicious File

·      Suspicious Remote Service Control Activity

·      Access of Probable Unencrypted Password Files

·      Internal Download and External Upload

·      Possible Encryption of Files over SMB

·      SMB Writes of Suspicious Files to Multiple Devices

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.

Continue reading
About the author
Justin Torres
Cyber Analyst

Blog

/

Network

/

November 5, 2025

WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287

WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287Default blog imageDefault blog image

Introduction

On October 14, 2025, Microsoft disclosed a new critical vulnerability affecting the Windows Server Update Service (WSUS), CVE-2025-59287.  Exploitation of the vulnerability could allow an unauthenticated attacker to remotely execute code [1][6].

WSUS allows for centralized distribution of Microsoft product updates [3]; a server running WSUS is likely to have significant privileges within a network making it a valuable target for threat actors. While WSUS servers are not necessarily expected to be open to the internet, open-source intelligence (OSINT) has reported  thousands of publicly exposed instances that may be vulnerable to exploitation [2].

Microsoft’s initial ‘Patch Tuesday’ update for this vulnerability did not fully mitigate the risk, and so an out-of-band update followed on October 23 [4][5] . Widespread exploitation of this vulnerability started to be observed shortly after the security update [6], prompting CISA to add CVE-2025-59287 to its Known Exploited Vulnerability Catalog (KEV) on October 24 [7].

Attack Overview

The Darktrace Threat Research team have recently identified multiple potential cases of CVE-2025-59287 exploitation, with two detailed here. While the likely initial access method is consistent across the cases, the follow-up activities differed, demonstrating the variety in which such a CVE can be exploited to fulfil each attacker’s specific goals.

The first signs of suspicious activity across both customers were detected by Darktrace on October 24, the same day this vulnerability was added to CISA’s KEV. Both cases discussed here involve customers based in the United States.

Case Study 1

The first case, involving a customer in the Information and Communication sector, began with an internet-facing device making an outbound connection to the hostname webhook[.]site. Observed network traffic indicates the device was a WSUS server.

OSINT has reported abuse of the workers[.]dev service in exploitation of CVE-2025-59287, where enumerated network information gathered through running a script on the compromised device was exfiltrated using this service [8].

In this case, the majority of connectivity seen to webhook[.]site involved a PowerShell user agent; however, cURL user agents were also seen with some connections taking the form of HTTP POSTs. This connectivity appears to align closely with OSINT reports of CVE-2025-59287 post-exploitation behaviour [8][9].

Connections to webhook[.]site continued until October 26. A single URI was seen consistently until October 25, after which the connections used a second URI with a similar format.

Later on October 26, an escalation in command-and-control (C2) communication appears to have occurred, with the device starting to make repeated connections to two rare workers[.]dev subdomains (royal-boat-bf05.qgtxtebl.workers[.]dev & chat.hcqhajfv.workers[.]dev), consistent with C2 beaconing. While workers[.]dev is associated with the legitimate Cloudflare Workers service, the service is commonly abused by malicious actors for C2 infrastructure. The unusual connections to both webhook[.]site and workers[.]dev triggered multiple alerts in Darktrace, including high-fidelity Enhanced Monitoring alerts and Autonomous Response actions.

Infrastructure insight

Hosted on royal-boat-bf05.qgtxtebl.workers[.]dev is a Microsoft Installer file (MSI) named v3.msi.

Screenshot of v3.msi content.
Figure 1: Screenshot of v3.msi content.

Contained in the MSI file is two Cabinet files named “Sample.cab” and “part2.cab”. After extracting the contents of the cab files, a file named “Config” and a binary named “ServiceEXE”. ServiceEXE is the legitimate DFIR tool Velociraptor, and “Config” contains the configuration details, which include chat.hcqhajfv.workers[.]dev as the server_url, suggesting that Velociraptor is being used as a tunnel to the C2. Additionally, the configuration points to version 0.73.4, a version of Velociraptor that is vulnerable to CVE-2025-6264, a privilege escalation vulnerability.

 Screenshot of Config file.
Figure 2: Screenshot of Config file.

Velociraptor, a legitimate security tool maintained by Rapid7, has been used recently in malicious campaigns. A vulnerable version of tool has been used by threat actors for command execution and endpoint takeover, while other campaigns have used Velociraptor to create a tunnel to the C2, similar to what was observed in this case [10] .

The workers[.]dev communication continued into the early hours of October 27. The most recent suspicious behavior observed on the device involved an outbound connection to a new IP for the network - 185.69.24[.]18/singapure - potentially indicating payload retrieval.

The payload retrieved from “/singapure” is a UPX packed Windows binary. After unpacking the binary, it is an open-source Golang stealer named “Skuld Stealer”. Skuld Stealer has the capabilities to steal crypto wallets, files, system information, browser data and tokens. Additionally, it contains anti-debugging and anti-VM logic, along with a UAC bypass [11].

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 3: A timeline outlining suspicious activity on the device alerted by Darktrace.

Case Study 2

The second case involved a customer within the Education sector. The affected device was also internet-facing, with network traffic indicating it was a WSUS server

Suspicious activity in this case once again began on October 24, notably only a few seconds after initial signs of compromise were observed in the first case. Initial anomalous behaviour also closely aligned, with outbound PowerShell connections to webhook[.]site, and then later connections, including HTTP POSTs, to the same endpoint with a cURL user agent.

While Darktrace did not observe any anomalous network activity on the device after October 24, the customer’s security integration resulted in an additional alert on October 27 for malicious activity, suggesting that the compromise may have continued locally.

By leveraging Darktrace’s security integrations, customers can investigate activity across different sources in a seamless manner, gaining additional insight and context to an attack.

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 4: A timeline outlining suspicious activity on the device alerted by Darktrace.

Conclusion

Exploitation of a CVE can lead to a wide range of outcomes. In some cases, it may be limited to just a single device with a focused objective, such as exfiltration of sensitive data. In others, it could lead to lateral movement and a full network compromise, including ransomware deployment. As the threat of internet-facing exploitation continues to grow, security teams must be prepared to defend against such a possibility, regardless of the attack type or scale.

By focussing on detection of anomalous behaviour rather than relying on signatures associated with a specific CVE exploit, Darktrace is able to alert on post-exploitation activity regardless of the kind of behaviour seen. In addition, leveraging security integrations provides further context on activities beyond the visibility of Darktrace / NETWORKTM, enabling defenders to investigate and respond to attacks more effectively.

With adversaries weaponizing even trusted incident response tools, maintaining broad visibility and rapid response capabilities becomes critical to mitigating post-exploitation risk.

Credit to Emma Foulger (Global Threat Research Operations Lead), Tara Gould (Threat Research Lead), Eugene Chua (Principal Cyber Analyst & Analyst Team Lead), Nathaniel Jones (VP, Security & AI Strategy, Field CISO),

Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.        https://nvd.nist.gov/vuln/detail/CVE-2025-59287

2.    https://www.bleepingcomputer.com/news/security/hackers-now-exploiting-critical-windows-server-wsus-flaw-in-attacks/

3.    https://learn.microsoft.com/en-us/windows-server/administration/windows-server-update-services/get-started/windows-server-update-services-wsus

4.    https://www.cisa.gov/news-events/alerts/2025/10/24/microsoft-releases-out-band-security-update-mitigate-windows-server-update-service-vulnerability-cve

5.    https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-59287

6.    https://thehackernews.com/2025/10/microsoft-issues-emergency-patch-for.html

7.    https://www.cisa.gov/known-exploited-vulnerabilities-catalog

8.    https://www.huntress.com/blog/exploitation-of-windows-server-update-services-remote-code-execution-vulnerability

9.    https://unit42.paloaltonetworks.com/microsoft-cve-2025-59287/

10. https://blog.talosintelligence.com/velociraptor-leveraged-in-ransomware-attacks/

11. https://github.com/hackirby/skuld

Darktrace Model Detections

·       Device / New PowerShell User Agent

·       Anomalous Connection / Powershell to Rare External

·       Compromise / Possible Tunnelling to Bin Services

·       Compromise / High Priority Tunnelling to Bin Services

·       Anomalous Server Activity / New User Agent from Internet Facing System

·       Device / New User Agent

·       Device / Internet Facing Device with High Priority Alert

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

·       Anomalous Server Activity / Rare External from Server

·       Compromise / Agent Beacon (Long Period)

·       Device / Large Number of Model Alerts

·       Compromise / Agent Beacon (Medium Period)

·       Device / Long Agent Connection to New Endpoint

·       Compromise / Slow Beaconing Activity To External Rare

·       Security Integration / Low Severity Integration Detection

·       Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

·       Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

·       Antigena / Network / External Threat / Antigena Suspicious Activity Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

o   royal-boat-bf05.qgtxtebl.workers[.]dev – Hostname – Likely C2 Infrastructure

o   royal-boat-bf05.qgtxtebl.workers[.]dev/v3.msi - URI – Likely payload

o   chat.hcqhajfv.workers[.]dev – Hostname – Possible C2 Infrastructure

o   185.69.24[.]18 – IP address – Possible C2 Infrastructure

o   185.69.24[.]18/bin.msi - URI – Likely payload

o   185.69.24[.]18/singapure - URI – Likely payload

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI