Blog
/
Identity
/
June 5, 2023

PerfectData Software Abuse and Account Takeover Risks

Darktrace investigates several attacks through PerfectData Software on Microsoft 365 accounts and shows how we were able to prevent full account takeovers.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dariush Onsori
Cyber Security Analyst
Written by
Sam Lister
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
05
Jun 2023

Introduction: PerfectData Software

Amidst the ever-changing threat landscape, new tactics, techniques, and procedures (TTPs) seem to emerge daily, creating extreme challenges for security teams. The broad range of attack methods utilized by attackers seems to present an insurmountable problem: how do you defend against a playbook that does not yet exist?

Faced with the growing number of novel and uncommon attack methods, it is essential for organizations to adopt a security solution able to detect threats based on their anomalies, rather than relying on threat intelligence alone.   

In March 2023, Darktrace observed an emerging trend in the use of an application known as ‘PerfectData Software’ for probable malicious purposes in several Microsoft 365 account takeovers.

Using its anomaly-based detection, Darktrace was able to identify the activity chain surrounding the use of this application, potentially uncovering a novel piece of threat actor tradecraft in the process.

Microsoft 365 Intrusions

In recent years, Microsoft’s Software-as-a-Service (SaaS) suite, Microsoft 365, along with its built-in identity and access management (IAM) service, Azure Active Directory (Azure AD), have been heavily targeted by threat actors due to their near-ubiquitous usage across industries. Four out of every five Fortune 500 companies, for example, use Microsoft 365 services [1].  

Malicious actors typically gain entry to organizations’ Microsoft 365 environments by abusing either stolen account credentials or stolen session cookies [2]. Once inside, actors can access sensitive data within mailboxes or SharePoint repositories, and send out emails or Teams messages. This activity can often result in serious financial harm, especially in cases where the malicious actor’s end-goal is to elicit fraudulent transactions.  

Darktrace regularly observes malicious actors behaving in predictable ways once they gain access to customer Microsoft 365 environment. One typical example is the creation of new inbox rules and sending deceitful emails intended to convince recipients to carry out subsequent actions, such as following a malicious link or providing sensitive information. It is also common for actors to register new applications in Azure AD so that they can be used to conduct follow-up activities, like mass-mailing or data theft. The registration of applications in Azure AD therefore seems to be a relatively predictable threat actor behavior [3][4]. Darktrace DETECT understands that unusual application registrations in Azure AD may constitute a deviation in expected behavior, and therefore a possible indicator of account compromise.

These registrations of applications in Azure AD are evidenced by creations of, as well as assignments of permissions to, Service Principals in Azure AD. Darktrace has detected a growing trend in actors creating and assigning permissions to a Service Principal named ‘PerfectData Software’. Further investigation of this Azure AD activity revealed it to be part of an ongoing account takeover. 

‘PerfectData Software’ Activity 

Darktrace observed variations of the following pattern of activity relating to an application named ‘PerfectData Software’ within its customer base:

  1. Actor signs in to a Microsoft 365 account from an endpoint associated with a Virtual Private Server (VPS) or Virtual Private Network (VPN) service
  2. Actor registers an application called 'PerfectData Software' with Azure AD, and then grants permissions to the application
  3. Actor accesses mailbox data and creates inbox rule 

In two separate incidents, malicious actors were observed conducting their activities from endpoints associated with VPN services (HideMyAss (HMA) VPN and Surfshark VPN, respectively) and from endpoints within the Autonomous System AS396073 MAJESTIC-HOSTING-01. 

In March 2023, Darktrace observed a malicious actor signing in to a Microsoft 365 account from a Kuwait-based IP address within the Autonomous System, AS198605 AVAST Software s.r.o. This IP address is associated with the VPN service, HMA VPN. Over the next couple of days, an actor (likely the same malicious actor) signed in to the account several more times from two different Nigeria-based endpoints, as well as a VPS-related endpoint and a HMA VPN endpoint. 

During their login sessions, the actor performed a variety of actions. First, they created and assigned permissions to a Service Principal named ‘PerfectData Software’. This Service Principal creation represents the registration of an application called ‘PerfectData Software’ in Azure AD.  Although the reason for registering this application is unclear, within a few days the actor registered and granted permission to another application, ‘Newsletter Software Supermailer’, and created a new inbox rule names ‘s’ on the mailbox of the hijacked account. This inbox rule moved emails meeting certain conditions to a folder named ‘RSS Subscription. The ‘Newsletter Software Supermailer’ application was likely registered by the actor to facilitate mass-mailing activity.

Immediately after these actions, Darktrace detected the actor sending out thousands of malicious emails from the account. The emails included an attachment named ‘Credit Transfer Copy.html’, which contained a suspicious link. Further investigation revealed that the customer’s network had received several fake invoice emails prior to this initial intrusion activity. Additionally, there was an unusually high volume of failed logins to the compromised account around the time of the initial access. 

Figure 1: Advanced Search logs depicting the steps which the actor took after logging in to a user’s Microsoft 365 account.
Figure 1: Advanced Search logs depicting the steps which the actor took after logging in to a user’s Microsoft 365 account.

In a separate case also observed by Darktrace in March 2023, a malicious actor was observed signing in to a Microsoft 365 account from an endpoint within the Autonomous System, AS397086 LAYER-HOST-HOUSTON. The endpoint appears to be related to the VPN service, Surfshark VPN. This login was followed by several failed and successful logins from a VPS-related within the Autonomous System, AS396073 MAJESTIC-HOSTING-01. The actor was then seen registering and assigning permissions to an application called ‘PerfectData Software’. As with the previous example, the motives for this registration are unclear. The actor proceeded to log in several more times from a Surfshark VPN endpoint, however, they were not observed carrying out any further suspicious activity. 

Advanced Search logs depicting the steps which the actor took after logging in to a user’s Microsoft 365 account.
Figure 2: Advanced Search logs depicting the steps which the actor took after logging in to a user’s Microsoft 365 account.

It was not clear in either of these examples, nor in fact any of cases observed by Darktrace, why actors had registered and assigned permissions to an application called ‘PerfectData Software’, and there do not appear to be any open-source intelligence (OSINT) resources or online literature related to the malicious usage of an application by that name. That said, there are several websites which appear to provide email migration and data recovery/backup tools under the moniker ‘PerfectData Software’. 

It is unclear whether the use of ‘PerfectData Software’ by malicious actors observed on the networks of Darktrace customers was one of these tools. However, given the nature of the tools, it is possible that the actors intended to use them to facilitate the exfiltration of email data from compromises mailboxes.

If the legitimate software ‘PerfectData’ is the application in question in these incidents, it is likely being purchased and misused by attackers for malicious purposes. It is also possible the application referenced in the incidents is a spoof of the legitimate ‘PerfectData’ software designed to masquerade a malicious application as legitimate.

Darktrace Coverage

Cases of ‘PerfectData Software’ activity chains detected by Darktrace typically began with an actor signing into an internal user’s Microsoft 365 account from a VPN or VPS-related endpoint. These login events, along with the suspicious email and/or brute-force activity which preceded them, caused the following detection models to breach:

  • SaaS / Access / Unusual External Source for SaaS Credential Use
  • SaaS / Access / Suspicious Login Attempt
  • SaaS / Compromise / Login From Rare Following Suspicious Login Attempt(s)
  • SaaS / Email Nexus / Unusual Location for SaaS and Email Activity

Subsequent activities, including inbox rule creations, registration of applications in Azure AD, and mass-mailing activity, resulted in breaches of the following detection models.

  • SaaS / Admin / OAuth Permission Grant 
  • SaaS / Compromise / Unusual Logic Following OAuth Grant 
  • SaaS / Admin / New Application Service Principal
  • IaaS / Admin / Azure Application Administration Activities
  • SaaS / Compliance / New Email Rule
  • SaaS / Compromise / Unusual Login and New Email Rule
  • SaaS / Email Nexus / Suspicious Internal Exchange Activity
  • SaaS / Email Nexus / Possible Outbound Email Spam
  • SaaS / Compromise / Unusual Login and Outbound Email Spam
  • SaaS / Compromise / Suspicious Login and Suspicious Outbound Email(s)
DETECT Model Breaches highlighting unusual login and 'PerfectData Software' registration activity from a malicious actor
Figure 3: Detection Model Breaches highlighting unusual login and 'PerfectData Software' registration activity from a malicious actor.

In cases where Darktrace's Autonomous Response was enabled in autonomous response mode, ‘PerfectData Software’ activity chains resulted in breaches of the following Darktrace Autonomous Response models:

• Antigena / SaaS / Antigena Suspicious SaaS Activity Block

• Antigena / SaaS / Antigena Significant Compliance Activity Block

In response to these model breaches, Darktrace's Autonomous Response took immediate action, performing aggressive, inhibitive actions, such as forcing the actor to log out of the SaaS platform, and disabling the user entirely. When applied autonomously, these Autonomous Response actions would seriously impede an attacker’s progress and minimize network disruption.

Figure 4: An Autonomous Response model breach created in response to a malicious actor's registration of 'PerfectData Software'

In addition, Darktrace Cyber AI Analyst was able to autonomously investigate registrations of the ‘PerfectData Software’ application and summarized its findings into digestible reports. 

A Cyber AI Analyst Incident Event log
Figure 5: A Cyber AI Analyst Incident Event log showing AI Analyst autonomously pivoting off a breach of 'SaaS / Admin / OAuth Permission Grant' to uncover details of an account hijacking.

Growing threat of account hijackings in the remote workplace 

Due to the widespread adoption of Microsoft 365 services in the workplace and continued emphasis on a remote workforce, account hijackings now pose a more serious threat to organizations around the world than ever before. The cases discussed here illustrate the tendency of malicious actors to conduct their activities from endpoints associated with VPN services, while also registering new applications, like PerfectData Software, with malicious intent. 

While it was unclear exactly why the malicious actors were using ‘PerfectData Software’ as part of their account hijacking, it is clear that either the legitimate or spoofed version of the application is becoming an very likely emergent piece of threat actor tradecraft.

Darktrace's anomaly-based detection allowed it to recognize that the use of ‘PerfectData Software’ represented a deviation in the SaaS user’s expected behavior while Darktrace's Autonomous Response, when enabled in autonomous response mode, was able to quickly take preventative action against threat actors, blocking the potential use of the application for data exfiltration or other nefarious purposes.

[related-resource]

Appendices

MITRE ATT&CK Mapping

Reconnaissance:

T1598 ­– Phishing for Information

Credential Access:

T1110 – Brute Force

Initial Access:

T1078.004 – Valid Accounts: Cloud Accounts

Command and Control:

T1105 ­– Ingress Tool Transfer

Persistence:

T1098.003 – Account Manipulation: Additional Cloud Roles 

Collection:

• T1114 – Email Collection 

Defense Evasion:

• T1564.008 ­– Hide Artifacts: Email Hiding Rules­

Lateral Movement:

T1534 – Internal Spearphishing

Unusual Source IPs

• 5.62.60[.]202  (AS198605 AVAST Software s.r.o.) 

• 160.152.10[.]215 (AS37637 Smile-Nigeria-AS)

• 197.244.250[.]155 (AS37705 TOPNET)

• 169.159.92[.]36  (AS37122 SMILE)

• 45.62.170[.]237 (AS396073 MAJESTIC-HOSTING-01)

• 92.38.180[.]49 (AS202422 G-Core Labs S.A)

• 129.56.36[.]26 (AS327952 AS-NATCOM)

• 92.38.180[.]47 (AS202422 G-Core Labs S.A.)

• 107.179.20[.]214 (AS397086 LAYER-HOST-HOUSTON)

• 45.62.170[.]31 (AS396073 MAJESTIC-HOSTING-01)

References

[1] https://www.investing.com/academy/statistics/microsoft-facts/

[2] https://intel471.com/blog/countering-the-problem-of-credential-theft

[3] https://darktrace.com/blog/business-email-compromise-to-mass-phishing-campaign-attack-analysis

[4] https://darktrace.com/blog/breakdown-of-a-multi-account-compromise-within-office-365

Darktrace's Threat Research Report

This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dariush Onsori
Cyber Security Analyst
Written by
Sam Lister
SOC Analyst

More in this series

No items found.

Blog

/

AI

/

July 17, 2025

Introducing the AI Maturity Model for Cybersecurity

AI maturity model for cybersecurityDefault blog imageDefault blog image

AI adoption in cybersecurity: Beyond the hype

Security operations today face a paradox. On one hand, artificial intelligence (AI) promises sweeping transformation from automating routine tasks to augmenting threat detection and response. On the other hand, security leaders are under immense pressure to separate meaningful innovation from vendor hype.

To help CISOs and security teams navigate this landscape, we’ve developed the most in-depth and actionable AI Maturity Model in the industry. Built in collaboration with AI and cybersecurity experts, this framework provides a structured path to understanding, measuring, and advancing AI adoption across the security lifecycle.

Overview of AI maturity levels in cybersecurity

Why a maturity model? And why now?

In our conversations and research with security leaders, a recurring theme has emerged:

There’s no shortage of AI solutions, but there is a shortage of clarity and understanding of AI uses cases.

In fact, Gartner estimates that “by 2027, over 40% of Agentic AI projects will be canceled due to escalating costs, unclear business value, or inadequate risk controls. Teams are experimenting, but many aren’t seeing meaningful outcomes. The need for a standardized way to evaluate progress and make informed investments has never been greater.

That’s why we created the AI Security Maturity Model, a strategic framework that:

  • Defines five clear levels of AI maturity, from manual processes (L0) to full AI Delegation (L4)
  • Delineating the outcomes derived between Agentic GenAI and Specialized AI Agent Systems
  • Applies across core functions such as risk management, threat detection, alert triage, and incident response
  • Links AI maturity to real-world outcomes like reduced risk, improved efficiency, and scalable operations

[related-resource]

How is maturity assessed in this model?

The AI Maturity Model for Cybersecurity is grounded in operational insights from nearly 10,000 global deployments of Darktrace's Self-Learning AI and Cyber AI Analyst. Rather than relying on abstract theory or vendor benchmarks, the model reflects what security teams are actually doing, where AI is being adopted, how it's being used, and what outcomes it’s delivering.

This real-world foundation allows the model to offer a practical, experience-based view of AI maturity. It helps teams assess their current state and identify realistic next steps based on how organizations like theirs are evolving.

Why Darktrace?

AI has been central to Darktrace’s mission since its inception in 2013, not just as a feature, but the foundation. With over a decade of experience building and deploying AI in real-world security environments, we’ve learned where it works, where it doesn’t, and how to get the most value from it. This model reflects that insight, helping security leaders find the right path forward for their people, processes, and tools

Security teams today are asking big, important questions:

  • What should we actually use AI for?
  • How are other teams using it — and what’s working?
  • What are vendors offering, and what’s just hype?
  • Will AI ever replace people in the SOC?

These questions are valid, and they’re not always easy to answer. That’s why we created this model: to help security leaders move past buzzwords and build a clear, realistic plan for applying AI across the SOC.

The structure: From experimentation to autonomy

The model outlines five levels of maturity :

L0 – Manual Operations: Processes are mostly manual with limited automation of some tasks.

L1 – Automation Rules: Manually maintained or externally-sourced automation rules and logic are used wherever possible.

L2 – AI Assistance: AI assists research but is not trusted to make good decisions. This includes GenAI agents requiring manual oversight for errors.

L3 – AI Collaboration: Specialized cybersecurity AI agent systems  with business technology context are trusted with specific tasks and decisions. GenAI has limited uses where errors are acceptable.

L4 – AI Delegation: Specialized AI agent systems with far wider business operations and impact context perform most cybersecurity tasks and decisions independently, with only high-level oversight needed.

Each level reflects a shift, not only in technology, but in people and processes. As AI matures, analysts evolve from executors to strategic overseers.

Strategic benefits for security leaders

The maturity model isn’t just about technology adoption it’s about aligning AI investments with measurable operational outcomes. Here’s what it enables:

SOC fatigue is real, and AI can help

Most teams still struggle with alert volume, investigation delays, and reactive processes. AI adoption is inconsistent and often siloed. When integrated well, AI can make a meaningful difference in making security teams more effective

GenAI is error prone, requiring strong human oversight

While there is a lot of hype around GenAI agentic systems, teams will need to account for inaccuracy and hallucination in Agentic GenAI systems.

AI’s real value lies in progression

The biggest gains don’t come from isolated use cases, but from integrating AI across the lifecycle, from preparation through detection to containment and recovery.

Trust and oversight are key initially but evolves in later levels

Early-stage adoption keeps humans fully in control. By L3 and L4, AI systems act independently within defined bounds, freeing humans for strategic oversight.

People’s roles shift meaningfully

As AI matures, analyst roles consolidate and elevate from labor intensive task execution to high-value decision-making, focusing on critical, high business impact activities, improving processes and AI governance.

Outcome, not hype, defines maturity

AI maturity isn’t about tech presence, it’s about measurable impact on risk reduction, response time, and operational resilience.

[related-resource]

Outcomes across the AI Security Maturity Model

The Security Organization experiences an evolution of cybersecurity outcomes as teams progress from manual operations to AI delegation. Each level represents a step-change in efficiency, accuracy, and strategic value.

L0 – Manual Operations

At this stage, analysts manually handle triage, investigation, patching, and reporting manually using basic, non-automated tools. The result is reactive, labor-intensive operations where most alerts go uninvestigated and risk management remains inconsistent.

L1 – Automation Rules

At this stage, analysts manage rule-based automation tools like SOAR and XDR, which offer some efficiency gains but still require constant tuning. Operations remain constrained by human bandwidth and predefined workflows.

L2 – AI Assistance

At this stage, AI assists with research, summarization, and triage, reducing analyst workload but requiring close oversight due to potential errors. Detection improves, but trust in autonomous decision-making remains limited.

L3 – AI Collaboration

At this stage, AI performs full investigations and recommends actions, while analysts focus on high-risk decisions and refining detection strategies. Purpose-built agentic AI systems with business context are trusted with specific tasks, improving precision and prioritization.

L4 – AI Delegation

At this stage, Specialized AI Agent Systems performs most security tasks independently at machine speed, while human teams provide high-level strategic oversight. This means the highest time and effort commitment activities by the human security team is focused on proactive activities while AI handles routine cybersecurity tasks

Specialized AI Agent Systems operate with deep business context including impact context to drive fast, effective decisions.

Join the webinar

Get a look at the minds shaping this model by joining our upcoming webinar using this link. We’ll walk through real use cases, share lessons learned from the field, and show how security teams are navigating the path to operational AI safely, strategically, and successfully.

Continue reading
About the author
Ashanka Iddya
Senior Director, Product Marketing

Blog

/

Cloud

/

July 17, 2025

Forensics or Fauxrensics: Five Core Capabilities for Cloud Forensics and Incident Response

people working and walking in officeDefault blog imageDefault blog image

The speed and scale at which new cloud resources can be spun up has resulted in uncontrolled deployments, misconfigurations, and security risks. It has had security teams racing to secure their business’ rapid migration from traditional on-premises environments to the cloud.

While many organizations have successfully extended their prevention and detection capabilities to the cloud, they are now experiencing another major gap: forensics and incident response.

Once something bad has been identified, understanding its true scope and impact is nearly impossible at times. The proliferation of cloud resources across a multitude of cloud providers, and the addition of container and serverless capabilities all add to the complexities. It’s clear that organizations need a better way to manage cloud incident response.

Security teams are looking to move past their homegrown solutions and open-source tools to incorporate real cloud forensics capabilities. However, with the increased buzz around cloud forensics, it can be challenging to decipher what is real cloud forensics, and what is “fauxrensics.”

This blog covers the five core capabilities that security teams should consider when evaluating a cloud forensics and incident response solution.

[related-resource]

1. Depth of data

There have been many conversations among the security community about whether cloud forensics is just log analysis. The reality, however, is that cloud forensics necessitates access to a robust dataset that extends far beyond traditional log data sources.

While logs provide valuable insights, a forensics investigation demands a deeper understanding derived from multiple data sources, including disk, network, and memory, within the cloud infrastructure. Full disk analysis complements log analysis, offering crucial context for identifying the root cause and scope of an incident.

For instance, when investigating an incident involving a Kubernetes cluster running on an EC2 instance, access to bash history can provide insights into the commands executed by attackers on the affected instance, which would not be available through cloud logs alone.

Having all of the evidence in one place is also a capability that can significantly streamline investigations, unifying your evidence be it disk images, memory captures or cloud logs, into a single timeline allowing security teams to reconstruct an attacks origin, path and impact far more easily. Multi–cloud environments also require platforms that can support aggregating data from many providers and services into one place. Doing this enables more holistic investigations and reduces security blind spots.

There is also the importance of collecting data from ephemeral resources in modern cloud and containerized environments. Critical evidence can be lost in seconds as resources are constantly spinning up and down, so having the ability to capture this data before its gone can be a huge advantage to security teams, rather than having to figure out what happened after the affected service is long gone.

darktrace / cloud, cado, cloud logs, ost, and memory information. value of cloud combined analysis

2. Chain of custody

Chain of custody is extremely critical in the context of legal proceedings and is an essential component of forensics and incident response. However, chain of custody in the cloud can be extremely complex with the number of people who have access and the rise of multi-cloud environments.

In the cloud, maintaining a reliable chain of custody becomes even more complex than it already is, due to having to account for multiple access points, service providers and third parties. Having automated evidence tracking is a must. It means that all actions are logged, from collection to storage to access. Automation also minimizes the chance of human error, reducing the risk of mistakes or gaps in evidence handling, especially in high pressure fast moving investigations.

The ability to preserve unaltered copies of forensic evidence in a secure manner is required to ensure integrity throughout an investigation. It is not just a technical concern, its a legal one, ensuring that your evidence handling is documented and time stamped allows it to stand up to court or regulatory review.

Real cloud forensics platforms should autonomously handle chain of custody in the background, recording and safeguarding evidence without human intervention.

3. Automated collection and isolation

When malicious activity is detected, the speed at which security teams can determine root cause and scope is essential to reducing Mean Time to Response (MTTR).

Automated forensic data collection and system isolation ensures that evidence is collected and compromised resources are isolated at the first sign of malicious activity. This can often be before an attacker has had the change to move latterly or cover their tracks. This enables security teams to prevent potential damage and spread while a deeper-dive forensics investigation takes place. This method also ensures critical incident evidence residing in ephemeral environments is preserved in the event it is needed for an investigation. This evidence may only exist for minutes, leaving no time for a human analyst to capture it.

Cloud forensics and incident response platforms should offer the ability to natively integrate with incident detection and alerting systems and/or built-in product automation rules to trigger evidence capture and resource isolation.

4. Ease of use

Security teams shouldn’t require deep cloud or incident response knowledge to perform forensic investigations of cloud resources. They already have enough on their plates.

While traditional forensics tools and approaches have made investigation and response extremely tedious and complex, modern forensics platforms prioritize usability at their core, and leverage automation to drastically simplify the end-to-end incident response process, even when an incident spans multiple Cloud Service Providers (CSPs).

Useability is a core requirement for any modern forensics platform. Security teams should not need to have indepth knowledge of every system and resource in a given estate. Workflows, automation and guidance should make it possible for an analyst to investigate whatever resource they need to.

Unifying the workflow across multiple clouds can also save security teams a huge amount of time and resources. Investigations can often span multiple CSP’s. A good security platform should provide a single place to search, correlate and analyze evidence across all environments.

Offering features such as cross cloud support, data enrichment, a single timeline view, saved search, and faceted search can help advanced analysts achieve greater efficiency, and novice analysts are able to participate in more complex investigations.

5. Incident preparedness

Incident response shouldn't just be reactive. Modern security teams need to regularly test their ability to acquire new evidence, triage assets and respond to threats across both new and existing resources, ensuring readiness even in the rapidly changing environments of the cloud.  Having the ability to continuously assess your incident response and forensics workflows enables you to rapidly improve your processes and identify and mitigate any gaps identified that could prevent the organization from being able to effectively respond to potential threats.

Real forensics platforms deliver features that enable security teams to prepare extensively and understand their shortcomings before they are in the heat of an incident. For example, cloud forensics platforms can provide the ability to:

  • Run readiness checks and see readiness trends over time
  • Identify and mitigate issues that could prevent rapid investigation and response
  • Ensure the correct logging, management agents, and other cloud-native tools are appropriately configured and operational
  • Ensure that data gathered during an investigation can be decrypted
  • Verify that permissions are aligned with best practices and are capable of supporting incident response efforts

Cloud forensics with Darktrace

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage. Darktrace / CLOUD is a real time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

[related-resource]

Continue reading
About the author
Calum Hall
Technical Content Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI