Blog
/
Network
/
May 23, 2023

Darktrace’s Detection of a Hive Ransomware-as-Service

This blog investigates a new strain of ransomware, Hive, a ransomware-as-a-service. Darktrace was able to provide full visibility over the attacks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
May 2023

Update: On January 26, 2023, the Hive ransomware group was dismantled and servers associated with the sale of the ransomware were taken offline following an investigation by the FBI, German law enforcement and the National Crime Agency (NCA). The activity detailed in this blog took place in 2022, whilst the group was still active.

RaaS in Cyber Security

The threat of ransomware continues to be a constant concern for security teams across the cyber threat landscape. With the growing popularity of Ransomware-as-a-Service (RaaS), it is becoming more and more accessible for even inexperienced would-be attackers. As a result of this low barrier to entry, the volume of ransomware attacks is expected to increase significantly.

What’s more, RaaS is a highly tailorable market in which buyers can choose from varied kits and features to use in their ransomware deployments meaning attacks will rarely behave the same. To effectively detect and safeguard against these differentiations, it is crucial to implement security measures that put the emphasis on detecting anomalies and focusing on deviations in expected behavior, rather than relying on depreciated indicators of compromise (IoC) lists or playbooks that focus on attack chains unable to keep pace with the increasing speed of ransomware evolution.

In early 2022, Darktrace DETECT/Network™ identified several instances of Hive ransomware on the networks of multiple customers. Using its anomaly-based detection, Darktrace was able to successfully detect the attacks and multiple stages of the kill chain, including command and control (C2) activity, lateral movement, data exfiltration, and ultimately data encryption and the writing of ransom notes.

Hive Ransomware 

Hive ransomware is a relatively new strain that was first observed in the wild in June 2021. It is known to target a variety of industries including healthcare, energy providers, and retailers, and has reportedly attacked over 1,500 organizations, collecting more than USD 100m in ransom payments [1].

Hive is distributed via a RaaS model where its developers update and maintain the code, in return for a percentage of the eventual ransom payment, while users (or affiliates) are given the tools to carry out attacks using a highly sophisticated and complex malware they would otherwise be unable to use. Hive uses typical tactics, techniques and procedures (TTPs) associated with ransomware, though they do vary depending on the Hive affiliate carrying out the attack.

In most cases a double extortion attack is carried out, whereby data is first exfiltrated and then encrypted before a ransom demand is made. This gives attackers extra leverage as victims are at risk of having their sensitive data leaked to the public on websites such as the ‘HiveLeaks’ TOR website.

Attack Timeline

Owing to the highly customizable nature of RaaS, the tactics and methods employed by Hive actors are expected to differ on a case-by-case basis. Nonetheless in the majority of Hive ransomware incidents identified on Darktrace customer environments, Darktrace DETECT observed the following general attack stages and features. This is possibly indicative of the attacks originating from the same threat actor(s) or from a widely sold batch with a particular configuration to a variety of actors.

Figure 1: A typical timeline of a Hive attack observed by Darktrace.

Initial Access 

Although Hive actors are known to gain initial access to networks through multiple different vectors, the two primary methods reported by security researchers are the exploitation of Microsoft Exchange vulnerabilities, or the distribution of phishing emails with malicious attachments [2][3].

In the early stages of one Hive ransomware attack observed on the network of a Darktrace customer, for example, Darktrace detected a device connecting to the rare external location 23.81.246[.]84, with a PowerShell user agent via HTTP. During this connection, the device attempted to download an executable file named “file.exe”. It is possible that the file was initially accessed and delivered via a phishing email; however, as Darktrace/Email was not enabled at the time of the attack, this was outside of Darktrace’s purview. Fortunately, the connection failed the proxy authentication was thus blocked as seen in the packet capture (PCAP) in Figure 2. 

Shortly after this attempted download, the same device started to receive a high volume of incoming SSL connections from a rare external endpoint, namely 146.70.87[.]132. Darktrace logged that this endpoint was using an SSL certificate signed by Go Daddy CA, an easily obtainable and accessible SSL certificate, and that the increase in incoming SSL connections from this endpoint was unusual behavior for this device. 

It is likely that this highly anomalous activity detected by Darktrace indicates when the ransomware attack began, likely initial payload download.  

Darktrace DETECT models:

  • Anomalous Connection / Powershell to Rare External
  • Anomalous Server Activity / New Internet Facing System
Figure 2: PCAP of the HTTP connection to the rare endpoint 23.81.246[.]84 showing the failed proxy authentication.

C2 Beaconing 

Following the successful initial access, Hive actors begin to establish their C2 infrastructure on infected networks through numerous connections to C2 servers, and the download of additional stagers. 

On customer networks infected by Hive ransomware, Darktrace identified devices initiating a high volume of connections to multiple rare endpoints. This very likely represented C2 beaconing to the attacker’s infrastructure. In one particular example, further open-source intelligence (OSINT) investigation revealed that these endpoints were associated with Cobalt Strike.

Darktrace DETECT models:

  • Anomalous Connection / Multiple Connections to New External TCP
  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Suspicious HTTP Beacons to Dotted Quad 
  • Compromise / SSL or HTTP Beacon
  • Device / Lateral Movement and C2 Activity

Internal Reconnaissance, Lateral Movement and Privilege Escalation

After C2 infrastructure has been established, Hive actors typically begin to uninstall antivirus products in an attempt to remain undetected on the network [3]. They also perform internal reconnaissance to look for vulnerabilities and open channels and attempt to move laterally throughout the network.

Amid the C2 connections, Darktrace was able to detect network scanning activity associated with the attack when a device on one customer network was observed initiating an unusually high volume of connections to other internal devices. A critical network device was also seen writing an executable file “mimikatz.exe” via SMB which appears to be the Mimikatz attack tool commonly used for credential harvesting. 

There were also several detections of lateral movement attempts via RDP and DCE-RPC where the attackers successfully authenticated using an “Administrator” credential. In one instance, a device was also observed performing ITaskScheduler activity. This service is used to remotely control tasks running on machines and is commonly observed as part of malicious lateral movement activity. Darktrace DETECT understood that the above activity represented a deviation from the devices’ normal pattern of behavior and the following models were breached:

Darktrace DETECT models:

  • Anomalous Connection / Anomalous DRSGetNCChanges Operation
  • Anomalous Connection / New or Uncommon Service Control
  • Anomalous Connection / Unusual Admin RDP Session
  • Anomalous Connection / Unusual SMB Version 1 Connectivity
  • Compliance / SMB Drive Write
  • Device / Anomalous ITaskScheduler Activity
  • Device / Attack and Recon Tools
  • Device / Attack and Recon Tools In SMB
  • Device / EXE Files Distributed to Multiple Devices
  • Device / Suspicious Network Scan Activity
  • Device / Increase in New RPC Services
  • User / New Admin Credentials on Server

Data Exfiltration

At this stage of the attack, Hive actors have been known to carry out data exfiltration activity on infected networks using a variety of different methods. The Cybersecurity & Infrastructure Security Agency (CISA) reported that “Hive actors exfiltrate data likely using a combination of Rclone and the cloud storage service Mega[.]nz” [4]. Darktrace DETECT identified an example of this when a device on one customer network was observed making HTTP connections to endpoints related to Mega, including “w.apa.mega.co[.]nz”, with the user agent “rclone/v1.57.0” with at least 3 GiB of data being transferred externally (Figure 3). The same device was also observed transferring at least 3.6 GiB of data via SSL to the rare external IP, 158.51.85[.]157.

Figure 3: A summary of a device’s external connections to multiple endpoints and the respective amounts of data exfiltrated to Mega storage endpoints.

In another case, a device was observed uploading over 16 GiB of data to a rare external endpoint 93.115.27[.]71 over SSH. The endpoint in question was seen in earlier beaconing activity suggesting that this was likely an exfiltration event. 

However, Hive ransomware, like any other RaaS kit, can differ greatly in its techniques and features, and it is important to note that data exfiltration may not always be present in a Hive ransomware attack. In one incident detected by Darktrace, there were no signs of any data leaving the customer environment, indicating data exfiltration was not part of the Hive actor’s objectives.

Darktrace DETECT models:

  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Lots of New Connections
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname
  • Anomalous Connection / Suspicious Self-Signed SSL
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Device / New User Agent and New IP
  • Unusual Activity / Unusual External Data to New Endpoints
  • Unusual Activity / Unusual External Data Transfer
  • Unusual Activity / Enhanced Unusual External Data Transfer

Ransomware Deployment

In the final stage of a typical Hive ransomware attack, the ransomware payload is deployed and begins to encrypt files on infected devices. On one customer network, Darktrace detected several devices connecting to domain controllers (DC) to read a file named “xxx.exe”. Several sources have linked this file name with the Hive ransomware payload [5].

In another example, Darktrace DETECT observed multiple devices downloading the executable files “nua64.exe” and “nua64.dll” from a rare external location, 194.156.90[.]25. OSINT investigation revealed that the files are associated with Hive ransomware.

Figure 4: Security vendor analysis of the malicious file hash [6] associated with Hive ransomware. 

Shortly after the download of this executable, multiple devices were observed performing an unusual amount of file encryption, appending randomly generated strings of characters to file extensions. 

Although it has been reported that earlier versions of Hive ransomware encrypted files with a “.hive” extension [7], Darktrace observed across multiple customers that encrypted files had extensions that were partially-randomized, but consistently 20 characters long, matching the regular expression “[a-zA-Z0-9\-\_]{8}[\-\_]{1}[A-Za-z0-9\-\_]{11}”.

Figure 5: Device Event Log showing SMB reads and writes of encrypted files with a randomly generated extension of 20 characters. 

Following the successful encryption of files, Hive proceeds to drop a ransom note, named “HOW_TO_DECRYPT.txt”, into each affected directory. Typically, the ransom note will contain a link to Hive’s “sales department” and, in the event that exfiltration took place, a link to the “HiveLeaks” site, where attackers threaten to publish exfiltrated data if their demands are not met (Figure 6).  In cases of Hive ransomware detected by Darktrace, multiple devices were observed attempting to contact “HiveLeaks” TOR domains, suggesting that endpoint users had followed links provided to them in ransom notes.

Figure 6: Sample of a Hive ransom note [4].

Examples of file extensions:

  • 36C-AT9-_wm82GvBoCPC
  • 36C-AT9--y6Z1G-RFHDT
  • 36C-AT9-_x2x7FctFJ_q
  • 36C-AT9-_zK16HRC3QiL
  • 8KAIgoDP-wkQ5gnYGhrd
  • kPemi_iF_11GRoa9vb29
  • kPemi_iF_0RERIS1m7x8
  • kPemi_iF_7u7e5zp6enp
  • kPemi_iF_y4u7pB3d3f3
  • U-9Xb0-k__T0U9NJPz-_
  • U-9Xb0-k_6SkA8Njo5pa
  • zm4RoSR1_5HMd_r4a5a9 

Darktrace DETECT models:

  • Anomalous Connection / SMB Enumeration
  • Anomalous Connection / Sustained MIME Type Conversion
  • Anomalous Connection / Unusual Admin SMB Session
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Compliance / SMB Drive Write
  • Compromise / Ransomware / Suspicious SMB Activity
  • Compromise / Ransomware / Ransom or Offensive Words Written to SMB
  • Compromise / Ransomware / Possible Ransom Note Write
  • Compromise / High Priority Tor2Web
  • Compromise / Tor2Web
  • Device / EXE Files Distributed to Multiple Devices

Conclusion

As Hive ransomware attacks are carried out by different affiliates using varying deployment kits, the tactics employed tend to vary and new IoCs are regularly identified. Furthermore, in 2022 a new variant of Hive was written using the Rust programming language. This represented a major upgrade to Hive, improving its defense evasion techniques and making it even harder to detect [8]. 

Hive is just one of many RaaS offerings currently on the market, and this market is only expected to grow in usage and diversity of presentations.  As ransomware becomes more accessible and easier to deploy it is essential for organizations to adopt efficient security measures to identify ransomware at the earliest possible stage. 

Darktrace DETECT’s Self-Learning AI understands customer networks and learns the expected patterns of behavior across an organization’s digital estate. Using its anomaly-based detection Darktrace is able to identify emerging threats through the detection of unusual or unexpected behavior, without relying on rules and signatures, or known IoCs. 

Credit to: Emily Megan Lim, Cyber Analyst, Hyeongyung Yeom, Senior Cyber Analyst & Analyst Team Lead.

Appendices

MITRE AT&CK Mapping

Reconnaissance

T1595.001 – Scanning IP Blocks

T1595.002 – Vulnerability Scanning

Resource Development

T1583.006 – Web Services

Initial Access

T1078 – Valid Accounts

T1190 – Exploit Public-Facing Application

T1200 – Hardware Additions

Execution

T1053.005 – Scheduled Task

T1059.001 – PowerShell

Persistence/Privilege Escalation

T1053.005 – Scheduled Task

T1078 – Valid Accounts

Defense Evasion

T1078 – Valid Accounts

T1207 – Rogue Domain Controller

T1550.002 – Pass the Hash

Discovery

T1018 – Remote System Discovery

T1046 – Network Service Discovery

T1083 – File and Directory Discovery

T1135 – Network Share Discovery

Lateral Movement

T1021.001 – Remote Desktop Protocol

T1021.002 – SMB/Windows Admin Shares

T1021.003 – Distributed Component Object Model

T1080 – Taint Shared Content

T1210 – Exploitation of Remote Services

T1550.002 – Pass the Hash

T1570 – Lateral Tool Transfer

Collection

T1185 – Man in the Browser

Command and Control

T1001 – Data Obfuscation

T1071 – Application Layer Protocol

T1071.001 – Web Protocols

T1090.003 – Multi-hop proxy

T1095 – Non-Application Layer Protocol

T1102.003 – One-Way Communication

T1571 – Non-Standard Port

Exfiltration

T1041 – Exfiltration Over C2 Channel

T1567.002 – Exfiltration to Cloud Storage

Impact

T1486 – Data Encrypted for Impact

T1489 – Service Stop

List of IoCs 

23.81.246[.]84 - IP Address - Likely Malicious File Download Endpoint

146.70.87[.]132 - IP Address - Possible Ransomware Endpoint

5.199.162[.]220 - IP Address - C2 Endpoint

23.227.178[.]65 - IP Address - C2 Endpoint

46.166.161[.]68 - IP Address - C2 Endpoint

46.166.161[.]93 - IP Address - C2 Endpoint

93.115.25[.]139 - IP Address - C2 Endpoint

185.150.1117[.]189 - IP Address - C2 Endpoint

192.53.123[.]202 - IP Address - C2 Endpoint

209.133.223[.]164 - IP Address - Likely C2 Endpoint

cltrixworkspace1[.]com - Domain - C2 Endpoint

vpnupdaters[.]com - Domain - C2 Endpoint

93.115.27[.]71 - IP Address - Possible Exfiltration Endpoint

158.51.85[.]157 - IP Address - Possible Exfiltration Endpoint

w.api.mega.co[.]nz - Domain - Possible Exfiltration Endpoint

*.userstorage.mega.co[.]nz - Domain - Possible Exfiltration Endpoint

741cc67d2e75b6048e96db9d9e2e78bb9a327e87 - SHA1 Hash - Hive Ransomware File

2f9da37641b204ef2645661df9f075005e2295a5 - SHA1 Hash - Likely Hive Ransomware File

hiveleakdbtnp76ulyhi52eag6c6tyc3xw7ez7iqy6wc34gd2nekazyd[.]onion - TOR Domain - Likely Hive Endpoint

References

[1] https://www.justice.gov/opa/pr/us-department-justice-disrupts-hive-ransomware-variant

[2] https://www.varonis.com/blog/hive-ransomware-analysis

[3] https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-hive 

[4]https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-321a

[5] https://www.trendmicro.com/en_us/research/22/c/nokoyawa-ransomware-possibly-related-to-hive-.html

[6] https://www.virustotal.com/gui/file/60f6a63e366e6729e97949622abd9de6d7988bba66f85a4ac8a52f99d3cb4764/detection

[7] https://heimdalsecurity.com/blog/what-is-hive-ransomware/

[8] https://www.microsoft.com/en-us/security/blog/2022/07/05/hive-ransomware-gets-upgrades-in-rust/ 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst

More in this series

No items found.

Blog

/

Cloud

/

January 14, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Cloud

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI