Blog
/
/
September 23, 2020

Detecting OT Threats: ICS Attack at International Airport

Learn how Darktrace's OT Threat Detection technology identified a sophisticated ICS attack on an international airport. Read more on Darktrace's blog.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
Sep 2020

As Industrial Control Systems (ICS) and traditional IT networks converge, the number of cyber-attacks that start in the corporate network before spreading to operational technology has increased dramatically in the last 12 months. From North Korean hackers targeting a nuclear power plant in India to ransomware shutting down operations at a US gas facility, and across Honda’s manufacturing sites, 2020 has been the year OT attacks have become mainstream.

Darktrace recently detected a simulation of a state-of-the-art attack at an international airport, identifying ICS reconnaissance, lateral movement, vulnerability scanning and protocol fuzzing – a technique in which the attacker sends nonsensical commands over an ICS communication channel in order to confuse the target device, causing it to fail or reboot.

Darktrace’s Industrial Immune System detected every stage of the sophisticated attack, using AI-powered anomaly detection to identify ICS attack vectors without a list of known exploits, company assets, or firmware versions. The attacker leveraged tools at every stage of the ICS kill chain, including ICS-specific attack techniques.

Any unusual attempts to read or reprogram single coils, objects, or other data blocks were detected by Cyber AI, and Darktrace’s Cyber AI Analyst also automatically identified the activity and created summary reports detailing the key actions taken.

The attack spanned multiple days and targeted the Building Management System (BMS) and the Baggage Reclaim network, with attackers utilizing two common ICS protocols (BacNet and S7Comm) and leveraging legitimate tools (such as ICS reprogramming commands and connections through SMB service pipes) to evade traditional, signature-based security tools.

Attack details

Figure 1: Timeline of the attack

In the first stage of the attack, a new device was introduced to the network, using ARP spoofing to evade detection from traditional security tools. At 11.40am, the attacker scanned a target device and attempted to bruteforce open services. Once the target device had been hijacked, the attacker then sought to establish an external connection to the Internet. External connections should not be possible in ICS networks, but attackers often seek to bypass firewalls and network segregation rules in order to create a command and control (C2) channel.

Figure 2: Darktrace Threat Tray 15 minutes after the pentest commenced. High level model breaches have already alerted the analyst team to the attack device.

The hijacked device then began performing ICS reconnaissance using Discover and Read commands. Darktrace identified new objects and data blocks being targeted as part of this reconnaissance, and detected ICS devices targeted with unusual BacNet and Siemens S7Comm protocol commands.

Figure 3: Model alerts associated with ICS reconnaissance over BacNet. Machine learning at the ICS command level detected new and unusual BacNet objects being targeted by the attacker.

The attacker enumerated through multiple ICS devices in order to perform lateral movement throughout the ICS system. Once they had learned device settings and configurations, they used ICS Reprogram and Write commands to reconfigure machines. The attacker attempted to use known vulnerabilities to exploit the target devices, such as the use of SMB, SMBv1, HTTP, RDP, and ICS protocol fuzzing.

Figure 4: Visualization of the device enumeration performed by the attacker against multiple ICS controllers. The attacker used ICS Discover commands as part of the initial reconnaissance.

The attacker took deliberate actions to evade the airport’s cyber security stack, including making connections using ICS protocols commonly used on the network to devices which commonly use those protocols. While legacy security tools failed to pick up on this activity, Darktrace’s deep packet inspection was able to identify unusual commands used by the attacker within those ‘normal’ connections.

The attacker used ARP spoofing to slow any investigation using asset management-based security tools – including two other solutions being trialed by the airport at the time of the attack. They also used multiple devices throughout the intrusion to throw defense teams off the scent.

Darktrace’s AI technology also launched an automated investigation into the incident. The Cyber AI Analyst identified all of the attack devices and produced summary reports for each, showcasing its ability to not only save crucial time for security teams, but bridge the skills gap between IT teams and ICS engineers.

Figure 5: The Cyber AI Analyst threat tray at the end of day 1. Both devices used by the attacker have been identified.

The Cyber AI Analyst immediately began investigating after the first model breach, and continued to stitch together disparate events across the network to produce a natural language summary of the incident, including recommendations for action.

Figure 6: AIA incident summary at the end of day 2, detailing the use of SMB exploits as part of the attack chain against one of the ICS devices.

Potential ramifications

Had the attack been allowed to continue, the attackers – potentially activist groups, terrorist organizations, and organized criminals – could have caused significant operational disruption to the airport. For example, the BMS is likely to manage temperature settings, the sprinkler system, fire alarms and fire exits, lighting, and doors in and out of secure access areas. Meddling with any one of these could cause severe disruption at an airport, with significant financial and reputational effects. Similarly, access to baggage reclaim networks could be used by criminals seeking to smuggle illegal goods or steal valuable cargo.

This simulation showcases the possibilities for an advanced cyber-criminal looking to compromise integrated IT and OT networks. The majority of leading ICS ‘security’ vendors are signature-based, and fail to pick up on novel techniques and utilization of common protocols to pursue malicious ends – this is why ICS attacks have continued to hit the headlines this year.

The incident showcases the extent of Cyber AI’s detections in a real-world ICS environment, and the level of detail Darktrace can provide following an attack. As Industrial Control Systems become increasingly integrated with the wider IT network, the importance of securing these critical systems is paramount. Darktrace provides a unified security umbrella with visibility and detection across the entire digital environment.

Thanks to Darktrace analyst Oakley Cox for his insights on the above investigation.

Learn more about the Industrial Immune System

Darktrace model detections:

  • ICS / Unusual ICS Commands
  • ICS / Multiple New Reprograms
  • ICS / Multiple New Discover Commands
  • ICS / Rare External from OT Device
  • ICS / Uncommon ICS Protocol Warning
  • ICS / Multiple Failed Connections to ICS Device
  • ICS / Anomalous IT to ICS Connection
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO

More in this series

No items found.

Blog

/

/

February 13, 2026

CVE-2026-1731: How Darktrace Sees the BeyondTrust Exploitation Wave Unfolding

Default blog imageDefault blog image

Note: Darktrace's Threat Research team is publishing now to help defenders. We will update continue updating this blog as our investigations unfold.

Background

On February 6, 2026, the Identity & Access Management solution BeyondTrust announced patches for a vulnerability, CVE-2026-1731, which enables unauthenticated remote code execution using specially crafted requests.  This vulnerability affects BeyondTrust Remote Support (RS) and particular older versions of Privileged Remote Access (PRA) [1].

A Proof of Concept (PoC) exploit for this vulnerability was released publicly on February 10, and open-source intelligence (OSINT) reported exploitation attempts within 24 hours [2].

Previous intrusions against Beyond Trust technology have been cited as being affiliated with nation-state attacks, including a 2024 breach targeting the U.S. Treasury Department. This incident led to subsequent emergency directives from  the Cybersecurity and Infrastructure Security Agency (CISA) and later showed attackers had chained previously unknown vulnerabilities to achieve their goals [3].

Additionally, there appears to be infrastructure overlap with React2Shell mass exploitation previously observed by Darktrace, with command-and-control (C2) domain  avg.domaininfo[.]top seen in potential post-exploitation activity for BeyondTrust, as well as in a React2Shell exploitation case involving possible EtherRAT deployment.

Darktrace Detections

Darktrace’s Threat Research team has identified highly anomalous activity across several customers that may relate to exploitation of BeyondTrust since February 10, 2026. Observed activities include:

-              Outbound connections and DNS requests for endpoints associated with Out-of-Band Application Security Testing; these services are commonly abused by threat actors for exploit validation.  Associated Darktrace models include:

o    Compromise / Possible Tunnelling to Bin Services

-              Suspicious executable file downloads. Associated Darktrace models include:

o    Anomalous File / EXE from Rare External Location

-              Outbound beaconing to rare domains. Associated Darktrace models include:

o   Compromise / Agent Beacon (Medium Period)

o   Compromise / Agent Beacon (Long Period)

o   Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

o   Compromise / Beacon to Young Endpoint

o   Anomalous Server Activity / Rare External from Server

o   Compromise / SSL Beaconing to Rare Destination

-              Unusual cryptocurrency mining activity. Associated Darktrace models include:

o   Compromise / Monero Mining

o   Compromise / High Priority Crypto Currency Mining

And model alerts for:

o    Compromise / Rare Domain Pointing to Internal IP

IT Defenders: As part of best practices, we highly recommend employing an automated containment solution in your environment. For Darktrace customers, please ensure that Autonomous Response is configured correctly. More guidance regarding this activity and suggested actions can be found in the Darktrace Customer Portal.  

Appendices

Potential indicators of post-exploitation behavior:

·      217.76.57[.]78 – IP address - Likely C2 server

·      hXXp://217.76.57[.]78:8009/index.js - URL -  Likely payload

·      b6a15e1f2f3e1f651a5ad4a18ce39d411d385ac7  - SHA1 - Likely payload

·      195.154.119[.]194 – IP address – Likely C2 server

·      hXXp://195.154.119[.]194/index.js - URL – Likely payload

·      avg.domaininfo[.]top – Hostname – Likely C2 server

·      104.234.174[.]5 – IP address - Possible C2 server

·      35da45aeca4701764eb49185b11ef23432f7162a – SHA1 – Possible payload

·      hXXp://134.122.13[.]34:8979/c - URL – Possible payload

·      134.122.13[.]34 – IP address – Possible C2 server

·      28df16894a6732919c650cc5a3de94e434a81d80 - SHA1 - Possible payload

References:

1.        https://nvd.nist.gov/vuln/detail/CVE-2026-1731

2.        https://www.securityweek.com/beyondtrust-vulnerability-targeted-by-hackers-within-24-hours-of-poc-release/

3.        https://www.rapid7.com/blog/post/etr-cve-2026-1731-critical-unauthenticated-remote-code-execution-rce-beyondtrust-remote-support-rs-privileged-remote-access-pra/

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

AI

/

February 13, 2026

How AI is redefining cybersecurity and the role of today’s CIO

Default blog imageDefault blog image

Why AI is essential to modern security

As attackers use automation and AI to outpace traditional tools and people, our approach to cybersecurity must fundamentally change. That’s why one of my first priorities as Withum's CIO was to elevate cybersecurity from a technical function to a business enabler.

What used to be “IT’s problem” is now a boardroom conversation – and for good reason. Protecting our data, our people, and our clients directly impacts revenue, reputation and competitive positioning.  

As CIOs / CISOs, our responsibilities aren’t just keeping systems running, but enabling trust, protecting our organization's reputation, and giving the business confidence to move forward even as the digital world becomes less predictable. To pull that off, we need to know the business inside-out, understand risk, and anticipate what's coming next. That's where AI becomes essential.

Staying ahead when you’re a natural target

With more than 3,100 team members and over 1,000 CPAs (Certified Public Accountant), Withum’s operates in an industry that naturally attracts attention from attackers. Firms like ours handle highly sensitive financial and personal information, which puts us squarely in the crosshairs for sophisticated phishing, ransomware, and cloud-based attacks.

We’ve built our security program around resilience, visibility, and scale. By using Darktrace’s AI-powered platform, we can defend against both known and unknown threats, across email and network, without slowing our teams down.

Our focus is always on what we’re protecting: our clients’ information, our intellectual property, and the reputation of the firm. With Darktrace, we’re not just keeping up with the massive volume of AI-powered attacks coming our way, we’re staying ahead. The platform defends our digital ecosystem around the clock, detecting potential threats across petabytes of data and autonomously investigating and responding to tens of thousands of incidents every year.

Catching what traditional tools miss

Beyond the sheer scale of attacks, Darktrace ActiveAI Security PlatformTM is critical for identifying threats that matter to our business. Today’s attackers don’t use generic techniques. They leverage automation and AI to craft highly targeted attacks – impersonating trusted colleagues, mimicking legitimate websites, and weaving in real-world details that make their messages look completely authentic.

The platform, covering our network, endpoints, inboxes, cloud and more is so effective because it continuously learns what’s normal for our business: how our users typically behave, the business- and industry-specific language we use, how systems communicate, and how cloud resources are accessed. It picks up on minute details that would sail right past traditional tools and even highly trained security professionals.

Freeing up our team to do what matters

On average, Darktrace autonomously investigates 88% of all our security events, using AI to connect the dots across email, network, and cloud activity to figure out what matters. That shift has changed how our team works. Instead of spending hours sorting through alerts, we can focus on proactive efforts that actually strengthen our security posture.

For example, we saved 1,850 hours on investigating security issues over a ten-day period. We’ve reinvested the time saved into strengthening policies, refining controls, and supporting broader business initiatives, rather than spending endless hours manually piecing together alerts.

Real confidence, real results

The impact of our AI-driven approach goes well beyond threat detection. Today, we operate from a position of confidence, knowing that threats are identified early, investigated automatically, and communicated clearly across our organization.

That confidence was tested when we withstood a major ransomware attack by a well-known threat group. Not only were we able to contain the incident, but we were able to trace attacker activity and provided evidence to law enforcement. That was an exhilarating experience! My team did an outstanding job, and moments like that reinforce exactly why we invest in the right technology and the right people.

Internally, this capability has strengthened trust at the executive level. We share security reporting regularly with leadership, translating technical activity into business-relevant insights. That transparency reinforces cybersecurity as a shared responsibility, one that directly supports growth, continuity, and reputation.

Culturally, we’ve embedded security awareness into daily operations through mandatory monthly training, executive communication, and real-world industry examples that keep cybersecurity top of mind for every employee.

The only headlines we want are positive ones: Withum expanding services, Withum growing year over year. Security plays a huge role in making sure that’s the story we get to tell.

What’s next

Looking ahead, we’re expanding our use of Darktrace, including new cloud capabilities that extend AI-driven visibility and investigation into our AWS and Azure environments.

As I continue shaping our security team, I look for people with passion, curiosity, and a genuine drive to solve problems. Those qualities matter just as much as formal credentials in my view. Combined with AI, these attributes help us build a resilient, engaged security function with low turnover and high impact.

For fellow technology leaders, my advice is simple: be forward-thinking and embrace change. We must understand the business, the threat landscape, and how technology enables both. By augmenting human expertise rather than replacing it, AI allows us to move upstream by anticipating risk, advising the business, and fostering stronger collaboration across teams.

Continue reading
About the author
Amel Edmond
Chief Information Officer
Your data. Our AI.
Elevate your network security with Darktrace AI