Blog
/
Network
/
February 9, 2023

Vidar Network: Analyzing a Prolific Info Stealer

Discover the latest insights on the Vidar network-based info stealer from our Darktrace experts and stay informed on cybersecurity threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Romeu
Senior SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Feb 2023

In the latter half of 2022, Darktrace observed a rise in Vidar Stealer infections across its client base. These infections consisted in a predictable series of network behaviors, including usage of certain social media platforms for the retrieval of Command and Control (C2) information and usage of certain URI patterns in C2 communications. In the blog post, we will provide details of the pattern of network activity observed in these Vidar Stealer infections, along with details of Darktrace’s coverage of the activity. 

Background on Vidar Stealer

Vidar Stealer, first identified in 2018, is an info-stealer capable of obtaining and then exfiltrating sensitive data from users’ devices. This data includes banking details, saved passwords, IP addresses, browser history, login credentials, and crypto-wallet data [1]. The info-stealer, which is typically delivered via malicious spam emails, cracked software websites, malicious ads, and websites impersonating legitimate brands, is known to access profiles on social media platforms once it is running on a user’s device. The info-stealer does this to retrieve the IP address of its Command and Control (C2) server. After retrieving its main C2 address, the info-stealer, like many other info-stealers, is known to download several third-party Dynamic Link Libraries (DLLs) which it uses to gain access to sensitive data saved on the infected device. The info-stealer then bundles the sensitive data which it obtains and sends it back to the C2 server.  

Details of Attack Chain 

In the second half of 2022, Darktrace observed the following pattern of activity within many client networks:

1. User’s device makes an HTTPS connection to Telegram and/or to a Mastodon server

2. User’s device makes an HTTP GET request with an empty User-Agent header, an empty Host header and a target URI consisting of 4 digits to an unusual, external endpoint

3. User’s device makes an HTTP GET request with an empty User-Agent header, an empty Host header and a target URI consisting of 10 digits followed by ‘.zip’ to the unusual, external endpoint

4. User’s device makes an HTTP POST request with an empty User-Agent header, an empty Host header, and the target URI ‘/’ to the unusual, external endpoint 

Figure 1: The above network logs, taken from Darktrace’s Advanced Search interface, show an infected device contacting Telegram and then making a series of HTTP requests to 168.119.167[.]188
Figure 2:  The above network logs, taken from Darktrace’s Advanced Search interface, show an infected device contacting a Mastadon server and then making a series of HTTP requests to 107.189.31[.]171

Each of these activity chains occurred as the result of a user running Vidar Stealer on their device. No common method was used to trick users into running Vidar Stealer on their devices. Rather, a variety of methods, ranging from malspam to cracked software downloads appear to have been used. 

Once running on a user’s device, Vidar Stealer went on to make an HTTPS connection to either Telegram (https://t[.]me/) or a Mastodon server (https://nerdculture[.]de/ or https://ioc[.]exchange/). Telegram and Mastodon are social media platforms on which users can create profiles. Malicious actors are known to create profiles on these platforms and then to embed C2 information within the profiles’ descriptions [2].  In the Vidar cases observed across Darktrace’s client base, it seems that Vidar contacted Telegram and/or Mastodon servers in order to retrieve the IP address of its C2 server from a profile description. Since social media platforms are typically trusted, this ‘Dead Drop’ method of sharing C2 details with malware samples makes it possible for threat actors to regularly update C2 details without the communication of these changes being blocked. 

Figure 3: A screenshot a profile on the Mastodon server, nerdculture[.]de. The profile’s description contains a C2 address 

After retrieving its C2 address from the description of a Telegram or Mastodon profile, Vidar went on to make an HTTP GET request with an empty User-Agent header, an empty Host header and a target URI consisting of 4 digits to its C2 server. The sequences of digits appearing in these URIs are campaign IDs. The C2 server responded to Vidar’s GET request with configuration details that likely informed Vidar’s subsequent data stealing activities. 

After receiving its configuration details, Vidar went on to make a GET request with an empty User-Agent header, an empty Host header and a target URI consisting of 10 digits followed by ‘.zip’ to the C2 server. This request was responded to with a ZIP file containing legitimate, third-party Dynamic Link Libraries such as ‘vcruntime140.dll’. Vidar used these libraries to gain access to sensitive data saved on the infected host. 

Figure 4: The above PCAP provides an example of the configuration details provided by a C2 server in response to Vidar’s first GET request 
Figure 5: Examples of DLLs included within ZIP files downloaded by Vidar samples

After downloading a ZIP file containing third-party DLLs, Vidar made a POST request containing hundreds of kilobytes of data to the C2 endpoint. This POST request likely represented exfiltration of stolen information. 

Darktrace Coverage

After infecting users’ devices, Vidar contacted either Telegram or Mastodon, and then made a series of HTTP requests to its C2 server. The info-stealer’s usage of social media platforms, along with its usage of ZIP files for tool transfer, complicate the detection of its activities. The info-stealer’s HTTP requests to its C2 server, however, caused the following Darktrace DETECT/Network models to breach:

  • Anomalous File / Zip or Gzip from Rare External Location 
  • Anomalous File / Numeric File Download
  • Anomalous Connection / Posting HTTP to IP Without Hostname

These model breaches did not occur due to users’ devices contacting IP addresses known to be associated with Vidar. In fact, at the time that the reported activities occurred, many of the contacted IP addresses had no OSINT associating them with Vidar activity. The cause of these model breaches was in fact the unusualness of the devices’ HTTP activities. When a Vidar-infected device was observed making HTTP requests to a C2 server, Darktrace recognised that this behavior was highly unusual both for the device and for other devices in the network. Darktrace’s recognition of this unusualness caused the model breaches to occur. 

Vidar Stealer infections move incredibly fast, with the time between initial infection and data theft sometimes being less than a minute. In cases where Darktrace’s Autonomous Response technology was active, Darktrace RESPOND/Network was able to autonomously block Vidar’s connections to its C2 server immediately after the first connection was made. 

Figure 6: The Event Log for an infected device, shows that Darktrace RESPOND/Network autonomously intervened 1 second after the device first contacted the C2 server 95.217.245[.]254

Conclusion 

In the latter half of 2022, a particular pattern of activity was prolific across Darktrace’s client base, with the pattern being seen in the networks of customers across a broad range of industry verticals and sizes. Further investigation revealed that this pattern of network activity was the result of Vidar Stealer infection. These infections moved fast and were effective at evading detection due to their usage of social media platforms for information retrieval and their usage of ZIP files for tool transfer. Since the impact of info-stealer activity typically occurs off-network, long after initial infection, insufficient detection of info-stealer activity leaves victims at risk of attackers operating unbeknownst to them and of powerful attack vectors being available to launch broad compromises. 

Despite the evasion attempts made by the operators of Vidar, Darktrace DETECT/Network was able to detect the unusual HTTP activities which inevitably resulted from Vidar infections. When active, Darktrace RESPOND/Network was able to quickly take inhibitive actions against these unusual activities. Given the prevalence of Vidar Stealer [3] and the speed at which Vidar Stealer infections progress, Autonomous Response technology proves to be vital for protecting organizations from info-stealer activity.  

Thanks to the Threat Research Team for its contributions to this blog.

MITRE ATT&CK Mapping

List of IOCs

107.189.31[.]171 - Vidar C2 Endpoint

168.119.167[.]188 – Vidar C2 Endpoint 

77.91.102[.]51 - Vidar C2 Endpoint

116.202.180[.]202 - Vidar C2 Endpoint

79.124.78[.]208 - Vidar C2 Endpoint

159.69.100[.]194 - Vidar C2 Endpoint

195.201.253[.]5 - Vidar C2 Endpoint

135.181.96[.]153 - Vidar C2 Endpoint

88.198.122[.]116 - Vidar C2 Endpoint

135.181.104[.]248 - Vidar C2 Endpoint

159.69.101[.]102 - Vidar C2 Endpoint

45.8.147[.]145 - Vidar C2 Endpoint

159.69.102[.]192 - Vidar C2 Endpoint

193.43.146[.]42 - Vidar C2 Endpoint

159.69.102[.]19 - Vidar C2 Endpoint

185.53.46[.]199 - Vidar C2 Endpoint

116.202.183[.]206 - Vidar C2 Endpoint

95.217.244[.]216 - Vidar C2 Endpoint

78.46.129[.]14 - Vidar C2 Endpoint

116.203.7[.]175 - Vidar C2 Endpoint

45.159.249[.]3 - Vidar C2 Endpoint

159.69.101[.]170 - Vidar C2 Endpoint

116.202.183[.]213 - Vidar C2 Endpoint

116.202.4[.]170 - Vidar C2 Endpoint

185.252.215[.]142 - Vidar C2 Endpoint

45.8.144[.]62 - Vidar C2 Endpoint

74.119.192[.]157 - Vidar C2 Endpoint

78.47.102[.]252 - Vidar C2 Endpoint

212.23.221[.]231 - Vidar C2 Endpoint

167.235.137[.]244 - Vidar C2 Endpoint

88.198.122[.]116 - Vidar C2 Endpoint

5.252.23[.]169 - Vidar C2 Endpoint

45.89.55[.]70 - Vidar C2 Endpoint

References

[1] https://blog.cyble.com/2021/10/26/vidar-stealer-under-the-lens-a-deep-dive-analysis/

[2] https://asec.ahnlab.com/en/44554/

[3] https://blog.sekoia.io/unveiling-of-a-large-resilient-infrastructure-distributing-information-stealers/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Roberto Romeu
Senior SOC Analyst

More in this series

No items found.

Blog

/

Network

/

November 13, 2025

Unmasking Vo1d: Inside Darktrace’s Botnet Detection

Default blog imageDefault blog image

What is vo1d APK malware?

Vo1d malware first appeared in the wild in September 2024 and has since evolved into one of the most widespread Android botnets ever observed. This large-scale Android malware primarily targets smart TVs and low-cost Android TV boxes. Initially, Vo1d was identified as a malicious backdoor capable of installing additional third-party software [1]. Its functionality soon expanded beyond the initial infection to include deploying further malicious payloads, running proxy services, and conducting ad fraud operations. By early 2025, it was estimated that Vo1d had infected 1.3 to 1.6 million devices worldwide [2].

From a technical perspective, Vo1d embeds components into system storage to enable itself to download and execute new modules at any time. External researchers further discovered that Vo1d uses Domain Generation Algorithms (DGAs) to create new command-and-control (C2) domains, ensuring that regardless of existing servers being taken down, the malware can quickly reconnect to new ones. Previous published analysis identified dozens of C2 domains and hundreds of DGA seeds, along with new downloader families. Over time, Vo1d has grown increasingly sophisticated with clear signs of stronger obfuscation and encryption methods designed to evade detection [2].

Darktrace’s coverage

Earlier this year, Darktrace observed a surge in Vo1d-related activity across customer environments, with the majority of affected customers based in South Africa. Devices that had been quietly operating as expected began exhibiting unusual network behavior, including excessive DNS lookups. Open-source intelligence (OSINT) has long highlighted South Africa as one of the countries most impacted by Vo1d infections [2].

What makes the recent activity particularly interesting is that the surge observed by Darktrace appears to be concentrated specifically in South African environments. This localized spike suggests that a significant number of devices may have been compromised, potentially due to vulnerable software, outdated firmware, or even preloaded malware. Regions with high prevalence of low-cost, often unpatched devices are especially susceptible, as these everyday consumer electronics can be quietly recruited into the botnet’s network. This specifically appears to be the case with South Africa, where public reporting has documented widespread use of low-cost boxes, such as non-Google-certified Android TV sticks, that frequently ship with outdated firmware [3].

The initial triage highlighted the core mechanism Vo1d uses to remain resilient: its use of DGA. A DGA deterministically creates a large list of pseudo-random domain names on a predictable schedule. This enables the malware to compute hundreds of candidate domains using the same algorithm, instead of using a hard-coded single C2 hostname that defenders could easily block or take down. To ensure reproducible from the infected device’s perspective, Vo1d utilizes DGA seeds. These seeds might be a static string, a numeric value, or a combination of underlying techniques that enable infected devices to generate the same list of candidate domains for a time window, provided the same DGA code, seed, and date are used.

Interestingly, Vo1d’s DGA seeds do not appear to be entirely unpredictable, and the generated domains lack fully random-looking endings. As observed in Figure 1, there is a clear pattern in the names generated. In this case, researchers identified that while the first five characters would change to create the desired list of domain names, the trailing portion remained consistent as part of the seed: 60b33d7929a, which OSINT sources have linked to the Vo1d botnet. [2]. Darktrace’s Threat Research team also identified a potential second DGA seed, with devices in some cases also engaging in activity involving hostnames matching the regular expression /[a-z]{5}fc975904fc9\.(com|top|net). This second seed has not been reported by any OSINT vendors at the time of writing.

Another recurring characteristic observed across multiple cases was the choice of top-level domains (TLDs), which included .com, .net, and .top.

Figure 1: Advanced Search results showing DNS lookups, providing a glimpse on the DGA seed utilized.

The activity was detected by multiple models in Darktrace / NETWORK, which triggered on devices making an unusually large volume of DNS requests for domains uncommon across the network.

During the network investigation, Darktrace analysts traced Vo1d’s infrastructure and uncovered an interesting pattern related to responder ASNs. A significant number of connections pointed to AS16509 (AMAZON-02). By hosting redirectors or C2 nodes inside major cloud environments, Vo1d is able to gain access to highly available and geographically diverse infrastructure. When one node is taken down or reported, operators can quickly enable a new node under a different IP within the same ASN. Another feature of cloud infrastructure that hardens Vo1d’s resilience is the fact that many organizations allow outbound connections to cloud IP ranges by default, assuming they are legitimate. Despite this, Darktrace was able to identify the rarity of these endpoints, identifying the unusualness of the activity.

Analysts further observed that once a generated domain successfully resolved, infected devices consistently began establishing outbound connections to ephemeral port ranges like TCP ports 55520 and 55521. These destination ports are atypical for standard web or DNS traffic. Even though the choice of high-numbered ports appears random, it is likely far from not accidental. Commonly used ports such as port 80 (HTTP) or 443 (HTTPS) are often subject to more scrutiny and deeper inspection or content filtering, making them riskier for attackers. On the other hand, unregistered ports like 55520 and 55521 are less likely to be blocked, providing a more covert channel that blends with outbound TCP traffic. This tactic helps evade firewall rules that focus on common service ports. Regardless, Darktrace was able to identify external connections on uncommon ports to locations that the network does not normally visit.

The continuation of the described activity was identified by Darktrace’s Cyber AI Analyst, which correlated individual events into a broader interconnected incident. It began with the multiple DNS requests for the algorithmically generated domains, followed by repeated connections to rare endpoints later confirmed as attacker-controlled infrastructure. Cyber AI Analyst’s investigation further enabled it to categorize the events as part of the “established foothold” phase of the attack.

Figure 2: Cyber AI Analyst incident illustrating the transition from DNS requests for DGA domains to connections with resolved attacker-controlled infrastructure.

Conclusion

The observations highlighted in this blog highlight the precision and scale of Vo1d’s operations, ranging from its DGA-generated domains to its covert use of high-numbered ports. The surge in affected South African environments illustrate how regions with many low-cost, often unpatched devices can become major hubs for botnet activity. This serves as a reminder that even everyday consumer electronics can play a role in cybercrime, emphasizing the need for vigilance and proactive security measures.

Credit to Christina Kreza (Cyber Analyst & Team Lead) and Eugene Chua (Principal Cyber Analyst & Team Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Devices Beaconing to New Rare IP
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / DGA Beacon
  • Compromise / Domain Fluxing
  • Compromise / Fast Beaconing to DGA
  • Unusual Activity / Unusual External Activity

List of Indicators of Compromise (IoCs)

  • 3.132.75[.]97 – IP address – Likely Vo1d C2 infrastructure
  • g[.]sxim[.]me – Hostname – Likely Vo1d C2 infrastructure
  • snakeers[.]com – Hostname – Likely Vo1d C2 infrastructure

Selected DGA IoCs

  • semhz60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • ggqrb60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • eusji60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • uacfc60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • qilqxfc975904fc9[.]top – Hostname – Possible Vo1d C2 DGA endpoint

MITRE ATT&CK Mapping

  • T1071.004 – Command and Control – DNS
  • T1568.002 – Command and Control – Domain Generation Algorithms
  • T1568.001 – Command and Control – Fast Flux DNS
  • T1571 – Command and Control – Non-Standard Port

[1] https://news.drweb.com/show/?lng=en&i=14900

[2] https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/

[3] https://mybroadband.co.za/news/broadcasting/596007-warning-for-south-africans-using-specific-types-of-tv-sticks.html

Continue reading
About the author
Christina Kreza
Cyber Analyst

Blog

/

Network

/

November 6, 2025

Darktrace Named the Only 2025 Gartner® Peer Insights™ Customers’ Choice for Network Detection and Response

Default blog imageDefault blog image

Darktrace: The only Customers’ Choice for NDR in 2025

In a year defined by rapid change across the threat landscape, recognition from those who use and rely on security technology every day means the most.

That’s why we’re proud to share that Darktrace has been named the only Customers’ Choice in the 2025 Gartner® Peer Insights™ Voice of the Customer for Network Detection and Response (NDR).

Out of 11 leading NDR vendors evaluated, Darktrace stood alone as the sole Customers’ Choice, a recognition that we feel reflects not just our innovation, but the trust and satisfaction of the customers who secure their networks with Darktrace every day.

What the Gartner® Peer Insights™ Voice of the Customer means

“Voice of the Customer” is a document that synthesizes Gartner Peer Insights reviews into insights for buyers of technology and services. This aggregated peer perspective, along with the individual detailed reviews, is complementary to Gartner expert research and can play a key role in your buying process. Peers are verified reviewers of a technology product or service, who not only rate the offering, but also provide valuable feedback to consider before making a purchase decision. Vendors placed in the upper-right “Customers’ Choice” quadrant of the “Voice of the Customer” have scores that meet or exceed the market average for both axes (User Interest and Adoption, and Overall Experience).It’s not just a rating. We feel it’s a reflection of genuine customer sentiment and success in the field.

In our view, Customers consistently highlight Darktrace’s ability to:

  • Detect and respond to unknown threats in real time
  • Deliver unmatched visibility across IT, OT, and cloud environments
  • Automate investigations and responses through AI-driven insights

We believe this recognition reinforces what our customers already know: that Darktrace helps them see, understand, and stop attacks others miss.

A rare double: recognized by customers and analysts alike

This distinction follows another major recogniton. Darktrace’s placement as a Leader in the Gartner® Magic Quadrant™ for Network Detection and Response earlier this year.

That makes Darktrace the only vendor to achieve both:

  • A Leader status in the Gartner Magic Quadrant for NDR, and
  • A Customers’ Choice in Gartner Peer Insights 2025

It’s a rare double that we feel reflects both industry leadership and customer trust, two perspectives that, together, define what great cybersecurity looks like.

A Customers’ Choice across the network and the inbox

To us, this recognition also builds on Darktrace’s momentum across multiple domains. Earlier this year, Darktrace was also named a Customers’ Choice for Email Security Platforms in the Gartner® Peer Insights™ report.

With more than 1,000 verified reviews across Network Detection and Response, Email Security Platforms, and Cyber Physical Systems (CPS), we at Darktrace are proud to be trusted across the full attack surface, from the inbox to the industrial network.

Thank you to our customers

We’re deeply grateful to every customer who shared their experience with Darktrace on Gartner Peer Insights. Your insights drive our innovation and continue to shape how we protect complex, dynamic environments across the world.

Discover why customers choose Darktrace for network and email security.

Gartner® Peer Insights™ content consists of the opinions of individual end users based on their own experiences, and should not be construed as statements of fact, nor do they represent the views of Gartner or its affiliates. Gartner does not endorse any vendor, product or service depicted in this content nor makes any warranties, expressed or implied, with respect to this content, about its accuracy or completeness, including any warranties of merchantability or fitness for a particular purpose.

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved.

Magic Quadrant and Peer Insights are registered trademarks of Gartner, Inc. and/or its affiliates and is used herein with permission. All rights reserved.

Gartner, Voice of the Customer for Network Detection and Response, By Peer Community Contributor, 30 October 2025

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI