Blog
/
Network
/
September 21, 2023

How Darktrace Detected Black Basta Ransomware

Discover how Darktrace uncovered Black Basta ransomware. Learn about its tactics, techniques, and how to protect your network from this threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Matthew John
Director of Operations, SOC
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
21
Sep 2023

What is Black Basta?

Over the past year, security researchers have been tracking a new ransomware group, known as Black Basta, that has been observed targeted organizations worldwide to deploy double extortion ransomware attacks since early 2022. While the strain and group are purportedly new, evidence seen suggests they are an offshoot of the Conti ransomware group [1].

The group behind Black Basta run a Ransomware as a Service (RaaS) model. They work with initial access brokers who will typically already have a foothold in company infrastructure to begin their attacks. Once inside a network, they then pivot internally using numerous tools to further their attack.

Black Basta Ransomware

Like many other ransomware actors, Black Basta uses double extortion as part of its modus operandi, exfiltrating sensitive company data and using the publication of this as a second threat to affected companies. This is also advertised on a dark web site, setup by the group to apply further pressure for affected companies to make ransom payments and avoid reputational damage.

The group also seems to regularly take advantage of existing tools to undertake the earlier stages of their attacks. Notably, the Qakbot banking trojan, seems to be the malware often used to gain an initial foothold within compromised environments.

Analysis of the tools, procedures and infrastructure used by Black Basta belies a maturity to the actors behind the ransomware. Their models and practices suggest those involved are experienced individuals, and security researchers have drawn possible links to the Conti ransomware group.

As such, Black Basta is a particular concern for security teams as attacks will likely be more sophisticated, with attackers more patient and able to lie low on digital estates for longer, waiting for the opportune moment to strike.

Cyber security is an infinite game where defender and attacker are stuck as cat and mouse; as new attacks evolve, security vendors and teams respond to the new indicators of compromise (IoCs), and update their existing rulesets and lists. As a result, attackers are forced to change their stripes to evade detection or sometimes even readjust their targets and end goals.

Anomaly Based Detection

By using the power of Darktrace’s Self-Learning AI, security teams are able to detect deviations in behavior. Threat actors need to move through the kill chain to achieve their aims, and in doing so will cause affected devices within networks to deviate from their expected pattern of life. Darktrace’s anomaly-based approach to threat detection allows it recognize these subtle deviations that indicate the presence of an attacker, and stop them in their tracks.

Additionally, the ecosystem of cyber criminals has matured in the last few decades. It is well documented how many groups now operate akin to legitimate companies, with structure, departments and governance. As such, while new attack methods and tactics do appear in the wild, the maturity in their business models belie the experience of those behind the attack.

As attackers grow their business models and develop their arsenal of attack vectors, it becomes even more critical for security teams to remain vigilant to anomalies within networks, and remain agnostic to underlying IoCs and instead adopt anomaly detection tools able to identify tactics, techniques, and procedures (TTPs) that indicate attackers may be moving through a network, ahead of deployment of ransomware and data encryption.

Darktrace’s Coverage of Black Basta

In April 2023, the Darktrace Security Operations Center (SOC) assisted a customer in triaging and responding to an ongoing ransomware infection on their network. On a Saturday, the customer reached out directly to the Darktrace analyst team via the Ask the Expert service for support after they observed encrypted files and locked administrative accounts on their network. The analyst team were able to investigate and clarify the attack path, identifying affected devices and assisting the customer with their remediation. Darktrace DETECT™ observed varying IoCs and TTPs throughout the course of this attack’s kill chain; subsequent analysis into these indicators revealed this had likely been a case of Black Basta seen in the wild.

Initial Intrusion

The methods used by the  group to gain an initial foothold in environments varies – sometimes using phishing, sometimes gaining access through a common vulnerability exposed to the internet. Black Basta actors appear to target specific organizations, as opposed to some groups who aim to hit multiple at once in a more opportunistic fashion.

In the case of the Darktrace customer likely affected by Black Basta, it is probable that the initial intrusion was out of scope. It may be that the path was via a phishing email containing an Microsoft Excel spreadsheet that launches malicious powershell commands; a noted technique for Black Basta. [3][4]  Alternatively, the group may have worked with access brokers who already had a foothold within the customer’s network.

One particular device on the network was observed acting anomalously and was possibly the first to be infected. The device attempted to connect to multiple internal devices over SMB, and connected to a server that was later found to be compromised and is described throughout the course of this blog. During this connection, it wrote a file over SMB, “syncro.exe”, which is possibly a legitimate Remote Management software but could in theory be used to spread an infection laterally. Use of this tool otherwise appears sporadic for the network, and was notably unusual for the environment.

Given these timings, it is possible this activity is related to the likely Black Basta compromise. However, there is some evidence online that use of Syncro has been seen installed as part of the execution of loaders such as Batloader, potentially indicating a separate or concurrent attack [5].

Internal Reconnaissance + Lateral Movement

However the attackers gained access in this instance, the first suspicious activity observed by Darktrace originated from an infected server. The attacker used their foothold in the device to perform internal reconnaissance, enumerating large portions of the network. Darktrace DETECT’s anomaly detection noted a distinct rise in connections to a large number of subnets, particularly to closed ports associated with native Windows services, including:

  • 135 (RPC)
  • 139 (NetBIOS)
  • 445 (SMB)
  • 3389 (RDP)

During the enumeration, SMB connections were observed during which suspiciously named executable files were written:

  • delete.me
  • covet.me

Data Staging and Exfiltration

Around 4 hours after the scanning activity, the attackers used their knowledge gained during enumeration about the environment to begin gathering and staging data for their double extortion attempts. Darktrace observed the same infected server connecting to a file storage server, and downloading over 300 GiB of data. Darktrace DETECT identified that the connections had been made via SMB and was able to present a list of filenames to the customer, allowing their security team to determine the data that had likely been exposed to the attackers.

The SMB paths detected by Darktrace showed a range of departments’ file areas being accessed by threat actors. This suggests they were interested in getting as much varied data as possible, presumably in an attempt to ensure a large amount of valuable information was at their disposal to make any threats of releasing them more credible, and more damaging to the company.

Shortly after the download, the device made an external connection over SSH to a rare domain, dataspt[.]com, hosted in the United States. The connection itself was made over an unusual port, 2022, and Darktrace recognized that the domain was new for the network.

During this upload, the threat actors uploaded a similar volume of data to the 300GiB that had been downloaded internally earlier. Darktrace flagged the usual elements of this external upload, making the identification and triage of this exfiltration attempt easier for the customer.

On top of this, Darktrace’s autonomous investigation tool Cyber AI Analyst™ launched an investigation into this on-going activity and was able to link the external upload events to the internal download, identifying them as one exfiltration incident rather than two isolated events. AI Analyst then provided a detailed summary of the activity detected, further speeding up the identification of affected files.

Preparing for Exploitation

All the activity documented so far had occurred on a Wednesday evening. It was at this point that the burst of activity calmed, and the ransomware lay in wait within the environment. Other devices around the network, particularly those connected to by the original infected server and a domain controller, were observed performing some elements of anomalous activity, but the attack seemed to largely take a pause.

However, on the Saturday morning, 3 days later, the compromised server began to change the way it communicated with attackers by reaching out to a new command and control (C2) endpoint. It seemed that attackers were gearing up for their attack, taking advantage of the weekend to strike while security teams often run with a reduced staffing.

Darktrace identified connections to a new endpoint within 4 minutes of it first being seen on the customer’s environment. The server had begun making repeated SSL connections to the new external endpoint, faceappinc[.]com, which has been flagged as malicious by various open-source intelligence (OSINT) sources.

The observed JA3 hash (d0ec4b50a944b182fc10ff51f883ccf7) suggests that the command-line tool BITS Admin was being used to launch these connections, another suggestion of the use of mature tooling.

In addition to this, Darktrace also detected the server using an administrative credential it had never previously been associated with. Darktrace recognized that the use of this credential represented a deviation from the device’s usual activity and thus could be indicative of compromise.

The server then proceeded to use the new credential to authenticate over Keberos before writing a malicious file (“management.exe”) to the Temp directory on a number of internal devices.

Encryption

At this point, the number of anomalous activities detected from the server increased massively as the attacker seems to connect networkwide in an attempt to cause as quick and destructive an encryption effort as possible. Darktrace observed numerous files that had been encrypted by a local process. The compromised server began to write ransom notes, named “instructions_read_me.txt” to other file servers, which presumably also had successfully deployed payloads. While Black Basta actors had initially been observed dropping ransom notes named “readme.txt”, security researchers have since observed and reported an updated variant of the ransomware that drops “instructions_read_me_.txt”, the name of the file detected by Darktrace, instead [6].

Another server was also observed making repeated SSL connections to the same rare external endpoint, faceappinc[.]com. Shortly after beginning these connections, the device made an HTTP connection to a rare IP address with no hostname, 212.118.55[.]211. During this connection, the device also downloaded a suspicious executable file, cal[.]linux. OSINT research linked the hash of this file to a Black Basta Executable and Linkable File (ELF) variant, indicating that the group was highly likely behind this ransomware attack.

Of particular interest again, is how the attacker lives off the land, utilizing pre-installed Windows services. Darktrace flagged that the server was observed using PsExec, a remote management executable, on multiple devices.

Darktrace Assistance

Darktrace DETECT was able to clearly detect and provide visibility over all stages of the ransomware attack, alerting the customer with multiple model breaches and AI Analyst investigation(s) and highlighting suspicious activity throughout the course of the attack.

For example, the exfiltration of sensitive data was flagged for a number of anomalous features of the meta-data: volume; rarity of the endpoint; port and protocol used.

In total, the portion of the attack observed by Darktrace lasted about 4 days from the first model breach until the ransomware was deployed. In particular, the encryption itself was initiated on a Saturday.

The encryption event itself was initiated on a Saturday, which is not uncommon as threat actors tend to launch their destructive attacks when they expect security teams will be at their lowest capacity. The Darktrace SOC team regularly observes and assists in customer’s in the face of ransomware actors who patiently lie in wait. Attackers often choose to strike as security teams run on reduced hours of manpower, sometimes even choosing to deploy ahead of longer breaks for national or public holidays, for example.

In this case, the customer contacted Darktrace directly through the Ask the Expert (ATE) service. ATE offers customers around the clock access to Darktrace’s team of expert analysts. Customers who subscribe to ATE are able to send queries directly to the analyst team if they are in need of assistance in the face of suspicious network activity or emerging attacks.

In this example, Darktrace’s team of expert analysts worked in tandem with Cyber AI Analyst to investigate the ongoing compromise, ensuring that the investigation and response process were completed as quickly and efficiently as possible.

Thanks to Darktrace’s Self-Learning AI, the analyst team were able to quickly produce a detailed report enumerating the timeline of events. By combining the human expertise of the analyst team and the machine learning capabilities of AI Analyst, Darktrace was able to quickly identify anomalous activity being performed and the affected devices. AI Analyst was then able to collate and present this information into a comprehensive and digestible report for the customer to consult.

Conclusion

It is likely that this ransomware attack was undertaken by the Black Basta group, or at least using tools related to their method. Although Black Basta itself is a relatively novel ransomware strain, there is a maturity and sophistication to its tactics. This indicates that this new group are actually experienced threat actors, with evidence pointing towards it being an offshoot of Conti.

The Pyramid of Pain is a well trodden model in cyber security, but it can help us understand the various features of an attack. Indicators like static C2 destinations or file hashes can easily be changed, but it’s the underlying TTPs that remain the same between attacks.

In this case, the attackers used living off the land techniques, making use of tools such as BITSAdmin, as well as using tried and tested malware such as Qakbot. While the domains and IPs involved will change, the way these malware interact and move about systems remains the same. Their fingerprint therefore causes very similar anomalies in network traffic, and this is where the strength of Darktrace lies.

Darktrace’s anomaly-based approach to threat detection means that these new attack types are quickly drawn out of the noise of everyday traffic within an environment. Once attackers have gained a foothold in a network, they will have to cause deviation from the usual pattern of a life on a network to proceed; Darktrace is uniquely placed to detect even the most subtle changes in a device’s behavior that could be indicative of an emerging threat.

Machine learning can act as a force multiplier for security teams. Working hand in hand with the Darktrace SOC, the customer was able to generate cohesive and comprehensive reporting on the attack path within days. This would be a feat for humans alone, requiring significant resources and time, but with the power of Darktrace’s Self-Learning AI, these deep and complex analyses become as easy as the click of a button.

Credit to: Matthew John, Director of Operations, SOC, Paul Jennings, Principal Analyst Consultant

Get the latest insights on emerging cyber threats

Attackers are adapting, are you ready? This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025.

  • Identity-based attacks: How attackers are bypassing traditional defenses
  • Zero-day exploitation: The rise of previously unknown vulnerabilities
  • AI-driven threats: How adversaries are leveraging AI to outmaneuver security controls

Stay ahead of evolving threats with expert analysis from Darktrace. Download the report here.

Appendices

Darktrace DETECT Model Breaches

Internal Reconnaissance

Device / Multiple Lateral Movement Model Breaches

Device / Large Number of Model Breaches

Device / Network Scan

Device / Anomalous RDP Followed by Multiple Model Breaches

Device / Possible SMB/NTLM Reconnaissance

Device / SMB Lateral Movement

Anomalous Connection / SMB Enumeration

Anomalous Connection / Possible Share Enumeration Activity

Device / Suspicious SMB Scanning Activity

Device / RDP Scan

Anomalous Connection / Active Remote Desktop Tunnel

Device / Increase in New RPC Services

Device / ICMP Address Scan

Download and Upload

Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Anomalous Connection / Uncommon 1 GiB Outbound

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Download and Upload

Compliance / SSH to Rare External Destination

Anomalous Server Activity / Rare External from Server

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Application Protocol on Uncommon Port

Anomalous Connection / Multiple Connections to New External TCP Port

Device / Anomalous SMB Followed By Multiple Model Breaches

Unusual Activity / SMB Access Failures

Lateral Movement and Encryption

User / New Admin Credentials on Server

Compliance / SMB Drive Write

Device / Anomalous RDP Followed By Multiple Model Breaches

Anomalous Connection / High Volume of New or Uncommon Service Control

Anomalous Connection / New or Uncommon Service Control

Device / New or Unusual Remote Command Execution

Anomalous Connection / SMB Enumeration

Additional Beaconing and Tooling

Device / Initial Breach Chain Compromise

Device / Multiple C2 Model Breaches

Compromise / Large Number of Suspicious Failed Connections

Compromise / Sustained SSL or HTTP Increase

Compromise / SSL or HTTP Beacon

Compromise / Suspicious Beaconing Behavior

Compromise / Large Number of Suspicious Successful Connections

Compromise / High Volume of Connections with Beacon Score

Compromise / Slow Beaconing Activity To External Rare

Compromise / SSL Beaconing to Rare Destination

Compromise / Beaconing Activity To External Rare

Compromise / Beacon to Young Endpoint

Compromise / Agent Beacon to New Endpoint

Anomalous Server Activity / Rare External from Server

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Anomalous File / EXE from Rare External Location

IoC - Type - Description + Confidence

dataspt[.]com - Hostname - Highly Likely Exfiltration Server

46.22.211[.]151:2022 - IP Address and Unusual Port - Highly Likely Exfiltration Server

faceappinc[.]com - Hostname - Likely C2 Infrastructure

Instructions_read_me.txt - Filename - Almost Certain Ransom Note

212.118.55[.]211 - IP Address - Likely C2 Infrastructure

delete[.]me - Filename - Potential lateral movement script

covet[.]me - Filename - Potential lateral movement script

d0ec4b50a944b182fc10ff51f883ccf7 - JA3 Client Fingerprint - Potential Windows BITS C2 Process

/download/cal.linux - URI - Likely BlackBasta executable file

1f4dcfa562f218fcd793c1c384c3006e460213a8 - Sha1 File Hash - Likely BlackBasta executable file

References

[1] https://blogs.blackberry.com/en/2022/05/black-basta-rebrand-of-conti-or-something-new

[2] https://www.cybereason.com/blog/threat-alert-aggressive-qakbot-campaign-and-the-black-basta-ransomware-group-targeting-u.s.-companies

[3] https://www.trendmicro.com/en_us/research/22/e/examining-the-black-basta-ransomwares-infection-routine.html

[4] https://unit42.paloaltonetworks.com/atoms/blackbasta-ransomware/

[5] https://www.trendmicro.com/en_gb/research/23/a/batloader-malware-abuses-legitimate-tools-uses-obfuscated-javasc.html

[6] https://www.pcrisk.com/removal-guides/23666-black-basta-ransomware

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Matthew John
Director of Operations, SOC

More in this series

No items found.

Blog

/

Cloud

/

June 12, 2025

Breaking Silos: Why Unified Security is Critical in Hybrid World

laptop with statistics on itDefault blog imageDefault blog image

Hybrid environments demand end-to-end visibility to stop modern attacks

Hybrid environments are a dominant trend in enterprise technology, but they continue to present unique issues to the defenders tasked with securing them. By 2026, Gartner predicts that 75% of organizations will adopt hybrid cloud strategies [1]. At the same time, only 23% of organizations report full visibility across cloud environments [2].

That means a strong majority of organizations do not have comprehensive visibility across both their on-premises and cloud networks. As a result, organizations are facing major challenges in achieving visibility and security in hybrid environments. These silos and fragmented security postures become a major problem when considering how attacks can move between different domains, exploiting the gaps.

For example, an attack may start with a phishing email, leading to the compromise of a cloud-based application identity and then moving between the cloud and network to exfiltrate data. Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.

Given this, unified visibility is essential for security teams to reduce blind spots and detect threats across the entire attack surface.

Risks of fragmented visibility

Silos arise due to separate teams and tools managing on-premises and cloud environments. Many teams have a hand in cloud security, with some common ones including security, infrastructure, DevOps, compliance, and end users, and these teams can all use different tools. This fragmentation increases the likelihood of inconsistent policies, duplicate alerts, and missed threats. And that’s just within the cloud, not even considering the additional defenses involved with network security.

Without a unified security strategy, gaps between these infrastructures and the teams which manage them can leave organizations vulnerable to cyber-attacks. The lack of visibility between on-premises and cloud environments contributes to missed threats and delayed incident response. In fact, breaches involving stolen or compromised credentials take an average of 292 to identify and contain [3]. That’s almost ten months.

The risk of fragmented visibility runs especially high as companies undergo cloud migrations. As organizations transition to cloud environments, they still have much of their data in on-premises networks, meaning that maintaining visibility across both on-premises and cloud environments is essential for securing critical assets and ensuring seamless operations.

Unified visibility is the solution

Unified visibility is achieved by having a single-pane-of-glass view to monitor both on-premises and cloud environments. This type of view brings many benefits, including streamlined detection, faster response times, and reduced complexity.

This can only be accomplished through integrations or interactions between the teams and tools involved with both on-premises security and cloud security.

AI-driven platforms, like Darktrace, are especially well equipped to enable the real-time monitoring and insights needed to sustain unified visibility. This is because they can handle the large amounts of data and data types.

Darktrace accomplishes this by plugging into an organization’s infrastructure so the AI can ingest and analyze data and its interactions within the environment to form an understanding of the organization’s normal behavior, right down to the granular details of specific users and devices. The system continually revises its understanding about what is normal based on evolving evidence.

This dynamic understanding of normal means that the AI engine can identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign. This helps reduce noise while surfacing real threats, across cloud and on-prem environments without manual tuning.

In this way, given its versatile AI-based, platform approach, Darktrace empowers security teams with real-time monitoring and insights across both the network and cloud.

Unified visibility in the modern threat landscape

As part of the Darktrace ActiveAI Security Platform™, Darktrace / CLOUD works continuously across public, private, hybrid, and multi-cloud deployments. With real-time Cloud Asset Enumeration and Dynamic Architecture Modeling, Darktrace / CLOUD generates up-to-date architecture diagrams, giving SecOps and DevOps teams a unified view of cloud infrastructures.

It is always on the lookout for changes, driven by user and service activity. For example, unusual user activity can significantly raise the asset’s score, prompting Darktrace’s AI to update its architectural view and keep a living record of the cloud’s ever-changing landscape, providing near real-time insights into what’s happening.

This continuous architectural awareness ensures that security teams have a real-time understanding of cloud behavior and not just a static snapshot.

Darktrace / CLOUD’s unified view of AWS and Azure cloud posture and compliance over time.
Figure 1. Darktrace / CLOUD’s unified view of AWS and Azure cloud posture and compliance over time.

With this dynamic cloud visibility and monitoring, Darktrace / CLOUD can help unify and secure environments.

Real world example: Remote access supply chain attacks

Sectop Remote Access Trojan (RAT) malware, also known as ‘ArchClient2,’ is a .NET RAT that contains information stealing capabilities and allows threat actors to monitor and control targeted computers. It is commonly distributed through drive-by downloads of illegitimate software via malvertizing.

Darktrace has been able to detect and respond to Sectop RAT attacks using unified visibility and platform-wide coverage. In one such example, Darktrace observed one device making various suspicious connections to unusual endpoints, likely in an attempt to receive C2 information, perform beaconing activity, and exfiltrate data to the cloud.

This type of supply chain attack can jump from the network to the cloud, so a unified view of both environments helps shorten detection and response times, therefore mitigating potential impact. Darktrace’s ability to detect these cross-domain behaviors stems from its AI-driven, platform-native visibility.

Conclusion

Organizations need unified visibility to secure complex, hybrid environments effectively against threats and attacks. To achieve this type of comprehensive visibility, the gaps between legacy security tools across on-premises and cloud networks can be bridged with platform tools that use AI to boost data analysis for highly accurate behavioral prediction and anomaly detection.

Read more about the latest trends in cloud security in the blog “Protecting Your Hybrid Cloud: The Future of Cloud Security in 2025 and Beyond.”

References:

1. Gartner, May 22, 2023, “10 Strategic Data and Analytics Predictions Through 2028

2. Cloud Security Alliance, February 14, 2024, “Cloud Security Alliance Survey Finds 77% of Respondents Feel Unprepared to Deal with Security Threats

3. IBM, “Cost of a Data Breach Report 2024

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

OT

/

June 11, 2025

Proactive OT security: Lessons on supply chain risk management from a rogue Raspberry Pi

man working on computerDefault blog imageDefault blog image

Understanding supply chain risk in manufacturing

For industries running Industrial Control Systems (ICS) such as manufacturing and fast-moving consumer goods (FMCG), complex supply chains mean that disruption to one weak node can have serious impacts to the entire ecosystem. However, supply chain risk does not always originate from outside an organization’s ICS network.  

The implicit trust placed on software or shared services for maintenance within an ICS can be considered a type of insider threat [1], where defenders also need to look ‘from within’ to protect against supply chain risk. Attackers have frequently mobilised this form of insider threat:

  • Many ICS and SCADA systems were compromised during the 2014 Havex Watering Hole attack, where via operators’ implicit trust in the trojanized versions of legitimate applications, on legitimate but compromised websites [2].
  • In 2018, the world’s largest manufacturer of semiconductors and processers shut down production for three days after a supplier installed tainted software that spread to over 10,000 machines in the manufacturer’s network [3].
  • During the 2020 SolarWinds supply chain attack, attackers compromised a version of Orion software that was deployed from SolarWinds’ own servers during a software update to thousands of customers, including tech manufacturing companies such as Intel and Nvidia [4].

Traditional approaches to ICS security have focused on defending against everything from outside the castle walls, or outside of the ICS network. As ICS attacks become more sophisticated, defenders must not solely rely on static perimeter defenses and prevention. 

A critical part of active defense is understanding the ICS environment and how it operates, including all possible attack paths to the ICS including network connections, remote access points, the movement of data across zones and conduits and access from mobile devices. For instance, original equipment manufacturers (OEMs) and vendors often install remote access software or third-party equipment in ICS networks to facilitate legitimate maintenance and support activities, which can unintentionally expand the ICS’ attack surface.  

This blog describes an example of the convergence between supply chain risk and insider risk, when a vendor left a Raspberry Pi device in a manufacturing customer’s ICS network without the customer’s knowledge.

Case study: Using unsupervised machine learning to detect pre-existing security issues

Raspberry Pi devices are commonly used in SCADA environments as low-cost, remotely accessible data collectors [5][6][7]. They are often paired with Industrial Internet of Things (IIoT) for monitoring and tracking [8]. However, these devices also represent a security risk because their small physical size and time-consuming nature of physical inspection makes them easy to overlook. This poses a security risk, as these devices have previously been used to carry out USB-based attacks or to emulate Ethernet-over-USB connections to exfiltrate sensitive data [8][9].

In this incident, a Darktrace customer was unaware that their supplier had installed a Raspberry Pi device on their ICS network. Crucially, the installation occurred prior to Darktrace’s deployment on the customer’s network. 

For other anomaly detection tools, this order of events meant that this third-party device would likely have been treated as part of the customer’s existing infrastructure. However, after Darktrace was deployed, it analyzed the metadata from the encrypted HTTPS and DNS connections that the Raspberry Pi made to ‘call home’ to the supplier and determined that these connections were  unusual compared to the rest of the devices in the network, even in the absence of any malicious indicators of compromise (IoCs).  

Darktrace triggered the following alerts for this unusual activity that consequently notified the customer to the pre-existing threat of an unmanaged device already present in their network:

  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Agent Beacon (Short Period)
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Agent Beacon (Long Period)
  • Tags / New Raspberry Pi Device
  • Device / DNS Requests to Unusual Server
  • Device / Anomaly Indicators / Spike in Connections to Rare Endpoint Indicator
Darktrace’s External Sites Summary showing the rarity of the external endpoint that the Raspberry Pi device ‘called home’ to and the model alerts triggered.  
Figure 1: Darktrace’s External Sites Summary showing the rarity of the external endpoint that the Raspberry Pi device ‘called home’ to and the model alerts triggered.  

Darktrace’s Cyber AI Analyst launched an autonomous investigation into the activity, correlating related events into a broader incident and generating a report outlining the potential threat along with supporting technical details.

Darktrace’s anomaly-based detection meant that the Raspberry Pi device did not need to be observed performing clearly malicious behavior to alert the customer to the security risk, and neither can defenders afford to wait for such escalation.

Why is this significant?

In 2021 a similar attack took place. Aiming to poison a Florida water treatment facility, attackers leveraged a TeamViewer instance that had been dormant on the system for six months, effectively allowing the attacker to ‘live off the land’ [10].  

The Raspberry Pi device in this incident also remained outside the purview of the customer’s security team at first. It could have been leveraged by a persistent attacker to pivot within the internal network and communicate externally.

A proactive approach to active defense that seeks to minimize and continuously monitor the attack surface and network is crucial.  

The growing interest in manufacturing from attackers and policymakers

Significant motivations for targeting the manufacturing sector and increasing regulatory demands make the convergence of supply chain risk, insider risk, and the prevalence of stealthy living-off-the-land techniques particularly relevant to this sector.

Manufacturing is consistently targeted by cybercriminals [11], and the sector’s ‘just-in-time’ model grants attackers the opportunity for high levels of disruption. Furthermore, under NIS 2, manufacturing and some food and beverage processing entities are now designated as ‘important’ entities. This means stricter incident reporting requirements within 24 hours of detection, and enhanced security requirements such as the implementation of zero trust and network segmentation policies, as well as measures to improve supply chain resilience [12][13][14].

How can Darktrace help?

Ultimately, Darktrace successfully assisted a manufacturing organization in detecting a potentially disruptive 'near-miss' within their OT environment, even in the absence of traditional IoCs.  Through passive asset identification techniques and continuous network monitoring, the customer improved their understanding of their network and supply chain risk.  

While the swift detection of the rogue device allowed the threat to be identified before it could escalate, the customer could have reduced their time to respond by using Darktrace’s built-in response capabilities, had Darktrace’s Autonomous Response capability been enabled.  Darktrace’s Autonomous Response can be configured to target specific connections on a rogue device either automatically upon detection or following manual approval from the security team, to stop it communicating with other devices in the network while allowing other approved devices to continue operating. Furthermore, the exportable report generated by Cyber AI Analyst helps security teams to meet NIS 2’s enhanced reporting requirements.  

Sophisticated ICS attacks often leverage insider access to perform in-depth reconnaissance for the development of tailored malware capabilities.  This case study and high-profile ICS attacks highlight the importance of mitigating supply chain risk in a similar way to insider risk.  As ICS networks adapt to the introduction of IIoT, remote working and the increased convergence between IT and OT, it is important to ensure the approach to secure against these threats is compatible with the dynamic nature of the network.  

Credit to Nicole Wong (Principal Cyber Analyst), Matthew Redrup (Senior Analyst and ANZ Team Lead)

[related-resource]

Appendices

MITRE ATT&CK Mapping

  • Infrastructure / New Raspberry Pi Device - INITIAL ACCESS - T1200 Hardware Additions
  • Device / DNS Requests to Unusual Server - CREDENTIAL ACCESS, COLLECTION - T1557 Man-in-the-Middle
  • Compromise / Agent Beacon - COMMAND AND CONTROL - T1071.001 Web Protocols

References

[1] https://www.cisa.gov/topics/physical-security/insider-threat-mitigation/defining-insider-threats

[2] https://www.trendmicro.com/vinfo/gb/threat-encyclopedia/web-attack/139/havex-targets-industrial-control-systems

[3]https://thehackernews.com/2018/08/tsmc-wannacry-ransomware-attack.html

[4] https://www.theverge.com/2020/12/21/22194183/intel-nvidia-cisco-government-infected-solarwinds-hack

[5] https://www.centreon.com/monitoring-ot-with-raspberry-pi-and-centreon/

[6] https://ieeexplore.ieee.org/document/9107689

[7] https://www.linkedin.com/pulse/webicc-scada-integration-industrial-raspberry-pi-devices-mryff

[8] https://www.rowse.co.uk/blog/post/how-is-the-raspberry-pi-used-in-the-iiot

[9] https://sepiocyber.com/resources/whitepapers/raspberry-pi-a-friend-or-foe/#:~:text=Initially%20designed%20for%20ethical%20purposes,as%20cyberattacks%20and%20unauthorized%20access

[10] https://edition.cnn.com/2021/02/10/us/florida-water-poison-cyber/index.html

[11] https://www.mxdusa.org/2025/02/13/top-cyber-threats-in-manufacturing/

[12] https://www.shoosmiths.com/insights/articles/nis2-what-manufacturers-and-distributors-need-to-know-about-europes-new-cybersecurity-regime

[13] https://www.goodaccess.com/blog/nis2-require-zero-trust-essential-security-measure#zero-trust-nis2-compliance

[14] https://logisticsviewpoints.com/2024/11/06/the-impact-of-nis-2-regulations-on-manufacturing-supply-chains/

Continue reading
About the author
Nicole Wong
Cyber Security Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI