Blog
/
/
April 1, 2020

How AI Caught APT41 Exploiting Vulnerabilities

Analyzing how the cyber-criminal group APT41 exploited a zero-day vulnerability, we show how Darktrace’s AI detected and investigated the threat immediately.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
01
Apr 2020

Executive summary

  • Darktrace detected several highly targeted attacks in early March, well before any associated signatures had become available. Two weeks later, the attacks were attributed to Chinese threat-actor APT41.
  • APT41 exploited the Zoho ManageEngine zero-day vulnerability CVE-2020-10189. Darktrace automatically detected and reported on the attack in its earliest stages, enabling customers to contain the threat before it could make an impact.
  • The intrusions described here were part of a wider campaign aiming to gain initial access to as many companies as possible during the window of opportunity presented by CVE-2020-10189.
  • The reports generated by Darktrace highlighted and delineated every aspect of the incident in the form of a meaningful security narrative. Even a junior responder could have reviewed this output and acted on this zero-day APT attack in under 5 minutes.

Fighting APT41’s global attack

In early March, Darktrace detected several advanced attacks targeting customers in the US and Europe. A majority of these customers are in the legal sector. The attacks shared the same Techniques, Tools & Procedures (TTPs), targeting public-facing servers and exploiting recent high-impact vulnerabilities. Last week, FireEye attributed this suspicious activity to the Chinese cyber espionage group APT41.

This campaign used the Zoho ManageEngine zero-day vulnerability CVE-2020-10189 to get access to various companies, but little to no follow-up was detected after initial intrusion. This activity indicates a broad-brush campaign to get initial access to as many target companies as possible during the zero-day window of opportunity.

The malicious activity observed by Darktrace took place late on Sunday March 8, 2020 and in the morning of March 9, 2020 (UTC), broadly in line with office hours previously attributed to the Chinese cyber espionage group APT41.

The graphic below shows an exemplary timeline from one of the customers targeted by APT41. The attacks observed in other customer environments are identical.

Timeline of the APT41 attack
Figure 1: A timeline of the attack

Technical analysis

The attack described here centered around the Zoho ManageEngine zero-day vulnerability CVE-2020-10189. Most of the attack appears to have been automated.

We observed the initial intrusion, several follow-up payload downloads, and command and control (C2) traffic. In all cases, the activity was contained before any later steps in the attack lifecycle, such as lateral movement or data exfiltration, were identified.

The below screenshot shows an overview of the key AI Analyst detections reported. Not only did it report on the SSL and HTTP C2 traffic, but it also reported on the payload downloads:

Cyber AI Analyst breaks down the APT41 attack
Figure 2: SSL C2 detection by Cyber AI Analyst
Figure 3: Payload detection by Cyber AI Analyst

Initial compromise

The initial compromise began with the successful exploitation of the Zoho ManageEngine zero-day vulnerability CVE-2020-10189. Following the initial intrusion, the Microsoft BITSAdmin command line tool was used to fetch and install a malicious Batch file, described below:

install.bat (MD5: 7966c2c546b71e800397a67f942858d0) from infrastructure 66.42.98[.]220 on port 12345.

Source: 10.60.50.XX
Destination: 66.42.98[.]220
Destination Port: 12345
Content Type: application/x-msdownload
Protocol: HTTP
Host: 66.42.98[.]220
URI: /test/install.bat
Method: GET
Status Code: 200

Figure 4: Outbound connection fetching batch file

Shortly after the initial compromise, the first stage Cobalt Strike Beacon LOADER was downloaded.

Cobalt Strike Beacon loader screenshot
Figure 5: Detection of the Cobalt Strike Beacon LOADER

Command and Control traffic

Interestingly, TeamViewer activity and the download of Notepad++ was taking place at the same time as the C2 traffic was starting in some of the customer attacks. This indicates APT41 trying to use familiar tools instead of completely ‘Living off the Land’.

Storesyncsvc.dll was a Cobalt Strike Beacon implant (trial-version) which connected to exchange.dumb1[.]com. A successful DNS resolution to 74.82.201[.]8 was identified, which Darktrace discerned as a successful SSL connection to a hostname with Dynamic DNS properties.

Multiple connections to exchange.dumb1[.]com were identified as beaconing to a C2 center. This C2 traffic to the initial Cobalt Strike Beacon was leveraged to download a second stage payload.

Interestingly, TeamViewer activity and the download of Notepad++ was taking place at the same time as the C2 traffic was starting in some of the customer attacks. This indicates APT41 trying to use familiar tools instead of completely ‘Living off the Land’. There is at least high certainty that the use of these two tools can be attributed to this intrusion instead of regular business activity. Notepad++ was not normally used in the target customers’ environments, nor was TeamViewer – in fact, the use of both applications was 100% unusual for the targeted organizations.

Attack tools download

CertUtil.exe, a command line program installed as part of Certificate Services, was then leveraged to connect externally and download the second stage payload.

Detection associated with Meterpreter activity

Figure 6: Darktrace detecting the usage of CertUtil

A few hours after this executable download, the infected device made an outbound HTTP connection requesting the URI /TzGG, which was identified as Meterpreter downloading further shellcode for the Cobalt Strike Beacon.

Figure 7: Detection associated with Meterpreter activity. No lateral movement or significant data exfiltration was observed.

How Cyber AI Analyst reported on the zero-day exploit

Darktrace not only detected this zero-day attack campaign, but Cyber AI Analyst also saved security teams valuable time by investigating disparate security events and generating a report that immediately put them in a position to take action.

The below screenshot shows the AI Analyst incidents reported in one infected environment, over the eight days covering the intrusion period. The first incident on the left represents the APT activity described here. The other five incidents are independent of the APT activity and not as severe.

AI Analyst Security Incidents
Figure 8: The security incidents surfaced by AI Analyst

AI Analyst reported on six incidents in total over the eight-day period. Each AI Analyst incident includes a detailed timeline and summary of the incident, in a concise format that takes an average of two minutes to review. This means that with Cyber AI Analyst, even a non-technical person could have actioned a response to this sophisticated, zero-day incident in less than five minutes.

Conclusion

Without public Indicators of Compromise (IoCs) or any open-source intelligence available, targeted attacks are incredibly difficult to detect. Moreover, even the best detections are useless if they cannot be actioned by a security analyst at an early stage. Too often this occurs because of an overwhelming volume of alerts, or simply because the skills barrier to triage and investigation is too high.

This appears to be a broad campaign to gain initial access to many different companies and sectors. While very sophisticated in nature, the threat sacrificed stealth for speed by targeting many companies at the same time. APT41 wanted to utilize the limited window of opportunity that the Zoho zero-day provided before IT staff starts patching.

Darktrace’s Cyber AI is specifically designed to detect the subtle signs of targeted, unknown attacks at an early stage, without relying on prior knowledge or IoCs. It achieves this by continuously learning the normal patterns of behavior for every user, device, and associated peer group from scratch, and ‘on the job’.

In the face of this zero-day attack campaign, the AI’s ability to (a) detect unknown threats with self-learning AI and (b) augment strained responders with AI-driven investigations and reporting proved crucial. Indeed, it ensured that the attacks were swiftly contained before escalating to the later stages of the attack lifecycle.

Indicators of Compromise

Selection of Darktrace model breaches:

  • Anomalous File / Script from Rare External
  • Anomalous File / EXE from Rare External Location
  • Compromise / SSL to DynDNS
  • Compliance / CertUtil External Connection
  • Anomalous Connection / CertUtil Requesting Non Certificate
  • Anomalous Connection / CertUtil to Rare Destination
  • Anomalous Connection / New User-Agent to IP Without Hostname
  • Device / Initial Breach Chain Compromise
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / Beaconing Activity To External Rare
  • Anomalous File / Numeric Exe Download
  • Device / Large Number of Model Breaches
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compliance / Remote Management Tool On Server

The below screenshot shows Darktrace model breaches occurring together during the compromise of one customer:

Figure 9: Darktrace model breaches occurring together

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Compliance

/

November 25, 2025

UK Cyber Security & Resilience Bill: What Organizations Need to Know

Default blog imageDefault blog image

Why the Bill has been introduced

The UK’s cyber threat landscape has evolved dramatically since the 2018 NIS regime was introduced. Incidents such as the Synnovis attack against hospitals and the British Library ransomware attack show how quickly operational risk can become public harm. In this context, the UK Department for Science, Innovation and Technology estimates that cyber-attacks cost UK businesses around £14.7 billion each year.

At the same time, the widespread adoption of AI has expanded organisations’ attack surfaces and empowered threat actors to launch more effective and sophisticated activities, including crafting convincing phishing campaigns, exploiting vulnerabilities and initiating ransomware attacks at unprecedented speed and scale.  

The CSRB responds to these challenges by widening who is regulated, accelerating incident reporting and tightening supply chain accountability, while enabling rapid updates that keep pace with technology and emerging risks.

Key provisions of the Cyber Security and Resilience Bill

A wider set of organisations in scope

The Bill significantly broadens the range of organisations regulated under the NIS framework.

  • Managed service providers (MSPs) - medium and large MSPs, including MSSPs, managed SOCs, SIEM providers and similar services,will now fall under NIS obligations due to their systemic importance and privileged access to client systems. The Information Commissioner’s Office (ICO) will act as the regulator. Government analysis anticipates that a further 900 to 1,100 MSPs will be in scope.
  • Data infrastructure is now recognised as essential to the functioning of the economy and public services. Medium and large data centres, as well as enterprise facilities meeting specified thresholds, will be required to implement appropriate and proportionate measures to manage cyber risk. Oversight will be shared between DSIT and Ofcom, with Ofcom serving as the operational regulator.
  • Organisations that manage electrical loads for smart appliances, such as those supporting EV charging during peak times, are now within scope.

These additions sit alongside existing NIS-regulated sectors such as transport, energy, water, health, digital infrastructure, and certain digital services (including online marketplaces, search engines, and cloud computing).

Stronger supply chain requirements

Under the CSRB, regulators can now designate third-party suppliers as ‘designated critical suppliers’ (DCS) when certain threshold criteria are met and where disruption could have significant knock-on effects. Designated suppliers will be subject to the same security and incident-reporting obligations as Operators of Essential Services (OES) and Relevant Digital Service Providers (RDSPs).

Government will scope the supply chain duties for OES and RDSPs via secondary legislation, following consultation. infrastructure incidents where a single supplier’s compromise caused widespread disruption.

Faster incident reporting

Sector-specific regulators, 12 in total, will be responsible for implementing the CSRB, allowing for more effective and consistent reporting. In addition, the CSRB introduces a two-stage reporting process and expands incident reporting criteria. Regulated entities must submit an initial notification within 24 hours of becoming aware of a significant incident, followed by an incident report within 72 hours. Incident reporting criteria are also broadened to capture incidents beyond those which actually resulted in an interruption, ensuring earlier visibility for regulators and the National Cyber Security Centre (NCSC). The importance of information sharing across agencies, law enforcement and regulators is also facilitated by the CSRB.

The reforms also require data centres and managed service providers to notify affected customers where they are likely to have been impacted by a cyber incident.

An agile regulatory framework

To keep pace with technological change, the CSRB will enable the Secretary of State to update elements of the framework via secondary legislation. Supporting materials such as the NCSC Cyber Assessment Framework (CAF) are to be "put on a stronger footing” allowing for requirements to be more easily followed, managed and updated. Regulators will also now be able to recover full costs associated with NIS duties meaning they are better resourced to carry out their associated responsibilities.

Relevant Managed Service Providers must identify and take appropriate and proportionate measures to manage risks to the systems they rely on for providing services within the UK. Importantly, these measures must, having regard to the state of the art, ensure a level of security appropriate to the risk posed, and prevent or minimise the impact of incidents.

The Secretary of State will also be empowered to issue a Statement of Strategic Priorities, setting cross-regime outcomes to drive consistency across the 12 competent authorities responsible for implementation.

Penalties

The enforcement framework will be strengthened, with maximum fines aligned with comparable regimes such as the GDPR, which incorporate maximums tied to turnover. Under the CSRB, maximum penalties for more serious breaches could be up to £17 million or 4% of global turnover, whichever is higher.

Next steps

The Bill is expected to progress through Parliament over the course of 2025 and early 2026, with Royal Assent anticipated in 2026. Once enacted, most operational measures will not take immediate effect. Instead, Government will bring key components into force through secondary legislation following further consultation, providing regulators and industry with time to adjust practices and prepare for compliance.

Anticipated timeline

  • 2025-2026: Parliamentary scrutiny and passage;
  • 2026: Royal Assent;  
  • 2026 consultation: DSIT intends to consult on detailed implementation;
  • From 2026 onwards: Phased implementation via secondary legislation, following further consultation led by DSIT.

How Darktrace can help

The CSRB represents a step change in how the UK approaches digital risk, shifting the focus from compliance to resilience.

Darktrace can help organisations operationalise this shift by using AI to detect, investigate and respond to emerging threats at machine speed, before they escalate into incidents requiring regulatory notification. Proactive tools which can be included in the Darktrace platform allow security teams to stress-test defences, map supply chain exposure and rehearse recovery scenarios, directly supporting the CSRB’s focus on resilience, transparency and rapid response. If an incident does occur, Darktrace’s autonomous agent, Cyber AI Analyst, can accelerate investigations and provide a view of every stage of the attack chain, supporting timely reporting.  

Darktrace’s AI can provide organisations with a vital lens into both internal and external cyber risk. By continuously learning patterns of behaviour across interconnected systems, Darktrace can flag potential compromise or disruption to detect supply chain risk before it impacts your organisation.

In a landscape where compliance and resilience go hand in hand, Darktrace can equip organisations to stay ahead of both evolving threats and evolving regulatory requirements.

[related-resource]

Continue reading
About the author
The Darktrace Community

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI