Blog
/
/
April 1, 2020

How AI Caught APT41 Exploiting Vulnerabilities

Analyzing how the cyber-criminal group APT41 exploited a zero-day vulnerability, we show how Darktrace’s AI detected and investigated the threat immediately.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
01
Apr 2020

Executive summary

  • Darktrace detected several highly targeted attacks in early March, well before any associated signatures had become available. Two weeks later, the attacks were attributed to Chinese threat-actor APT41.
  • APT41 exploited the Zoho ManageEngine zero-day vulnerability CVE-2020-10189. Darktrace automatically detected and reported on the attack in its earliest stages, enabling customers to contain the threat before it could make an impact.
  • The intrusions described here were part of a wider campaign aiming to gain initial access to as many companies as possible during the window of opportunity presented by CVE-2020-10189.
  • The reports generated by Darktrace highlighted and delineated every aspect of the incident in the form of a meaningful security narrative. Even a junior responder could have reviewed this output and acted on this zero-day APT attack in under 5 minutes.

Fighting APT41’s global attack

In early March, Darktrace detected several advanced attacks targeting customers in the US and Europe. A majority of these customers are in the legal sector. The attacks shared the same Techniques, Tools & Procedures (TTPs), targeting public-facing servers and exploiting recent high-impact vulnerabilities. Last week, FireEye attributed this suspicious activity to the Chinese cyber espionage group APT41.

This campaign used the Zoho ManageEngine zero-day vulnerability CVE-2020-10189 to get access to various companies, but little to no follow-up was detected after initial intrusion. This activity indicates a broad-brush campaign to get initial access to as many target companies as possible during the zero-day window of opportunity.

The malicious activity observed by Darktrace took place late on Sunday March 8, 2020 and in the morning of March 9, 2020 (UTC), broadly in line with office hours previously attributed to the Chinese cyber espionage group APT41.

The graphic below shows an exemplary timeline from one of the customers targeted by APT41. The attacks observed in other customer environments are identical.

Timeline of the APT41 attack
Figure 1: A timeline of the attack

Technical analysis

The attack described here centered around the Zoho ManageEngine zero-day vulnerability CVE-2020-10189. Most of the attack appears to have been automated.

We observed the initial intrusion, several follow-up payload downloads, and command and control (C2) traffic. In all cases, the activity was contained before any later steps in the attack lifecycle, such as lateral movement or data exfiltration, were identified.

The below screenshot shows an overview of the key AI Analyst detections reported. Not only did it report on the SSL and HTTP C2 traffic, but it also reported on the payload downloads:

Cyber AI Analyst breaks down the APT41 attack
Figure 2: SSL C2 detection by Cyber AI Analyst
Figure 3: Payload detection by Cyber AI Analyst

Initial compromise

The initial compromise began with the successful exploitation of the Zoho ManageEngine zero-day vulnerability CVE-2020-10189. Following the initial intrusion, the Microsoft BITSAdmin command line tool was used to fetch and install a malicious Batch file, described below:

install.bat (MD5: 7966c2c546b71e800397a67f942858d0) from infrastructure 66.42.98[.]220 on port 12345.

Source: 10.60.50.XX
Destination: 66.42.98[.]220
Destination Port: 12345
Content Type: application/x-msdownload
Protocol: HTTP
Host: 66.42.98[.]220
URI: /test/install.bat
Method: GET
Status Code: 200

Figure 4: Outbound connection fetching batch file

Shortly after the initial compromise, the first stage Cobalt Strike Beacon LOADER was downloaded.

Cobalt Strike Beacon loader screenshot
Figure 5: Detection of the Cobalt Strike Beacon LOADER

Command and Control traffic

Interestingly, TeamViewer activity and the download of Notepad++ was taking place at the same time as the C2 traffic was starting in some of the customer attacks. This indicates APT41 trying to use familiar tools instead of completely ‘Living off the Land’.

Storesyncsvc.dll was a Cobalt Strike Beacon implant (trial-version) which connected to exchange.dumb1[.]com. A successful DNS resolution to 74.82.201[.]8 was identified, which Darktrace discerned as a successful SSL connection to a hostname with Dynamic DNS properties.

Multiple connections to exchange.dumb1[.]com were identified as beaconing to a C2 center. This C2 traffic to the initial Cobalt Strike Beacon was leveraged to download a second stage payload.

Interestingly, TeamViewer activity and the download of Notepad++ was taking place at the same time as the C2 traffic was starting in some of the customer attacks. This indicates APT41 trying to use familiar tools instead of completely ‘Living off the Land’. There is at least high certainty that the use of these two tools can be attributed to this intrusion instead of regular business activity. Notepad++ was not normally used in the target customers’ environments, nor was TeamViewer – in fact, the use of both applications was 100% unusual for the targeted organizations.

Attack tools download

CertUtil.exe, a command line program installed as part of Certificate Services, was then leveraged to connect externally and download the second stage payload.

Detection associated with Meterpreter activity

Figure 6: Darktrace detecting the usage of CertUtil

A few hours after this executable download, the infected device made an outbound HTTP connection requesting the URI /TzGG, which was identified as Meterpreter downloading further shellcode for the Cobalt Strike Beacon.

Figure 7: Detection associated with Meterpreter activity. No lateral movement or significant data exfiltration was observed.

How Cyber AI Analyst reported on the zero-day exploit

Darktrace not only detected this zero-day attack campaign, but Cyber AI Analyst also saved security teams valuable time by investigating disparate security events and generating a report that immediately put them in a position to take action.

The below screenshot shows the AI Analyst incidents reported in one infected environment, over the eight days covering the intrusion period. The first incident on the left represents the APT activity described here. The other five incidents are independent of the APT activity and not as severe.

AI Analyst Security Incidents
Figure 8: The security incidents surfaced by AI Analyst

AI Analyst reported on six incidents in total over the eight-day period. Each AI Analyst incident includes a detailed timeline and summary of the incident, in a concise format that takes an average of two minutes to review. This means that with Cyber AI Analyst, even a non-technical person could have actioned a response to this sophisticated, zero-day incident in less than five minutes.

Conclusion

Without public Indicators of Compromise (IoCs) or any open-source intelligence available, targeted attacks are incredibly difficult to detect. Moreover, even the best detections are useless if they cannot be actioned by a security analyst at an early stage. Too often this occurs because of an overwhelming volume of alerts, or simply because the skills barrier to triage and investigation is too high.

This appears to be a broad campaign to gain initial access to many different companies and sectors. While very sophisticated in nature, the threat sacrificed stealth for speed by targeting many companies at the same time. APT41 wanted to utilize the limited window of opportunity that the Zoho zero-day provided before IT staff starts patching.

Darktrace’s Cyber AI is specifically designed to detect the subtle signs of targeted, unknown attacks at an early stage, without relying on prior knowledge or IoCs. It achieves this by continuously learning the normal patterns of behavior for every user, device, and associated peer group from scratch, and ‘on the job’.

In the face of this zero-day attack campaign, the AI’s ability to (a) detect unknown threats with self-learning AI and (b) augment strained responders with AI-driven investigations and reporting proved crucial. Indeed, it ensured that the attacks were swiftly contained before escalating to the later stages of the attack lifecycle.

Indicators of Compromise

Selection of Darktrace model breaches:

  • Anomalous File / Script from Rare External
  • Anomalous File / EXE from Rare External Location
  • Compromise / SSL to DynDNS
  • Compliance / CertUtil External Connection
  • Anomalous Connection / CertUtil Requesting Non Certificate
  • Anomalous Connection / CertUtil to Rare Destination
  • Anomalous Connection / New User-Agent to IP Without Hostname
  • Device / Initial Breach Chain Compromise
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / Beaconing Activity To External Rare
  • Anomalous File / Numeric Exe Download
  • Device / Large Number of Model Breaches
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compliance / Remote Management Tool On Server

The below screenshot shows Darktrace model breaches occurring together during the compromise of one customer:

Figure 9: Darktrace model breaches occurring together

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Cloud

/

January 14, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Cloud

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI