Blog
/
/
April 1, 2020

How AI Caught APT41 Exploiting Vulnerabilities

Analyzing how the cyber-criminal group APT41 exploited a zero-day vulnerability, we show how Darktrace’s AI detected and investigated the threat immediately.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
01
Apr 2020

Executive summary

  • Darktrace detected several highly targeted attacks in early March, well before any associated signatures had become available. Two weeks later, the attacks were attributed to Chinese threat-actor APT41.
  • APT41 exploited the Zoho ManageEngine zero-day vulnerability CVE-2020-10189. Darktrace automatically detected and reported on the attack in its earliest stages, enabling customers to contain the threat before it could make an impact.
  • The intrusions described here were part of a wider campaign aiming to gain initial access to as many companies as possible during the window of opportunity presented by CVE-2020-10189.
  • The reports generated by Darktrace highlighted and delineated every aspect of the incident in the form of a meaningful security narrative. Even a junior responder could have reviewed this output and acted on this zero-day APT attack in under 5 minutes.

Fighting APT41’s global attack

In early March, Darktrace detected several advanced attacks targeting customers in the US and Europe. A majority of these customers are in the legal sector. The attacks shared the same Techniques, Tools & Procedures (TTPs), targeting public-facing servers and exploiting recent high-impact vulnerabilities. Last week, FireEye attributed this suspicious activity to the Chinese cyber espionage group APT41.

This campaign used the Zoho ManageEngine zero-day vulnerability CVE-2020-10189 to get access to various companies, but little to no follow-up was detected after initial intrusion. This activity indicates a broad-brush campaign to get initial access to as many target companies as possible during the zero-day window of opportunity.

The malicious activity observed by Darktrace took place late on Sunday March 8, 2020 and in the morning of March 9, 2020 (UTC), broadly in line with office hours previously attributed to the Chinese cyber espionage group APT41.

The graphic below shows an exemplary timeline from one of the customers targeted by APT41. The attacks observed in other customer environments are identical.

Timeline of the APT41 attack
Figure 1: A timeline of the attack

Technical analysis

The attack described here centered around the Zoho ManageEngine zero-day vulnerability CVE-2020-10189. Most of the attack appears to have been automated.

We observed the initial intrusion, several follow-up payload downloads, and command and control (C2) traffic. In all cases, the activity was contained before any later steps in the attack lifecycle, such as lateral movement or data exfiltration, were identified.

The below screenshot shows an overview of the key AI Analyst detections reported. Not only did it report on the SSL and HTTP C2 traffic, but it also reported on the payload downloads:

Cyber AI Analyst breaks down the APT41 attack
Figure 2: SSL C2 detection by Cyber AI Analyst
Figure 3: Payload detection by Cyber AI Analyst

Initial compromise

The initial compromise began with the successful exploitation of the Zoho ManageEngine zero-day vulnerability CVE-2020-10189. Following the initial intrusion, the Microsoft BITSAdmin command line tool was used to fetch and install a malicious Batch file, described below:

install.bat (MD5: 7966c2c546b71e800397a67f942858d0) from infrastructure 66.42.98[.]220 on port 12345.

Source: 10.60.50.XX
Destination: 66.42.98[.]220
Destination Port: 12345
Content Type: application/x-msdownload
Protocol: HTTP
Host: 66.42.98[.]220
URI: /test/install.bat
Method: GET
Status Code: 200

Figure 4: Outbound connection fetching batch file

Shortly after the initial compromise, the first stage Cobalt Strike Beacon LOADER was downloaded.

Cobalt Strike Beacon loader screenshot
Figure 5: Detection of the Cobalt Strike Beacon LOADER

Command and Control traffic

Interestingly, TeamViewer activity and the download of Notepad++ was taking place at the same time as the C2 traffic was starting in some of the customer attacks. This indicates APT41 trying to use familiar tools instead of completely ‘Living off the Land’.

Storesyncsvc.dll was a Cobalt Strike Beacon implant (trial-version) which connected to exchange.dumb1[.]com. A successful DNS resolution to 74.82.201[.]8 was identified, which Darktrace discerned as a successful SSL connection to a hostname with Dynamic DNS properties.

Multiple connections to exchange.dumb1[.]com were identified as beaconing to a C2 center. This C2 traffic to the initial Cobalt Strike Beacon was leveraged to download a second stage payload.

Interestingly, TeamViewer activity and the download of Notepad++ was taking place at the same time as the C2 traffic was starting in some of the customer attacks. This indicates APT41 trying to use familiar tools instead of completely ‘Living off the Land’. There is at least high certainty that the use of these two tools can be attributed to this intrusion instead of regular business activity. Notepad++ was not normally used in the target customers’ environments, nor was TeamViewer – in fact, the use of both applications was 100% unusual for the targeted organizations.

Attack tools download

CertUtil.exe, a command line program installed as part of Certificate Services, was then leveraged to connect externally and download the second stage payload.

Detection associated with Meterpreter activity

Figure 6: Darktrace detecting the usage of CertUtil

A few hours after this executable download, the infected device made an outbound HTTP connection requesting the URI /TzGG, which was identified as Meterpreter downloading further shellcode for the Cobalt Strike Beacon.

Figure 7: Detection associated with Meterpreter activity. No lateral movement or significant data exfiltration was observed.

How Cyber AI Analyst reported on the zero-day exploit

Darktrace not only detected this zero-day attack campaign, but Cyber AI Analyst also saved security teams valuable time by investigating disparate security events and generating a report that immediately put them in a position to take action.

The below screenshot shows the AI Analyst incidents reported in one infected environment, over the eight days covering the intrusion period. The first incident on the left represents the APT activity described here. The other five incidents are independent of the APT activity and not as severe.

AI Analyst Security Incidents
Figure 8: The security incidents surfaced by AI Analyst

AI Analyst reported on six incidents in total over the eight-day period. Each AI Analyst incident includes a detailed timeline and summary of the incident, in a concise format that takes an average of two minutes to review. This means that with Cyber AI Analyst, even a non-technical person could have actioned a response to this sophisticated, zero-day incident in less than five minutes.

Conclusion

Without public Indicators of Compromise (IoCs) or any open-source intelligence available, targeted attacks are incredibly difficult to detect. Moreover, even the best detections are useless if they cannot be actioned by a security analyst at an early stage. Too often this occurs because of an overwhelming volume of alerts, or simply because the skills barrier to triage and investigation is too high.

This appears to be a broad campaign to gain initial access to many different companies and sectors. While very sophisticated in nature, the threat sacrificed stealth for speed by targeting many companies at the same time. APT41 wanted to utilize the limited window of opportunity that the Zoho zero-day provided before IT staff starts patching.

Darktrace’s Cyber AI is specifically designed to detect the subtle signs of targeted, unknown attacks at an early stage, without relying on prior knowledge or IoCs. It achieves this by continuously learning the normal patterns of behavior for every user, device, and associated peer group from scratch, and ‘on the job’.

In the face of this zero-day attack campaign, the AI’s ability to (a) detect unknown threats with self-learning AI and (b) augment strained responders with AI-driven investigations and reporting proved crucial. Indeed, it ensured that the attacks were swiftly contained before escalating to the later stages of the attack lifecycle.

Indicators of Compromise

Selection of Darktrace model breaches:

  • Anomalous File / Script from Rare External
  • Anomalous File / EXE from Rare External Location
  • Compromise / SSL to DynDNS
  • Compliance / CertUtil External Connection
  • Anomalous Connection / CertUtil Requesting Non Certificate
  • Anomalous Connection / CertUtil to Rare Destination
  • Anomalous Connection / New User-Agent to IP Without Hostname
  • Device / Initial Breach Chain Compromise
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / Beaconing Activity To External Rare
  • Anomalous File / Numeric Exe Download
  • Device / Large Number of Model Breaches
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compliance / Remote Management Tool On Server

The below screenshot shows Darktrace model breaches occurring together during the compromise of one customer:

Figure 9: Darktrace model breaches occurring together

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Network

/

September 9, 2025

The benefits of bringing together network and email security

Default blog imageDefault blog image

In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

Technical advantages

Pre-alert intelligence: Gathering data before the threat strikes

Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

Alert-related intelligence: Connecting the dots in real time

Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

Operational advantages

Streamlining SecOps across teams

In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

The outcome is more than convenience: it’s faster, more informed decision-making across the board.

Reducing time-to-meaning and enabling faster response

A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

Commercial advantages

While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

[related-resource]

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response

Blog

/

Cloud

/

September 9, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

solesloft incident Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI