Blog
/
Network
/
June 23, 2023

How Darktrace Quickly Foiled An Information Stealer

Discover how Darktrace thwarted the CryptBot malware in just 2 seconds. Learn about this fast-moving threat and the defense strategies employed.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
Jun 2023

The recent trend of threat actors using information stealer malware, designed to gather and exfiltrate confidential data, shows no sign of slowing. With new or updated info-stealer strains appearing in the wild on a regular basis, it came as no surprise to see a surge in yet another prolific variant in late 2022, CryptBot.

What is CryptBot?

CryptBot is a Windows-based trojan malware that was first discovered in the wild in December 2019. It belongs to the prolific category of information stealers whose primary objective, as the name suggests, is to gather information from infected devices and send it to the threat actor.

ZeuS was reportedly the first info-stealer to be discovered, back in 2006. After its code was leaked, many other variants came to light and have been gaining popularity amongst cyber criminals [1] [2] [3]. Indeed, Inside the SOC has discussed multiple infections across its customer base associated with several types of stealers in the past months [4] [5] [6] [7]. 

The Darktrace Threat Research team investigated CryptBot infections on the digital environments of more than 40 different Darktrace customers between October 2022 and January 2023. Darktrace DETECT™ and its anomaly-based approach to threat detection allowed it to successfully identify the unusual activity surrounding these info-stealer infections on customer networks. Meanwhile, Darktrace RESPOND™, when enabled in autonomous response mode, was able to quickly intervene and prevent the exfiltration of sensitive company data.

Why is info-stealer malware popular?

It comes as no surprise that info-stealers have “become one of the most discussed malware types on the cybercriminal underground in 2022”, according to Accenture’s Cyber Threat Intelligence team [10]. This is likely in part due to the fact that:

More sensitive data on devices

Due to the digitization of many aspects of our lives, such as banking and social interactions, a trend accelerated by the COVID-19 pandemic.

Cost effective

Info-stealers provide a great return on investment (ROI) for threat actors looking to exfiltrate data without having to do the traditional internal reconnaissance and data transfer associated with data theft. Info-stealers are usually cheap to purchase and are available through Malware-as-a-Service (MaaS) offerings, allowing less technical and resourceful threat actors in on the stealing action. This makes them a prevalent threat in the malware landscape. 

How does CryptBot work?

The techniques employed by info-stealers to gather and exfiltrate data as well as the type of data targeted vary from malware to malware, but the data targeted typically includes login credentials for a variety of applications, financial information, cookies and global information about the infected computer [8]. Given its variety and sensitivity, threat actors can leverage the stolen data in several ways to make a profit. In the case of CryptBot, the data obtained is sold on forums or underground data marketplaces and can be later employed in higher profile attacks [9]. For example, stolen login information has previously been leveraged in credential-based attacks, which can successfully bypass authentication-based security measures, including multi-factor authentication (MFA). 

CryptBot functionalities

Like many information stealers, CryptBot is designed to steal a variety of sensitive personal and financial information such as browser credentials, cookies and history information and social media accounts login information, as well as cryptocurrency wallets and stored credit card information [11]. General information (e.g., OS, installed applications) about the infected computer is also retrieved. Browsers targeted by CryptBot include Chrome, Firefox, and Edge. In early 2022, CryptBot’s code was revamped in order to streamline its data extraction capabilities and improve its overall efficiency, an update that coincided with a rise in the number of infections [11] [12].

Some of CryptBot's functionalities were removed and its exfiltration process was streamlined, which resulted in a leaner payload, around half its original size and a quicker infection process [11]. Some of the features removed included sandbox detection and evasion functionalities, the collection of desktop text files and screen captures, which were deemed unnecessary. At the same time, the code was improved in order to include new Chrome versions released after CryptBot’s first appearance in 2019. Finally, its exfiltration process was simplified: prior to its 2022 update, the malware saved stolen data in two separate folders before sending it to two separate command and control (C2) domains. Post update, the data is only saved in one location and sent to one C2 domain, which is hardcoded in the C2 transmission function of the code. This makes the infection process much more streamlined, taking only a few minutes from start to finish. 

Aside from the update to its malware code, CryptBot regularly updates and refreshes its C2 domains and dropper websites, making it a highly fluctuating malware with constantly new indicators of compromise and distribution sites. 

Even though CryptBot is less known than other info-stealers, it was reportedly infecting thousands of devices daily in the first months of 2020 [13] and its continued prevalence resulted in Google taking legal action against its distribution infrastructure at the end of April 2023 [14].  

How is CryptBot obtained?

CryptBot is primarily distributed through malicious websites offering free and illegally modified software (i.e., cracked software) for common commercial programs (e.g., Microsoft Windows and Office, Adobe Photoshop, Google Chrome, Nitro PDF Pro) and video games. From these ‘malvertising’ pages, the user is redirected through multiple sites to the actual payload dropper page [15]. This distribution method has seen a gain in popularity amongst info-stealers in recent months and is also used by other malware families such as Raccoon Stealer and Vidar [16] [17].

A same network of cracked software websites can be used to download different malware strains, which can result in multiple simultaneous infections. Additionally, these networks often use search engine optimization (SEO) in order to make adverts for their malware distributing sites appear at the top of the Google search results page, thus increasing the chances of the malicious payloads being downloaded.

Furthermore, CryptBot leverages Pay-Per-Install (PPI) services such as 360Installer and PrivateLoader, a downloader malware family used to deliver payloads of multiple malware families operated by different threat actors [18] [19] [20]. The use of this distribution method for CryptBot payloads appears to have stemmed from its 2022 update. According to Google, 161 active domains were associated with 360Installer, of which 90 were associated with malware delivery activities and 29 with the delivery of CryptBot malware specifically. Google further identified hundreds of domains used by CryptBot as C2 sites, all of which appear to be hosted on the .top top-level domain [21].

This simple yet effective distribution tactic, combined with the MaaS model and the lucrative prospects of selling the stolen data resulted in numerous infections. Indeed, CryptBot was estimated to have infected over 670,000 computers in 2022 [14]. Even though the distribution method chosen means that most of the infected devices are likely to be personal computers, bring your own device (BYOD) policies and users’ tendency to reuse passwords means that corporate environments are also at risk. 

CryptBot Attack Overview

In some cases observed by Darktrace, after connecting to malvertising websites, devices were seen making encrypted SSL connections to file hosting services such as MediaFire or Mega, while in others devices were observed connecting to an endpoint associated with a content delivery network. This is likely the location from where the malware payload was downloaded alongside cracked software, which is executed by the unsuspecting user. As the user expects to run an executable file to install their desired software, the malware installation often happens without the user noticing.

Some of the malvertising sites observed by Darktrace on customer deployments were crackful[.]com, modcrack[.]net, windows-7-activator[.]com and office-activator[.]com. However, in many cases detected by Darktrace, CryptBot was propagated via websites offering trojanized KMSPico software (e.g., official-kmspico[.]com, kmspicoofficial[.]com). KMSPico is a popular Microsoft Windows and Office product activator that emulates a Windows Key Management Services (KMS) server to activate licenses fraudulently. 

Once it has been downloaded and executed, CryptBot will search the system for confidential information and create a folder with a seemingly randomly generated name, matching the regex [a-zA-Z]{10}, to store the gathered sensitive data, ready for exfiltration. 

Figure 1: Packet capture (PCAP) of an HTTP POST request showing the file with the stolen data being sent over the connection.
Figure 1: Packet capture (PCAP) of an HTTP POST request showing the file with the stolen data being sent over the connection.

This data is then sent to the C2 domain via HTTP POST requests on port 80 to the URI /gate.php. As previously stated, CryptBot C2 infrastructure is changed frequently and many of the domains seen by Darktrace had been registered within the previous 30 days. The domain names detected appeared to have been generated by an algorithm, following the regex patterns [a-z]{6}[0-9]{2,3}.top or [a-z]{6}[0-9]{2,3}.cfd. In several cases, the C2 domain had not been flagged as malicious by other security vendors or had just one detection. This is likely because of the frequent changes in the C2 infrastructure operated by the threat actors behind CryptBot, with new malicious domains being created periodically to avoid detection. This makes signature-based security solutions much less efficient to detect and block connections to malicious domains. Additionally, the fact that the stolen data is sent over regular HTTP POST requests, which are used daily as part of a multitude of legitimate processes such as file uploads or web form submissions, allows the exfiltration connections to blend in with normal and legitimate traffic making it difficult to isolate and detect as malicious activity. 

In this context, anomaly-based security detections such as Darktrace DETECT are the best way to pick out these anomalous connections amidst legitimate Internet traffic. In the case of CryptBot, two DETECT models were seen consistently breaching for CryptBot-related activity: ‘Device / Suspicious Domain’, breaching for connections to 100% rare C2 .top domains, and ‘Anomalous Connection / POST to PHP on New External Host’, breaching on the data exfiltration HTTP POST request. 

In deployments where Darktrace RESPOND was deployed, a RESPOND model breached within two seconds of the first HTTP POST request. If enabled in autonomous mode, RESPOND would block the data exfiltration connections, thus preventing the data safe from being sold in underground forums to other threat actors. In one of the cases investigated by Darktrace’s Threat Research team, DETECT was able to successfully identify and alert the customer about CryptBot-related malicious activity on a device that Darktrace had only begun to monitor one day before, showcasing how fast Darktrace’s Self-Learning AI learns every nuance of customer networks and the devices within it.

In most cases investigated by Darktrace, fewer than 5 minutes elapsed between the first connection to the endpoint offering free cracked software and the data being exfiltrated to the C2 domain. For example, in one of the attack chains observed in a university’s network, a device was seen connecting to the 100% rare endpoint official-kmspico[.]com at 16:53:47 (UTC).

Device Event Log showing SSL connections to the official-kmspico[.]com malvertising website.
Figure 2: Device Event Log showing SSL connections to the official-kmspico[.]com malvertising website.

One minute later, at 16:54:19 (UTC), the same device was seen connecting to two mega[.]co[.]nz subdomains and downloading around 13 MB of data from them. As mentioned previously, these connections likely represent the CryptBot payload and cracked software download.

Device Event Log showing SSL connections to mega[.]com endpoints following the connection to the malvertising site.
Figure 3: Device Event Log showing SSL connections to mega[.]com endpoints following the connection to the malvertising site.

At 16:56:01 (UTC), Darktrace detected the device making a first HTTP POST request to the 100% rare endpoint, avomyj24[.]top, which has been associated with CryptBot’s C2 infrastructure [22]. This initial HTTP POST connection likely represents the transfer of confidential data to the attacker’s infrastructure.

Device Event Log showing HTTP connections made by the infected device to the C2 domain. 
Figure 4: Device Event Log showing HTTP connections made by the infected device to the C2 domain. 

The full attack chain, from visiting the malvertising website to the malicious data egress, took less than three minutes to complete. In this circumstance, the machine-speed detection and response capabilities offered by Darktrace DETECT and RESPOND are paramount in order to stop CryptBot before it can successfully exfiltrates sensitive data. This is an incredibly quick infection timeline, with no lateral movement nor privilege escalation required to carry out the malware’s objective. 

Device Event Log showing the DETECT and RESPOND models breached during the attack. 
Figure 5: Device Event Log showing the DETECT and RESPOND models breached during the attack. 

Darktrace Cyber AI Analyst incidents were also generated as a result of this activity, displaying all relevant information in one panel for easy review by customer security teams.

Cyber AI Analyst event log showing the HTTP connections made by the breach device to the C2 endpoint.
Figure 6: Cyber AI Analyst event log showing the HTTP connections made by the breach device to the C2 endpoint.

Conclusion 

CryptBot info-stealer is fast, efficient, and apt at evading detection given its small size and swift process of data gathering and exfiltration via legitimate channels. Its constantly changing C2 infrastructure further makes it difficult for traditional security tools that really on rules and signatures or known indicators of compromise (IoCs) to detect these infections. 

In the face of such a threat, Darktrace’s anomaly-based detection allows it to recognize subtle deviations in a device’s pattern of behavior that may signal an evolving threat and instantly bring it to the attention of security teams. Darktrace DETECT is able to distinguish between benign activity and malicious behavior, even from newly monitored devices, while Darktrace RESPOND can move at machine-speed to prevent even the fastest moving threat actors from stealing confidential company data, as it demonstrated here by stopping CryptBot infections in as little as 2 seconds.

Credit to Alexandra Sentenac, Cyber Analyst, Roberto Romeu, Senior SOC Analyst

Darktrace Model Detections  

AI Analyst Coverage 

  • Possible HTTP Command and Control  

DETECT Model Breaches  

  • Device / Suspicious Domain 
  • Anomalous Connection / POST to PHP on New External Host 
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname 
  • Compromise / Multiple SSL to Rare DGA Domains

List of IOCs

Indicator Type Description
luaigz34[.]top Hostname CryptBot C2 endpoint
watibt04[.]top Hostname CryptBot C2 endpoint
avolsq14[.]top Hostname CryptBot C2 endpoint

MITRE ATT&CK Mapping

Category Technique Tactic
INITIAL ACCESS Drive-by Compromise - T1189 N/A
COMMAND AND CONTROL Web Protocols - T1071.001 N/A
COMMAND AND CONTROL Domain Generation Algorithm - T1568.002 N/A

References

[1] https://www.malwarebytes.com/blog/threats/info-stealers

[2] https://cybelangel.com/what-are-infostealers/

[3] https://ke-la.com/information-stealers-a-new-landscape/

[4] https://darktrace.com/blog/vidar-info-stealer-malware-distributed-via-malvertising-on-google

[5] https://darktrace.com/blog/a-surge-of-vidar-network-based-details-of-a-prolific-info-stealer 

[6] https://darktrace.com/blog/laplas-clipper-defending-against-crypto-currency-thieves-with-detect-respond

[7] https://darktrace.com/blog/amadey-info-stealer-exploiting-n-day-vulnerabilities 

[8] https://cybelangel.com/what-are-infostealers/

[9] https://webz.io/dwp/the-top-10-dark-web-marketplaces-in-2022/

[10] https://www.accenture.com/us-en/blogs/security/information-stealer-malware-on-dark-web

[11] https://www.bleepingcomputer.com/news/security/revamped-cryptbot-malware-spread-by-pirated-software-sites/

[12] https://blogs.blackberry.com/en/2022/03/threat-thursday-cryptbot-infostealer

[13] https://www.deepinstinct.com/blog/cryptbot-how-free-becomes-a-high-price-to-pay

[14] https://blog.google/technology/safety-security/continuing-our-work-to-hold-cybercriminal-ecosystems-accountable/

[15] https://asec.ahnlab.com/en/31802/

[16] https://darktrace.com/blog/the-last-of-its-kind-analysis-of-a-raccoon-stealer-v1-infection-part-1

[17] https://www.trendmicro.com/pt_br/research/21/c/websites-hosting-cracks-spread-malware-adware.html

[18] https://intel471.com/blog/privateloader-malware

[19] https://cyware.com/news/watch-out-pay-per-install-privateloader-malware-distribution-service-is-flourishing-888273be 

[20] https://regmedia.co.uk/2023/04/28/handout_google_cryptbot_complaint.pdf

[21] https://www.bankinfosecurity.com/google-wins-court-order-to-block-cryptbot-infrastructure-a-21905

[22] https://github.com/stamparm/maltrail/blob/master/trails/static/malware/cryptbot.txt

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

Identity

/

July 8, 2025

Defending the Cloud: Stopping Cyber Threats in Azure and AWS with Darktrace

fingerprintDefault blog imageDefault blog image

Real-world intrusions across Azure and AWS

As organizations pursue greater scalability and flexibility, cloud platforms like Microsoft Azure and Amazon Web Services (AWS) have become essential for enabling remote operations and digitalizing corporate environments. However, this shift introduces a new set of security risks, including expanding attack surfaces, misconfigurations, and compromised credentials frequently exploited by threat actors.

This blog dives into three instances of compromise within a Darktrace customer’s Azure and AWS environment which Darktrace.

  1. The first incident took place in early 2024 and involved an attacker compromising a legitimate user account to gain unauthorized access to a customer’s Azure environment.
  2. The other two incidents, taking place in February and March 2025, targeted AWS environments. In these cases, threat actors exfiltrated corporate data, and in one instance, was able to detonate ransomware in a customer’s environment.

Case 1 - Microsoft Azure

Simplified timeline of the attack on a customer’s Azure environment.
Figure 1: Simplified timeline of the attack on a customer’s Azure environment.

In early 2024, Darktrace identified a cloud compromise on the Azure cloud environment of a customer in the Europe, the Middle East and Africa (EMEA) region.

Initial access

In this case, a threat actor gained access to the customer’s cloud environment after stealing access tokens and creating a rogue virtual machine (VM). The malicious actor was found to have stolen access tokens belonging to a third-party external consultant’s account after downloading cracked software.

With these stolen tokens, the attacker was able to authenticate to the customer’s Azure environment and successfully modified a security rule to allow inbound SSH traffic from a specific IP range (i.e., securityRules/AllowCidrBlockSSHInbound). This was likely performed to ensure persistent access to internal cloud resources.

Detection and investigation of the threat

Darktrace / IDENTITY recognized that this activity was highly unusual, triggering the “Repeated Unusual SaaS Resource Creation” alert.

Cyber AI Analyst launched an autonomous investigation into additional suspicious cloud activities occurring around the same time from the same unusual location, correlating the individual events into a broader account hijack incident.

Cyber AI Analyst’s investigation into unusual cloud activity performed by the compromised account.
Figure 2: Cyber AI Analyst’s investigation into unusual cloud activity performed by the compromised account.
Figure 2: Surrounding resource creation events highlighted by Cyber AI Analyst.
Figure 3: Surrounding resource creation events highlighted by Cyber AI Analyst.
Figure 4: Surrounding resource creation events highlighted by Cyber AI Analyst.

“Create resource service limit” events typically indicate the creation or modification of service limits (i.e., quotas) for a specific Azure resource type within a region. Meanwhile, “Registers the Capacity Resource Provider” events refer to the registration of the Microsoft Capacity resource provider within an Azure subscription, responsible for managing capacity-related resources, particularly those related to reservations and service limits. These events suggest that the threat actor was looking to create new cloud resources within the environment.

Around ten minutes later, Darktrace detected the threat actor creating or modifying an Azure disk associated with a virtual machine (VM), suggesting an attempt to create a rogue VM within the environment.

Threat actors can leverage such rogue VMs to hijack computing resources (e.g., by running cryptomining malware), maintain persistent access, move laterally within the cloud environment, communicate with command-and-control (C2) infrastructure, and stealthily deliver and deploy malware.

Persistence

Several weeks later, the compromised account was observed sending an invitation to collaborate to an external free mail (Google Mail) address.

Darktrace deemed this activity as highly anomalous, triggering a compliance alert for the customer to review and investigate further.

The next day, the threat actor further registered new multi-factor authentication (MFA) information. These actions were likely intended to maintain access to the compromised user account. The customer later confirmed this activity by reviewing the corresponding event logs within Darktrace.

Case 2 – Amazon Web Services

Simplified timeline of the attack on a customer’s AWS environment
Figure 5: Simplified timeline of the attack on a customer’s AWS environment

In February 2025, another cloud-based compromised was observed on a UK-based customer subscribed to Darktrace’s Managed Detection and Response (MDR) service.

How the attacker gained access

The threat actor was observed leveraging likely previously compromised credential to access several AWS instances within customer’s Private Cloud environment and collecting and exfiltrating data, likely with the intention of deploying ransomware and holding the data for ransom.

Darktrace alerting to malicious activity

This observed activity triggered a number of alerts in Darktrace, including several high-priority Enhanced Monitoring alerts, which were promptly investigated by Darktrace’s Security Operations Centre (SOC) and raised to the customer’s security team.

The earliest signs of attack observed by Darktrace involved the use of two likely compromised credentials to connect to the customer’s Virtual Private Network (VPN) environment.

Internal reconnaissance

Once inside, the threat actor performed internal reconnaissance activities and staged the Rclone tool “ProgramData\rclone-v1.69.0-windows-amd64.zip”, a command-line program to sync files and directories to and from different cloud storage providers, to an AWS instance whose hostname is associated with a public key infrastructure (PKI) service.

The threat actor was further observed accessing and downloading multiple files hosted on an AWS file server instance, notably finance and investment-related files. This likely represented data gathering prior to exfiltration.

Shortly after, the PKI-related EC2 instance started making SSH connections with the Rclone SSH client “SSH-2.0-rclone/v1.69.0” to a RockHoster Virtual Private Server (VPS) endpoint (193.242.184[.]178), suggesting the threat actor was exfiltrating the gathered data using the Rclone utility they had previously installed. The PKI instance continued to make repeated SSH connections attempts to transfer data to this external destination.

Darktrace’s Autonomous Response

In response to this activity, Darktrace’s Autonomous Response capability intervened, blocking unusual external connectivity to the C2 server via SSH, effectively stopping the exfiltration of data.

This activity was further investigated by Darktrace’s SOC analysts as part of the MDR service. The team elected to extend the autonomously applied actions to ensure the compromise remained contained until the customer could fully remediate the incident.

Continued reconissance

Around the same time, the threat actor continued to conduct network scans using the Nmap tool, operating from both a separate AWS domain controller instance and a newly joined device on the network. These actions were accompanied by further internal data gathering activities, with around 5 GB of data downloaded from an AWS file server.

The two devices involved in reconnaissance activities were investigated and actioned by Darktrace SOC analysts after additional Enhanced Monitoring alerts had triggered.

Lateral movement attempts via RDP connections

Unusual internal RDP connections to a likely AWS printer instance indicated that the threat actor was looking to strengthen their foothold within the environment and/or attempting to pivot to other devices, likely in response to being hindered by Autonomous Response actions.

This triggered multiple scanning, internal data transfer and unusual RDP alerts in Darktrace, as well as additional Autonomous Response actions to block the suspicious activity.

Suspicious outbound SSH communication to known threat infrastructure

Darktrace subsequently observed the AWS printer instance initiating SSH communication with a rare external endpoint associated with the web hosting and VPS provider Host Department (67.217.57[.]252), suggesting that the threat actor was attempting to exfiltrate data to an alternative endpoint after connections to the original destination had been blocked.

Further investigation using open-source intelligence (OSINT) revealed that this IP address had previously been observed in connection with SSH-based data exfiltration activity during an Akira ransomware intrusion [1].

Once again, connections to this IP were blocked by Darktrace’s Autonomous Response and subsequently these blocks were extended by Darktrace’s SOC team.

The above behavior generated multiple Enhanced Monitoring alerts that were investigated by Darktrace SOC analysts as part of the Managed Threat Detection service.

Enhanced Monitoring alerts investigated by SOC analysts as part of the Managed Detection and Response service.
Figure 5: Enhanced Monitoring alerts investigated by SOC analysts as part of the Managed Detection and Response service.

Final containment and collaborative response

Upon investigating the unusual scanning activity, outbound SSH connections, and internal data transfers, Darktrace analysts extended the Autonomous Response actions previously triggered on the compromised devices.

As the threat actor was leveraging these systems for data exfiltration, all outgoing traffic from the affected devices was blocked for an additional 24 hours to provide the customer’s security team with time to investigate and remediate the compromise.

Additional investigative support was provided by Darktrace analysts through the Security Operations Service, after the customer's opened of a ticket related to the unfolding incident.

Simplified timeline of the attack
Figure 8: Simplified timeline of the attack

Around the same time of the compromise in Case 2, Darktrace observed a similar incident on the cloud environment of a different customer.

Initial access

On this occasion, the threat actor appeared to have gained entry into the AWS-based Virtual Private Cloud (VPC) network via a SonicWall SMA 500v EC2 instance allowing inbound traffic on any port.

The instance received HTTPS connections from three rare Vultr VPS endpoints (i.e., 45.32.205[.]52, 207.246.74[.]166, 45.32.90[.]176).

Lateral movement and exfiltration

Around the same time, the EC2 instance started scanning the environment and attempted to pivot to other internal systems via RDP, notably a DC EC2 instance, which also started scanning the network, and another EC2 instance.  

The latter then proceeded to transfer more than 230 GB of data to the rare external GTHost VPS endpoint 23.150.248[.]189, while downloading hundreds of GBs of data over SMB from another EC2 instance.

Cyber AI Analyst incident generated following the unusual scanning and RDP connections from the initial compromised device.
Figure 7: Cyber AI Analyst incident generated following the unusual scanning and RDP connections from the initial compromised device.

The same behavior was replicated across multiple EC2 instances, whereby compromised instances uploaded data over internal RDP connections to other instances, which then started transferring data to the same GTHost VPS endpoint over port 5000, which is typically used for Universal Plug and Play (UPnP).

What Darktrace detected

Darktrace observed the threat actor uploading a total of 718 GB to the external endpoint, after which they detonated ransomware within the compromised VPC networks.

This activity generated nine Enhanced Monitoring alerts in Darktrace, focusing on the scanning and external data activity, with the earliest of those alerts triggering around one hour after the initial intrusion.

Darktrace’s Autonomous Response capability was not configured to act on these devices. Therefore, the malicious activity was not autonomously blocked and escalated to the point of ransomware detonation.

Conclusion

This blog examined three real-world compromises in customer cloud environments each illustrating different stages in the attack lifecycle.

The first case showcased a notable progression from a SaaS compromise to a full cloud intrusion, emphasizing the critical role of anomaly detection when legitimate credentials are abused.

The latter two incidents demonstrated that while early detection is vital, the ability to autonomously block malicious activity at machine speed is often the most effective way to contain threats before they escalate.

Together, these incidents underscore the need for continuous visibility, behavioral analysis, and machine-speed intervention across hybrid environments. Darktrace's AI-driven detection and Autonomous Response capabilities, combined with expert oversight from its Security Operations Center, give defenders the speed and clarity they need to contain threats and reduce operational disruption, before the situation spirals.

Credit to Alexandra Sentenac (Senior Cyber Analyst) and Dylan Evans (Security Research Lead)

References

[1] https://www.virustotal.com/gui/ip-address/67.217.57.252/community

Case 1

Darktrace / IDENTITY model alerts

IaaS / Compliance / Uncommon Azure External User Invite

SaaS / Resource / Repeated Unusual SaaS Resource Creation

IaaS / Compute / Azure Compute Resource Update

Cyber AI Analyst incidents

Possible Unsecured AzureActiveDirectory Resource

Possible Hijack of Office365 Account

Case 2

Darktrace / NETWORK model alerts

Compromise / SSH Beacon

Device / Multiple Lateral Movement Model Alerts

Device / Suspicious SMB Scanning Activity

Device / SMB Lateral Movement

Compliance / SSH to Rare External Destination

Device / Anomalous SMB Followed By Multiple Model Alerts

Device / Anonymous NTLM Logins

Anomalous Connection / SMB Enumeration

Device / New or Uncommon SMB Named Pipe Device / Network Scan

Device / Suspicious Network Scan Activity

Device / New Device with Attack Tools

Device / RDP Scan Device / Attack and Recon Tools

Compliance / High Priority Compliance Model Alert

Compliance / Outgoing NTLM Request from DC

Compromise / Large Number of Suspicious Successful Connections

Device / Large Number of Model Alerts

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Unusual Activity / Internal Data Transfer

Anomalous Connection / Unusual Internal Connections

Device / Anomalous RDP Followed By Multiple Model Alerts

Unusual Activity / Unusual External Activity

Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Unusual Activity / Unusual External Data to New Endpoint

Anomalous Connection / Multiple Connections to New External TCP Port

Darktrace / Autonomous Response model alerts

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / Manual / Quarantine Device

Antigena / MDR / MDR-Quarantined Device

Antigena / MDR / Model Alert on MDR-Actioned Device

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / Insider Threat / Antigena Internal Data Transfer Block

Cyber AI Analyst incidents

Possible Application Layer Reconnaissance Activity

Scanning of Multiple Devices

Unusual Repeated Connections

Unusual External Data Transfer

Case 3

Darktrace / NETWORK model alerts

Unusual Activity / Unusual Large Internal Transfer

Compliance / Incoming Remote Desktop

Unusual Activity / High Volume Server Data Transfer

Unusual Activity / Internal Data Transfer

Anomalous Connection / Unusual Internal Remote Desktop

Anomalous Connection / Unusual Incoming Data Volume

Anomalous Server Activity / Domain Controller Initiated to Client

Device / Large Number of Model Alerts

Anomalous Connection / Possible Flow Device Brute Force

Device / RDP Scan

Device / Suspicious Network Scan Activity

Device / Network Scan

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Connection / Download and Upload

Unusual Activity / Unusual External Data Transfer

Unusual Activity / High Volume Client Data Transfer

Unusual Activity / Unusual External Activity

Anomalous Connection / Uncommon 1 GiB Outbound

Device / Increased External Connectivity

Compromise / Large Number of Suspicious Successful Connections

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Low and Slow Exfiltration to IP

Unusual Activity / Enhanced Unusual External Data Transfer

Anomalous Connection / Multiple Connections to New External TCP Port

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Multiple Connections to New External UDP Port

Anomalous Connection / Possible Data Staging and External Upload

Unusual Activity / Unusual External Data to New Endpoint

Device / Large Number of Model Alerts from Critical Network Device

Compliance / External Windows Communications

Anomalous Connection / Unusual Internal Connections

Cyber AI Analyst incidents

Scanning of Multiple Devices

Extensive Unusual RDP Connections

MITRE ATT&CK mapping

(Technique name – Tactic ID)

Case 1

Defense Evasion - Modify Cloud Compute Infrastructure: Create Cloud Instance

Persistence – Account Manipulation

Case 2

Initial Access - External Remote Services

Execution - Inter-Process Communication

Persistence - External Remote Services

Discovery - System Network Connections Discovery

Discovery - Network Service Discovery

Discovery - Network Share Discovery

Lateral Movement - Remote Desktop Protocol

Lateral Movement - Remote Services: SMB/Windows Admin Shares

Collection - Data from Network Shared Drive

Command and Control - Protocol Tunneling

Exfiltration - Exfiltration Over Asymmetric Encrypted Non-C2 Protocol

Case 3

Initial Access - Exploit Public-Facing Application

Discovery - Remote System Discovery

Discovery - Network Service Discovery

Lateral Movement - Remote Services

Lateral Movement - Remote Desktop Protocol  

Collection - Data from Network Shared Drive

Collection - Data Staged: Remote Data Staging

Exfiltration - Exfiltration Over C2 Channel

Command and Control - Non-Standard Port

Command and Control – Web Service

Impact - Data Encrypted for Impact

List of IoCs

IoC         Type      Description + Probability

193.242.184[.]178 - IP Address - Possible Exfiltration Server  

45.32.205[.]52  - IP Address  - Possible C2 Infrastructure

45.32.90[.]176 - IP Address - Possible C2 Infrastructure

207.246.74[.]166 - IP Address - Likely C2 Infrastructure

67.217.57[.]252 - IP Address - Likely C2 Infrastructure

23.150.248[.]189 - IP Address - Possible Exfiltration Server

Continue reading
About the author
Alexandra Sentenac
Cyber Analyst

Blog

/

Identity

/

July 7, 2025

Top Eight Threats to SaaS Security and How to Combat Them

login screen for mutli factor authentication Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI