Blog
/
Network
/
June 23, 2023

How Darktrace Quickly Foiled An Information Stealer

Discover how Darktrace thwarted the CryptBot malware in just 2 seconds. Learn about this fast-moving threat and the defense strategies employed.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
Jun 2023

The recent trend of threat actors using information stealer malware, designed to gather and exfiltrate confidential data, shows no sign of slowing. With new or updated info-stealer strains appearing in the wild on a regular basis, it came as no surprise to see a surge in yet another prolific variant in late 2022, CryptBot.

What is CryptBot?

CryptBot is a Windows-based trojan malware that was first discovered in the wild in December 2019. It belongs to the prolific category of information stealers whose primary objective, as the name suggests, is to gather information from infected devices and send it to the threat actor.

ZeuS was reportedly the first info-stealer to be discovered, back in 2006. After its code was leaked, many other variants came to light and have been gaining popularity amongst cyber criminals [1] [2] [3]. Indeed, Inside the SOC has discussed multiple infections across its customer base associated with several types of stealers in the past months [4] [5] [6] [7]. 

The Darktrace Threat Research team investigated CryptBot infections on the digital environments of more than 40 different Darktrace customers between October 2022 and January 2023. Darktrace DETECT™ and its anomaly-based approach to threat detection allowed it to successfully identify the unusual activity surrounding these info-stealer infections on customer networks. Meanwhile, Darktrace RESPOND™, when enabled in autonomous response mode, was able to quickly intervene and prevent the exfiltration of sensitive company data.

Why is info-stealer malware popular?

It comes as no surprise that info-stealers have “become one of the most discussed malware types on the cybercriminal underground in 2022”, according to Accenture’s Cyber Threat Intelligence team [10]. This is likely in part due to the fact that:

More sensitive data on devices

Due to the digitization of many aspects of our lives, such as banking and social interactions, a trend accelerated by the COVID-19 pandemic.

Cost effective

Info-stealers provide a great return on investment (ROI) for threat actors looking to exfiltrate data without having to do the traditional internal reconnaissance and data transfer associated with data theft. Info-stealers are usually cheap to purchase and are available through Malware-as-a-Service (MaaS) offerings, allowing less technical and resourceful threat actors in on the stealing action. This makes them a prevalent threat in the malware landscape. 

How does CryptBot work?

The techniques employed by info-stealers to gather and exfiltrate data as well as the type of data targeted vary from malware to malware, but the data targeted typically includes login credentials for a variety of applications, financial information, cookies and global information about the infected computer [8]. Given its variety and sensitivity, threat actors can leverage the stolen data in several ways to make a profit. In the case of CryptBot, the data obtained is sold on forums or underground data marketplaces and can be later employed in higher profile attacks [9]. For example, stolen login information has previously been leveraged in credential-based attacks, which can successfully bypass authentication-based security measures, including multi-factor authentication (MFA). 

CryptBot functionalities

Like many information stealers, CryptBot is designed to steal a variety of sensitive personal and financial information such as browser credentials, cookies and history information and social media accounts login information, as well as cryptocurrency wallets and stored credit card information [11]. General information (e.g., OS, installed applications) about the infected computer is also retrieved. Browsers targeted by CryptBot include Chrome, Firefox, and Edge. In early 2022, CryptBot’s code was revamped in order to streamline its data extraction capabilities and improve its overall efficiency, an update that coincided with a rise in the number of infections [11] [12].

Some of CryptBot's functionalities were removed and its exfiltration process was streamlined, which resulted in a leaner payload, around half its original size and a quicker infection process [11]. Some of the features removed included sandbox detection and evasion functionalities, the collection of desktop text files and screen captures, which were deemed unnecessary. At the same time, the code was improved in order to include new Chrome versions released after CryptBot’s first appearance in 2019. Finally, its exfiltration process was simplified: prior to its 2022 update, the malware saved stolen data in two separate folders before sending it to two separate command and control (C2) domains. Post update, the data is only saved in one location and sent to one C2 domain, which is hardcoded in the C2 transmission function of the code. This makes the infection process much more streamlined, taking only a few minutes from start to finish. 

Aside from the update to its malware code, CryptBot regularly updates and refreshes its C2 domains and dropper websites, making it a highly fluctuating malware with constantly new indicators of compromise and distribution sites. 

Even though CryptBot is less known than other info-stealers, it was reportedly infecting thousands of devices daily in the first months of 2020 [13] and its continued prevalence resulted in Google taking legal action against its distribution infrastructure at the end of April 2023 [14].  

How is CryptBot obtained?

CryptBot is primarily distributed through malicious websites offering free and illegally modified software (i.e., cracked software) for common commercial programs (e.g., Microsoft Windows and Office, Adobe Photoshop, Google Chrome, Nitro PDF Pro) and video games. From these ‘malvertising’ pages, the user is redirected through multiple sites to the actual payload dropper page [15]. This distribution method has seen a gain in popularity amongst info-stealers in recent months and is also used by other malware families such as Raccoon Stealer and Vidar [16] [17].

A same network of cracked software websites can be used to download different malware strains, which can result in multiple simultaneous infections. Additionally, these networks often use search engine optimization (SEO) in order to make adverts for their malware distributing sites appear at the top of the Google search results page, thus increasing the chances of the malicious payloads being downloaded.

Furthermore, CryptBot leverages Pay-Per-Install (PPI) services such as 360Installer and PrivateLoader, a downloader malware family used to deliver payloads of multiple malware families operated by different threat actors [18] [19] [20]. The use of this distribution method for CryptBot payloads appears to have stemmed from its 2022 update. According to Google, 161 active domains were associated with 360Installer, of which 90 were associated with malware delivery activities and 29 with the delivery of CryptBot malware specifically. Google further identified hundreds of domains used by CryptBot as C2 sites, all of which appear to be hosted on the .top top-level domain [21].

This simple yet effective distribution tactic, combined with the MaaS model and the lucrative prospects of selling the stolen data resulted in numerous infections. Indeed, CryptBot was estimated to have infected over 670,000 computers in 2022 [14]. Even though the distribution method chosen means that most of the infected devices are likely to be personal computers, bring your own device (BYOD) policies and users’ tendency to reuse passwords means that corporate environments are also at risk. 

CryptBot Attack Overview

In some cases observed by Darktrace, after connecting to malvertising websites, devices were seen making encrypted SSL connections to file hosting services such as MediaFire or Mega, while in others devices were observed connecting to an endpoint associated with a content delivery network. This is likely the location from where the malware payload was downloaded alongside cracked software, which is executed by the unsuspecting user. As the user expects to run an executable file to install their desired software, the malware installation often happens without the user noticing.

Some of the malvertising sites observed by Darktrace on customer deployments were crackful[.]com, modcrack[.]net, windows-7-activator[.]com and office-activator[.]com. However, in many cases detected by Darktrace, CryptBot was propagated via websites offering trojanized KMSPico software (e.g., official-kmspico[.]com, kmspicoofficial[.]com). KMSPico is a popular Microsoft Windows and Office product activator that emulates a Windows Key Management Services (KMS) server to activate licenses fraudulently. 

Once it has been downloaded and executed, CryptBot will search the system for confidential information and create a folder with a seemingly randomly generated name, matching the regex [a-zA-Z]{10}, to store the gathered sensitive data, ready for exfiltration. 

Figure 1: Packet capture (PCAP) of an HTTP POST request showing the file with the stolen data being sent over the connection.
Figure 1: Packet capture (PCAP) of an HTTP POST request showing the file with the stolen data being sent over the connection.

This data is then sent to the C2 domain via HTTP POST requests on port 80 to the URI /gate.php. As previously stated, CryptBot C2 infrastructure is changed frequently and many of the domains seen by Darktrace had been registered within the previous 30 days. The domain names detected appeared to have been generated by an algorithm, following the regex patterns [a-z]{6}[0-9]{2,3}.top or [a-z]{6}[0-9]{2,3}.cfd. In several cases, the C2 domain had not been flagged as malicious by other security vendors or had just one detection. This is likely because of the frequent changes in the C2 infrastructure operated by the threat actors behind CryptBot, with new malicious domains being created periodically to avoid detection. This makes signature-based security solutions much less efficient to detect and block connections to malicious domains. Additionally, the fact that the stolen data is sent over regular HTTP POST requests, which are used daily as part of a multitude of legitimate processes such as file uploads or web form submissions, allows the exfiltration connections to blend in with normal and legitimate traffic making it difficult to isolate and detect as malicious activity. 

In this context, anomaly-based security detections such as Darktrace DETECT are the best way to pick out these anomalous connections amidst legitimate Internet traffic. In the case of CryptBot, two DETECT models were seen consistently breaching for CryptBot-related activity: ‘Device / Suspicious Domain’, breaching for connections to 100% rare C2 .top domains, and ‘Anomalous Connection / POST to PHP on New External Host’, breaching on the data exfiltration HTTP POST request. 

In deployments where Darktrace RESPOND was deployed, a RESPOND model breached within two seconds of the first HTTP POST request. If enabled in autonomous mode, RESPOND would block the data exfiltration connections, thus preventing the data safe from being sold in underground forums to other threat actors. In one of the cases investigated by Darktrace’s Threat Research team, DETECT was able to successfully identify and alert the customer about CryptBot-related malicious activity on a device that Darktrace had only begun to monitor one day before, showcasing how fast Darktrace’s Self-Learning AI learns every nuance of customer networks and the devices within it.

In most cases investigated by Darktrace, fewer than 5 minutes elapsed between the first connection to the endpoint offering free cracked software and the data being exfiltrated to the C2 domain. For example, in one of the attack chains observed in a university’s network, a device was seen connecting to the 100% rare endpoint official-kmspico[.]com at 16:53:47 (UTC).

Device Event Log showing SSL connections to the official-kmspico[.]com malvertising website.
Figure 2: Device Event Log showing SSL connections to the official-kmspico[.]com malvertising website.

One minute later, at 16:54:19 (UTC), the same device was seen connecting to two mega[.]co[.]nz subdomains and downloading around 13 MB of data from them. As mentioned previously, these connections likely represent the CryptBot payload and cracked software download.

Device Event Log showing SSL connections to mega[.]com endpoints following the connection to the malvertising site.
Figure 3: Device Event Log showing SSL connections to mega[.]com endpoints following the connection to the malvertising site.

At 16:56:01 (UTC), Darktrace detected the device making a first HTTP POST request to the 100% rare endpoint, avomyj24[.]top, which has been associated with CryptBot’s C2 infrastructure [22]. This initial HTTP POST connection likely represents the transfer of confidential data to the attacker’s infrastructure.

Device Event Log showing HTTP connections made by the infected device to the C2 domain. 
Figure 4: Device Event Log showing HTTP connections made by the infected device to the C2 domain. 

The full attack chain, from visiting the malvertising website to the malicious data egress, took less than three minutes to complete. In this circumstance, the machine-speed detection and response capabilities offered by Darktrace DETECT and RESPOND are paramount in order to stop CryptBot before it can successfully exfiltrates sensitive data. This is an incredibly quick infection timeline, with no lateral movement nor privilege escalation required to carry out the malware’s objective. 

Device Event Log showing the DETECT and RESPOND models breached during the attack. 
Figure 5: Device Event Log showing the DETECT and RESPOND models breached during the attack. 

Darktrace Cyber AI Analyst incidents were also generated as a result of this activity, displaying all relevant information in one panel for easy review by customer security teams.

Cyber AI Analyst event log showing the HTTP connections made by the breach device to the C2 endpoint.
Figure 6: Cyber AI Analyst event log showing the HTTP connections made by the breach device to the C2 endpoint.

Conclusion 

CryptBot info-stealer is fast, efficient, and apt at evading detection given its small size and swift process of data gathering and exfiltration via legitimate channels. Its constantly changing C2 infrastructure further makes it difficult for traditional security tools that really on rules and signatures or known indicators of compromise (IoCs) to detect these infections. 

In the face of such a threat, Darktrace’s anomaly-based detection allows it to recognize subtle deviations in a device’s pattern of behavior that may signal an evolving threat and instantly bring it to the attention of security teams. Darktrace DETECT is able to distinguish between benign activity and malicious behavior, even from newly monitored devices, while Darktrace RESPOND can move at machine-speed to prevent even the fastest moving threat actors from stealing confidential company data, as it demonstrated here by stopping CryptBot infections in as little as 2 seconds.

Credit to Alexandra Sentenac, Cyber Analyst, Roberto Romeu, Senior SOC Analyst

Darktrace Model Detections  

AI Analyst Coverage 

  • Possible HTTP Command and Control  

DETECT Model Breaches  

  • Device / Suspicious Domain 
  • Anomalous Connection / POST to PHP on New External Host 
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname 
  • Compromise / Multiple SSL to Rare DGA Domains

List of IOCs

Indicator Type Description
luaigz34[.]top Hostname CryptBot C2 endpoint
watibt04[.]top Hostname CryptBot C2 endpoint
avolsq14[.]top Hostname CryptBot C2 endpoint

MITRE ATT&CK Mapping

Category Technique Tactic
INITIAL ACCESS Drive-by Compromise - T1189 N/A
COMMAND AND CONTROL Web Protocols - T1071.001 N/A
COMMAND AND CONTROL Domain Generation Algorithm - T1568.002 N/A

References

[1] https://www.malwarebytes.com/blog/threats/info-stealers

[2] https://cybelangel.com/what-are-infostealers/

[3] https://ke-la.com/information-stealers-a-new-landscape/

[4] https://darktrace.com/blog/vidar-info-stealer-malware-distributed-via-malvertising-on-google

[5] https://darktrace.com/blog/a-surge-of-vidar-network-based-details-of-a-prolific-info-stealer 

[6] https://darktrace.com/blog/laplas-clipper-defending-against-crypto-currency-thieves-with-detect-respond

[7] https://darktrace.com/blog/amadey-info-stealer-exploiting-n-day-vulnerabilities 

[8] https://cybelangel.com/what-are-infostealers/

[9] https://webz.io/dwp/the-top-10-dark-web-marketplaces-in-2022/

[10] https://www.accenture.com/us-en/blogs/security/information-stealer-malware-on-dark-web

[11] https://www.bleepingcomputer.com/news/security/revamped-cryptbot-malware-spread-by-pirated-software-sites/

[12] https://blogs.blackberry.com/en/2022/03/threat-thursday-cryptbot-infostealer

[13] https://www.deepinstinct.com/blog/cryptbot-how-free-becomes-a-high-price-to-pay

[14] https://blog.google/technology/safety-security/continuing-our-work-to-hold-cybercriminal-ecosystems-accountable/

[15] https://asec.ahnlab.com/en/31802/

[16] https://darktrace.com/blog/the-last-of-its-kind-analysis-of-a-raccoon-stealer-v1-infection-part-1

[17] https://www.trendmicro.com/pt_br/research/21/c/websites-hosting-cracks-spread-malware-adware.html

[18] https://intel471.com/blog/privateloader-malware

[19] https://cyware.com/news/watch-out-pay-per-install-privateloader-malware-distribution-service-is-flourishing-888273be 

[20] https://regmedia.co.uk/2023/04/28/handout_google_cryptbot_complaint.pdf

[21] https://www.bankinfosecurity.com/google-wins-court-order-to-block-cryptbot-infrastructure-a-21905

[22] https://github.com/stamparm/maltrail/blob/master/trails/static/malware/cryptbot.txt

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

Cloud

/

September 8, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

solesloft incident Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

Compliance

/

September 8, 2025

Cyber Assessment Framework v4.0 Raises the Bar: 6 Questions every security team should ask about their security posture

CAF v4.0 cyber assessment frameworkDefault blog imageDefault blog image

What is the Cyber Assessment Framework?

The Cyber Assessment Framework (CAF) acts as guide for organizations, specifically across essential services, critical national infrastructure and regulated sectors, across the UK for assessing, managing and improving their cybersecurity, cyber resilience and cyber risk profile.

The guidance in the Cyber Assessment Framework aligns with regulations such as The Network and Information Systems Regulations (NIS), The Network and Information Security Directive (NIS2) and the Cyber Security and Resilience Bill.

What’s new with the Cyber Assessment Framework 4.0?

On 6 August 2025, the UK’s National Cyber Security Centre (NCSC) released Cyber Assessment Framework 4.0 (CAF v4.0) a pivotal update that reflects the increasingly complex threat landscape and the regulatory need for organisations to respond in smarter, more adaptive ways.

The Cyber Assessment Framework v4.0 introduces significant shifts in expectations, including, but not limited to:

  • Understanding threats in terms of the capabilities, methods and techniques of threat actors and the importance of maintaining a proactive security posture (A2.b)
  • The use of secure software development principles and practices (A4.b)
  • Ensuring threat intelligence is understood and utilised - with a focus on anomaly-based detection (C1.f)
  • Performance of proactive threat hunting with automation where appropriate (C2.a)

This blog post will focus on these components of the framework. However, we encourage readers to get the full scope of the framework by visiting the NCSC website where they can access the full framework here.

In summary, the changes to the framework send a clear signal: the UK’s technical authority now expects organisations to move beyond static rule-based systems and embrace more dynamic, automated defences. For those responsible for securing critical national infrastructure and essential services, these updates are not simply technical preferences, but operational mandates.

At Darktrace, this evolution comes as no surprise. In fact, it reflects the approach we've championed since our inception.

Why Darktrace? Leading the way since 2013

Darktrace was built on the principle that detecting cyber threats in real time requires more than signatures, thresholds, or retrospective analysis. Instead, we pioneered a self-learning approach powered by artificial intelligence, that understands the unique “normal” for every environment and uses this baseline to spot subtle deviations indicative of emerging threats.

From the beginning, Darktrace has understood that rules and lists will never keep pace with adversaries. That’s why we’ve spent over a decade developing AI that doesn't just alert, it learns, reasons, explains, and acts.

With Cyber Assessment Framework v4.0, the bar has been raised to meet this new reality. For technical practitioners tasked with evaluating their organisation’s readiness, there are five essential questions that should guide the selection or validation of anomaly detection capabilities.

6 Questions you should ask about your security posture to align with CAF v4

1. Can your tools detect threats by identifying anomalies?

Cyber Assessment Framework v4.0 principle C1.f has been added in this version and requires that, “Threats to the operation of network and information systems, and corresponding user and system behaviour, are sufficiently understood. These are used to detect cyber security incidents.”

This marks a significant shift from traditional signature-based approaches, which rely on known Indicators of Compromise (IOCs) or predefined rules to an expectation that normal user and system behaviour is understood to an extent enabling abnormality detection.

Why this shift?

An overemphasis on threat intelligence alone leaves defenders exposed to novel threats or new variations of existing threats. By including reference to “understanding user and system behaviour” the framework is broadening the methods of threat detection beyond the use of threat intelligence and historical attack data.

While CAF v4.0 places emphasis on understanding normal user and system behaviour and using that understanding to detect abnormalities and as a result, adverse activity. There is a further expectation that threats are understood in terms of industry specific issues and that monitoring is continually updated  

Darktrace uses an anomaly-based approach to threat detection which involves establishing a dynamic baseline of “normal” for your environment, then flagging deviations from that baseline — even when there’s no known IoCs to match against. This allows security teams to surface previously unseen tactics, techniques, and procedures in real time, whether it’s:

  • An unexpected outbound connection pattern (e.g., DNS tunnelling);
  • A first-time API call between critical services;
  • Unusual calls between services; or  
  • Sensitive data moving outside normal channels or timeframes.

The requirement that organisations must be equipped to monitor their environment, create an understanding of normal and detect anomalous behaviour aligns closely with Darktrace’s capabilities.

2. Is threat hunting structured, repeatable, and improving over time?

CAF v4.0 introduces a new focus on structured threat hunting to detect adverse activity that may evade standard security controls or when such controls are not deployable.  

Principle C2.a outlines the need for documented, repeatable threat hunting processes and stresses the importance of recording and reviewing hunts to improve future effectiveness. This inclusion acknowledges that reactive threat hunting is not sufficient. Instead, the framework calls for:

  • Pre-determined and documented methods to ensure threat hunts can be deployed at the requisite frequency;
  • Threat hunts to be converted  into automated detection and alerting, where appropriate;  
  • Maintenance of threat hunt  records and post-hunt analysis to drive improvements in the process and overall security posture;
  • Regular review of the threat hunting process to align with updated risks;
  • Leveraging automation for improvement, where appropriate;
  • Focus on threat tactics, techniques and procedures, rather than one-off indicators of compromise.

Traditionally, playbook creation has been a manual process — static, slow to amend, and limited by human foresight. Even automated SOAR playbooks tend to be stock templates that can’t cover the full spectrum of threats or reflect the specific context of your organisation.

CAF v4.0 sets the expectation that organisations should maintain documented, structured approaches to incident response. But Darktrace / Incident Readiness & Recovery goes further. Its AI-generated playbooks are bespoke to your environment and updated dynamically in real time as incidents unfold. This continuous refresh of “New Events” means responders always have the latest view of what’s happening, along with an updated understanding of the AI's interpretation based on real-time contextual awareness, and recommended next steps tailored to the current stage of the attack.

The result is far beyond checkbox compliance: a living, adaptive response capability that reduces investigation time, speeds containment, and ensures actions are always proportionate to the evolving threat.

3. Do you have a proactive security posture?

Cyber Assessment Framework v4.0 does not want organisations to detect threats, it expects them to anticipate and reduce cyber risk before an incident ever occurs. That is s why principle A2.b calls for a security posture that moves from reactive detection to predictive, preventative action.

A proactive security posture focuses on reducing the ease of the most likely attack paths in advance and reducing the number of opportunities an adversary has to succeed in an attack.

To meet this requirement, organisations could benefit in looking for solutions that can:

  • Continuously map the assets and users most critical to operations;
  • Identify vulnerabilities and misconfigurations in real time;
  • Model likely adversary behaviours and attack paths using frameworks like MITRE ATT&CK; and  
  • Prioritise remediation actions that will have the highest impact on reducing overall risk.

When done well, this approach creates a real-time picture of your security posture, one that reflects the dynamic nature and ongoing evolution of both your internal environment and the evolving external threat landscape. This enables security teams to focus their time in other areas such as  validating resilience through exercises such as red teaming or forecasting.

4. Can your team/tools customize detection rules and enable autonomous responses?

CAF v4.0 places greater emphasis on reducing false positives and acting decisively when genuine threats are detected.  

The framework highlights the need for customisable detection rules and, where appropriate, autonomous response actions that can contain threats before they escalate:

The following new requirements are included:  

  • C1.c.: Alerts and detection rules should be adjustable to reduce false positives and optimise responses. Custom tooling and rules are used in conjunction with off the shelf tooling and rules;
  • C1.d: You investigate and triage alerts from all security tools and take action – allowing for improvement and prioritization of activities;
  • C1.e: Monitoring and detection personnel have sufficient understanding of operational context and deal with workload effectively as well as identifying areas for improvement (alert or triage fatigue is not present);
  • C2.a: Threat hunts should be turned into automated detections and alerting where appropriate and automation should be leveraged to improve threat hunting.

Tailored detection rules improve accuracy, while automation accelerates response, both of which help satisfy regulatory expectations. Cyber AI Analyst allows for AI investigation of alerts and can dramatically reduce the time a security team spends on alerts, reducing alert fatigue, allowing more time for strategic initiatives and identifying improvements.

5. Is your software secure and supported?  

CAF v4.0 introduced a new principle which requires software suppliers to leverage an established secure software development framework. Software suppliers must be able to demonstrate:  

  • A thorough understanding of the composition and provenance of software provided;  
  • That the software development lifecycle is informed by a detailed and up to date understanding of threat; and  
  • They can attest to the authenticity and integrity of the software, including updates and patches.  

Darktrace is committed to secure software development and all Darktrace products and internally developed systems are developed with secure engineering principles and security by design methodologies in place. Darktrace commits to the inclusion of security requirements at all stages of the software development lifecycle. Darktrace is ISO 27001, ISO 27018 and ISO 42001 Certified – demonstrating an ongoing commitment to information security, data privacy and artificial intelligence management and compliance, throughout the organisation.  

6. Is your incident response plan built on a true understanding of your environment and does it adapt to changes over time?

CAF v4.0 raises the bar for incident response by making it clear that a plan is only as strong as the context behind it. Your response plan must be shaped by a detailed, up-to-date understanding of your organisation’s specific network, systems, and operational priorities.

The framework’s updates emphasise that:

  • Plans must explicitly cover the network and information systems that underpin your essential functions because every environment has different dependencies, choke points, and critical assets.
  • They must be readily accessible even when IT systems are disrupted ensuring critical steps and contact paths aren’t lost during an incident.
  • They should be reviewed regularly to keep pace with evolving risks, infrastructure changes, and lessons learned from testing.

From government expectation to strategic advantage

Cyber Assessment Framework v4.0 signals a powerful shift in cybersecurity best practice. The newest version sets a higher standard for detection performance, risk management, threat hunting software development and proactive security posture.

For Darktrace, this is validation of the approach we have taken since the beginning: to go beyond rules and signatures to deliver proactive cyber resilience in real-time.

-----

Disclaimer:

This document has been prepared on behalf of Darktrace Holdings Limited. It is provided for information purposes only to provide prospective readers with general information about the Cyber Assessment Framework (CAF) in a cyber security context. It does not constitute legal, regulatory, financial or any other kind of professional advice and it has not been prepared with the reader and/or its specific organisation’s requirements in mind. Darktrace offers no warranties, guarantees, undertakings or other assurances (whether express or implied)  that: (i) this document or its content are  accurate or complete; (ii) the steps outlined herein will guarantee compliance with CAF; (iii) any purchase of Darktrace’s products or services will guarantee compliance with CAF; (iv) the steps outlined herein are appropriate for all customers. Neither the reader nor any third party is entitled to rely on the contents of this document when making/taking any decisions or actions to achieve compliance with CAF. To the fullest extent permitted by applicable law or regulation, Darktrace has no liability for any actions or decisions taken or not taken by the reader to implement any suggestions contained herein, or for any third party products, links or materials referenced. Nothing in this document negates the responsibility of the reader to seek independent legal or other advice should it wish to rely on any of the statements, suggestions, or content set out herein.  

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Mariana Pereira
VP, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI