Blog
/
Network
/
February 11, 2025

Defending Against Living-off-the-Land Attacks: Anomaly Detection in Action

Discover how Darktrace detected and responded to cyberattacks using Living-off-the-Land (LOTL) tactics to exploit trusted services and tools on customer networks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Feb 2025

What is living-off-the-land?

Threat actors employ a variety of techniques to compromise target networks, including exploiting unpatched vulnerabilities, abusing misconfigurations, deploying backdoors, and creating custom malware. However, these methods generate a lot of noise and are relatively easy for network and host-based monitoring tools to detect, especially once indicators of compromise (IoCs) and tactics, techniques, and procedures (TTPs) are published by the cybersecurity community.

Living-off-the-Land (LOTL) techniques, however, allow attacks to remain nearly invisible to Endpoint Detection and Response (EDR) tools – leveraging trusted protocols, applications and native systems to carry out malicious activity. While mitigations exist, they are often poorly implemented. The Cybersecurity and Infrastructure Security Agency (CISA) found that some organizations “lacked security baselines, allowing [Living-off-the-Land binaries (LOLBins)] to execute and leaving analysts unable to identify anomalous activity” and “organizations did not appropriately tune their detection tools to reduce alert noise, leading to an unmanageable level of alerts to sift through and action" [1].

Darktrace / NETWORK addresses this challenge across Information Technology (IT), Operational Technology (OT), and cloud environments by continuously analyzing network traffic and identifying deviations from normal behavior with its multi-layered AI – helping organizations detect and respond to LOTL attacks in real time.

Darktrace’s detection of LOTL attacks

This blog will review two separate attacks detected by Darktrace that leveraged LOTL techniques at several stages of the intrusion.

Case A

Reconnaissance

In September 2024, a malicious actor gained access to a customer network via their Virtual Private Network (VPN) from two desktop devices that had no prior connection history. Over two days, the attacker conducted multiple network scans, targeting ports associated with Remote Desktop Protocol (RDP) and NTLM authentication. Darktrace detected this unusual activity, triggering multiple alerts for scanning and enumeration activity.

Unusual NTLM authentication attempts using default accounts like “Guest” and “Administrator” were detected. Two days after the initial intrusion, suspicious DRSGetNCChanges requests were observed on multiple domain controllers (DCs), targeting the Directory Replication Service RPC interface (i.e., drsuapi) – a technique used to extract account hashes from DCs. This process can be automated using tools like Mimikatz's DcSync and DCShadow

Around the same time, attacker-controlled devices were seen presenting an admin credential and another credential potentially granting access to Cisco Firewall systems, suggesting successful privilege escalation. Due to the severity of this activity, Darktrace’s Autonomous Response was triggered to prevent the device from further deviation from its normal behavior. However, because Autonomous Response was configured in Human Confirmation mode, the response actions had to be manually applied by the customer.

Cyber AI Analyst Critical Incident showing the unusual DRSGetNCChanges requests following unusual scanning activity.
Figure 1: Cyber AI Analyst Critical Incident showing the unusual DRSGetNCChanges requests following unusual scanning activity.

Lateral movement

Darktrace also detected anomalous RDP connections to domain controllers, originating from an attacker-controlled device using admin and service credentials. The attacker then successfully pivoted to a likely RDP server, leveraging the RDP protocol – one of the most commonly used for lateral movement in network compromises observed by Darktrace.

Cyber Analyst Incident displaying unusual RDP lateral movement connections
Figure 2: Cyber Analyst Incident displaying unusual RDP lateral movement connections.

Tooling

Following an incoming RDP connection, one of the DCs made a successful GET request to the URI '/download/122.dll' on the 100% rare IP, 146.70.145[.]189. The request returned an executable file, which open-source intelligence (OSINT) suggests is likely a CobaltStrike C2 sever payload [2] [3]. Had Autonomous Response been enabled here, it would have blocked all outgoing traffic from the DC allowing the customer to investigate and remediate.

Additionally, Darktrace detected a suspicious CreateServiceW request to the Service Control (SVCCTL) RPC interface on a server. The request executed commands using ‘cmd.exe’ to perform the following actions

  1. Used ‘tasklist’ to filter processes named ”lsass.exe” (Local Security Authority Subsystem Service) to find its specific process ID.
  2. Used “rundll32.exe” to execute the MiniDump function from the “comsvcs.dll” library, creating a memory dump of the “lsass.exe” process.
  3. Saved the output to a PNG file in a temporary folder,

Notably, “cmd.exe” was referenced as “CMd.EXE” within the script, likely an attempt to evade detection by security tools monitoring for specific keywords and patterns.

Model Alert Log showing the unusual SVCCTL create request.
Figure 3: Model Alert Log showing the unusual SVCCTL create request.

Over the course of three days, this activity triggered around 125 Darktrace / NETWORK alerts across 11 internal devices. In addition, Cyber AI Analyst launched an autonomous investigation into the activity, analyzing and connecting 16 separate events spanning multiple stages of the cyber kill chain - from initial reconnaissance to payload retrieval and lateral movement.

Darktrace’s comprehensive detection enabled the customer’s security team to remediate the compromise before any further escalation was observed.

Case B

Between late 2023 and early 2024, Darktrace identified a widespread attack that combined insider and external threats, leveraging multiple LOTL tools for reconnaissance and lateral movement within a customer's network.

Reconnaissance

Initially, Darktrace detected the use of a new administrative credential by a device, which then made unusual RDP connections to multiple internal systems, including a 30-minute connection to a DC. Throughout the attack, multiple unusual RDP connections using the new administrative credential “%admin!!!” were observed, indicating that this protocol was leveraged for lateral movement.

The next day, a Microsoft Defender Security Integration alert was triggered on the device due to suspicious Windows Local Security Authority Subsystem Service (LSASS) credential dump behavior. Since the LSASS process memory can store operating system and domain admin credentials, obtaining this sensitive information can greatly facilitate lateral movement within a network using legitimate tools such as PsExec or Windows Management Instrumentation (WMI) [4]. Security integrations with other security vendors like this one can provide insights into host-based processes, which are typically outside of Darktrace’s coverage. Darktrace’s anomaly detection and network activity monitoring help prioritize the investigation of these alerts.

Three days later, the attacker was observed logging into the DC and querying tickets for the Lightweight Directory Access Protocol (LDAP) service using the default credential “Administrator.” This activity, considered new by Darktrace, triggered an Autonomous Response action that blocked further connections on Kerberos port 88 to the DC. LDAP provides a central location to access and manage data about computers, servers, users, groups, and policies within a network. LDAP enumeration can provide valuable Active Directory (AD) object information to an attacker, which can be used to identify critical attack paths or accounts with high privileges.

Lateral movement

Following the incoming RDP connection, the DC began scanning activities, including RDP and Server Block Message (SMB) services, suggesting the attacker was using remote access for additional reconnaissance. Outgoing RDP connection attempts to over 100 internal devices were observed, with around 5% being successful, highlighting the importance of this protocol for the threat actor’s lateral movement.

Around the same time, the DC made WMI, PsExec, and service control connections to two other DCs, indicating further lateral movement using native administrative protocols and tools. These functions can be leveraged by attackers to query system information, run malicious code, and maintain persistent access to compromised devices while avoiding traditional security tool alarms. In this case, requested services included the IWbemServices (used to access WMI services) and IWbemFetchSmartEnum (used to retrieve a network-optimized enumerator interface) interfaces, with ExecQuery operations detected for the former. This method returns an enumerable collection of IWbemClassObject interface objects based on a query.

Additionally, unusual Windows Remote Management (WinRM) connections to another domain controller were observed. WinRM is a Microsoft protocol that allows systems to exchange and access management information over HTTP(S) across a network, such as running executables or modifying the registry and services.

Cyber AI Analyst Incident showing unusual WMI activity between the two DCs.
Figure 4: Cyber AI Analyst Incident showing unusual WMI activity between the two DCs.

The DC was also detected writing the file “PSEXESVC.exe” to the “ADMIN$” share of another internal device over the SMB file transfer network protocol. This activity was flagged as highly unusual by Darktrace, as these two devices had not previously engaged in this type of SMB connectivity.

It is rare for an attacker to immediately find the information or systems they are after, making it likely they will need to move around the network before achieving their objectives. Tools such as PsExec enable attackers to do this while largely remaining under the radar. With PsExec, attackers who gain access to a single system can connect to and execute commands remotely on other internal systems, access sensitive information, and spread their attack further into the environment.

Model Alert Event Log showing the new write of the file “PSEXESVC.exe” by one of the compromised devices over an SMB connection initiated at an unusual time.
Figure 5. Model Alert Event Log showing the new write of the file “PSEXESVC.exe” by one of the compromised devices over an SMB connection initiated at an unusual time.

Darktrace further observed the DC connecting to the SVCCTL endpoint on a remote device and performing the CreateServiceW operation, which was flagged as highly unusual based on previous behavior patterns between the two devices. Additionally, new ChangeServiceConfigW operations were observed from another device.

Aside from IWbemServices requests seen on multiple devices, Darktrace also detected multiple internal devices connecting to the ITaskSchedulerService interface over DCE-RPC and performing new SchRpcRegisterTask operations, which register a task on the destination system. Attackers can exploit the task scheduler to facilitate the initial or recurring execution of malicious code by a trusted system process, often with elevated permissions. The creation of these tasks was considered new or highly unusual and triggered several anomalous ITaskScheduler activity alerts.

Conclusion

As pointed out by CISA, threat actors frequently exploit the lack of implemented controls on their target networks, as demonstrated in the incidents discussed here. In the first case, VPN access was granted to all domain users, providing the attacker with a point of entry. In the second case, there were no restrictions on the use of RDP within the targeted network segment, allowing the attackers to pivot from device to device.

Darktrace assists security teams in monitoring for unusual use of LOTL tools and protocols that can be leveraged by threat actors to achieve a wide range of objectives. Darktrace’s Self-Learning AI sifts through the network traffic noise generated by these trusted tools, which are essential to administrators and developers in their daily tasks, and highlights any anomalous and potentially unexpected use.

Credit to Alexandra Sentenac (Senior Cyber Analyst) and Ryan Traill (Analyst Content Lead)

References

[1] https://www.cisa.gov/sites/default/files/2024-02/Joint-Guidance-Identifying-and-Mitigating-LOTL_V3508c.pdf

[2] https://www.virustotal.com/gui/ip-address/146.70.145.189/community

[3] https://www.virustotal.com/gui/file/cc9a670b549d84084618267fdeea13f196e43ae5df0d88e2e18bf5aa91b97318

[4]https://www.microsoft.com/en-us/security/blog/2022/10/05/detecting-and-preventing-lsass-credential-dumping-attacks

MITRE Mapping

INITIAL ACCESS - External Remote Services

DISCOVERY - Remote System Discovery

DISCOVERY - Network Service Discovery

DISCOVERY - File and Directory Discovery

CREDENTIAL ACCESS – OS Credential Dumping: LSASS Memory

LATERAL MOVEMENT - Remote Services: Remote Desktop Protocol

LATERAL MOVEMENT - Remote Services: SMB/Windows Admin Shares

EXECUTION - System Services: Service Execution

PERSISTENCE - Scheduled Task

COMMAND AND CONTROL - Ingress Tool Transfer

Darktrace Model Detections

Case A

Device / Suspicious Network Scan Activity

Device / Network Scan

Device / ICMP Address Scan

Device / Reverse DNS Sweep

Device / Suspicious SMB Scanning Activity

Device / Possible SMB/NTLM Reconnaissance

Anomalous Connection / Unusual Admin SMB Session

Device / SMB Session Brute Force (Admin)

Device / Possible SMB/NTLM Brute Force

Device / SMB Lateral Movement

Device / Anomalous NTLM Brute Force

Anomalous Connection / SMB Enumeration

Device / SMB Session Brute Force (Non-Admin)

Device / Anomalous SMB Followed By Multiple Model Breaches

Anomalous Connection / Possible Share Enumeration Activity

Device / RDP Scan

Device / Anomalous RDP Followed By Multiple Model Breaches

Anomalous Connection / Unusual Admin RDP Session

Anomalous Connection / Active Remote Desktop Tunnel

Anomalous Connection / Anomalous DRSGetNCChanges Operation

Anomalous Connection / High Priority DRSGetNCChanges

Compliance / Default Credential Usage

User / New Admin Credentials on Client

User / New Admin Credentials on Server

Device / Large Number of Model Breaches from Critical Network Device

User / New Admin Credential Ticket Request

Compromise / Unusual SVCCTL Activity

Anomalous Connection / New or Uncommon Service Control

Anomalous File / Script from Rare External Location

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous File / EXE from Rare External Location

Anomalous File / Numeric File Download

Device / Initial Breach Chain Compromise

Device / Multiple Lateral Movement Model Breaches

Device / Large Number of Model Breaches

Compromise / Multiple Kill Chain Indicators

Case B

User / New Admin Credentials on Client

Compliance / Default Credential Usage

Anomalous Connection / SMB Enumeration

Device / Suspicious SMB Scanning Activity

Device / RDP Scan

Device / New or Uncommon WMI Activity

Device / Anomaly Indicators / New or Uncommon WMI Activity Indicator

Device / New or Unusual Remote Command Execution

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Active Remote Desktop Tunnel

Compliance / SMB Drive Write

Anomalous Connection / Anomalous DRSGetNCChanges Operation

Device / Multiple Lateral Movement Model Breaches

Device / Anomalous ITaskScheduler Activity

Anomalous Connection / Unusual Admin RDP Session

Device / Large Number of Model Breaches from Critical Network Device

Compliance / Default Credential Usage

IOC - Type - Description/Probability

146.70.145[.]189 - IP Address - Likely C2 Infrastructure

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

/

February 13, 2026

CVE-2026-1731: How Darktrace Sees the BeyondTrust Exploitation Wave Unfolding

Default blog imageDefault blog image

Note: Darktrace's Threat Research team is publishing now to help defenders. We will update continue updating this blog as our investigations unfold.

Background

On February 6, 2026, the Identity & Access Management solution BeyondTrust announced patches for a vulnerability, CVE-2026-1731, which enables unauthenticated remote code execution using specially crafted requests.  This vulnerability affects BeyondTrust Remote Support (RS) and particular older versions of Privileged Remote Access (PRA) [1].

A Proof of Concept (PoC) exploit for this vulnerability was released publicly on February 10, and open-source intelligence (OSINT) reported exploitation attempts within 24 hours [2].

Previous intrusions against Beyond Trust technology have been cited as being affiliated with nation-state attacks, including a 2024 breach targeting the U.S. Treasury Department. This incident led to subsequent emergency directives from  the Cybersecurity and Infrastructure Security Agency (CISA) and later showed attackers had chained previously unknown vulnerabilities to achieve their goals [3].

Additionally, there appears to be infrastructure overlap with React2Shell mass exploitation previously observed by Darktrace, with command-and-control (C2) domain  avg.domaininfo[.]top seen in potential post-exploitation activity for BeyondTrust, as well as in a React2Shell exploitation case involving possible EtherRAT deployment.

Darktrace Detections

Darktrace’s Threat Research team has identified highly anomalous activity across several customers that may relate to exploitation of BeyondTrust since February 10, 2026. Observed activities include:

-              Outbound connections and DNS requests for endpoints associated with Out-of-Band Application Security Testing; these services are commonly abused by threat actors for exploit validation.  Associated Darktrace models include:

o    Compromise / Possible Tunnelling to Bin Services

-              Suspicious executable file downloads. Associated Darktrace models include:

o    Anomalous File / EXE from Rare External Location

-              Outbound beaconing to rare domains. Associated Darktrace models include:

o   Compromise / Agent Beacon (Medium Period)

o   Compromise / Agent Beacon (Long Period)

o   Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

o   Compromise / Beacon to Young Endpoint

o   Anomalous Server Activity / Rare External from Server

o   Compromise / SSL Beaconing to Rare Destination

-              Unusual cryptocurrency mining activity. Associated Darktrace models include:

o   Compromise / Monero Mining

o   Compromise / High Priority Crypto Currency Mining

And model alerts for:

o    Compromise / Rare Domain Pointing to Internal IP

IT Defenders: As part of best practices, we highly recommend employing an automated containment solution in your environment. For Darktrace customers, please ensure that Autonomous Response is configured correctly. More guidance regarding this activity and suggested actions can be found in the Darktrace Customer Portal.  

Appendices

Potential indicators of post-exploitation behavior:

·      217.76.57[.]78 – IP address - Likely C2 server

·      hXXp://217.76.57[.]78:8009/index.js - URL -  Likely payload

·      b6a15e1f2f3e1f651a5ad4a18ce39d411d385ac7  - SHA1 - Likely payload

·      195.154.119[.]194 – IP address – Likely C2 server

·      hXXp://195.154.119[.]194/index.js - URL – Likely payload

·      avg.domaininfo[.]top – Hostname – Likely C2 server

·      104.234.174[.]5 – IP address - Possible C2 server

·      35da45aeca4701764eb49185b11ef23432f7162a – SHA1 – Possible payload

·      hXXp://134.122.13[.]34:8979/c - URL – Possible payload

·      134.122.13[.]34 – IP address – Possible C2 server

·      28df16894a6732919c650cc5a3de94e434a81d80 - SHA1 - Possible payload

References:

1.        https://nvd.nist.gov/vuln/detail/CVE-2026-1731

2.        https://www.securityweek.com/beyondtrust-vulnerability-targeted-by-hackers-within-24-hours-of-poc-release/

3.        https://www.rapid7.com/blog/post/etr-cve-2026-1731-critical-unauthenticated-remote-code-execution-rce-beyondtrust-remote-support-rs-privileged-remote-access-pra/

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

AI

/

February 13, 2026

How AI is redefining cybersecurity and the role of today’s CIO

Default blog imageDefault blog image

Why AI is essential to modern security

As attackers use automation and AI to outpace traditional tools and people, our approach to cybersecurity must fundamentally change. That’s why one of my first priorities as Withum's CIO was to elevate cybersecurity from a technical function to a business enabler.

What used to be “IT’s problem” is now a boardroom conversation – and for good reason. Protecting our data, our people, and our clients directly impacts revenue, reputation and competitive positioning.  

As CIOs / CISOs, our responsibilities aren’t just keeping systems running, but enabling trust, protecting our organization's reputation, and giving the business confidence to move forward even as the digital world becomes less predictable. To pull that off, we need to know the business inside-out, understand risk, and anticipate what's coming next. That's where AI becomes essential.

Staying ahead when you’re a natural target

With more than 3,100 team members and over 1,000 CPAs (Certified Public Accountant), Withum’s operates in an industry that naturally attracts attention from attackers. Firms like ours handle highly sensitive financial and personal information, which puts us squarely in the crosshairs for sophisticated phishing, ransomware, and cloud-based attacks.

We’ve built our security program around resilience, visibility, and scale. By using Darktrace’s AI-powered platform, we can defend against both known and unknown threats, across email and network, without slowing our teams down.

Our focus is always on what we’re protecting: our clients’ information, our intellectual property, and the reputation of the firm. With Darktrace, we’re not just keeping up with the massive volume of AI-powered attacks coming our way, we’re staying ahead. The platform defends our digital ecosystem around the clock, detecting potential threats across petabytes of data and autonomously investigating and responding to tens of thousands of incidents every year.

Catching what traditional tools miss

Beyond the sheer scale of attacks, Darktrace ActiveAI Security PlatformTM is critical for identifying threats that matter to our business. Today’s attackers don’t use generic techniques. They leverage automation and AI to craft highly targeted attacks – impersonating trusted colleagues, mimicking legitimate websites, and weaving in real-world details that make their messages look completely authentic.

The platform, covering our network, endpoints, inboxes, cloud and more is so effective because it continuously learns what’s normal for our business: how our users typically behave, the business- and industry-specific language we use, how systems communicate, and how cloud resources are accessed. It picks up on minute details that would sail right past traditional tools and even highly trained security professionals.

Freeing up our team to do what matters

On average, Darktrace autonomously investigates 88% of all our security events, using AI to connect the dots across email, network, and cloud activity to figure out what matters. That shift has changed how our team works. Instead of spending hours sorting through alerts, we can focus on proactive efforts that actually strengthen our security posture.

For example, we saved 1,850 hours on investigating security issues over a ten-day period. We’ve reinvested the time saved into strengthening policies, refining controls, and supporting broader business initiatives, rather than spending endless hours manually piecing together alerts.

Real confidence, real results

The impact of our AI-driven approach goes well beyond threat detection. Today, we operate from a position of confidence, knowing that threats are identified early, investigated automatically, and communicated clearly across our organization.

That confidence was tested when we withstood a major ransomware attack by a well-known threat group. Not only were we able to contain the incident, but we were able to trace attacker activity and provided evidence to law enforcement. That was an exhilarating experience! My team did an outstanding job, and moments like that reinforce exactly why we invest in the right technology and the right people.

Internally, this capability has strengthened trust at the executive level. We share security reporting regularly with leadership, translating technical activity into business-relevant insights. That transparency reinforces cybersecurity as a shared responsibility, one that directly supports growth, continuity, and reputation.

Culturally, we’ve embedded security awareness into daily operations through mandatory monthly training, executive communication, and real-world industry examples that keep cybersecurity top of mind for every employee.

The only headlines we want are positive ones: Withum expanding services, Withum growing year over year. Security plays a huge role in making sure that’s the story we get to tell.

What’s next

Looking ahead, we’re expanding our use of Darktrace, including new cloud capabilities that extend AI-driven visibility and investigation into our AWS and Azure environments.

As I continue shaping our security team, I look for people with passion, curiosity, and a genuine drive to solve problems. Those qualities matter just as much as formal credentials in my view. Combined with AI, these attributes help us build a resilient, engaged security function with low turnover and high impact.

For fellow technology leaders, my advice is simple: be forward-thinking and embrace change. We must understand the business, the threat landscape, and how technology enables both. By augmenting human expertise rather than replacing it, AI allows us to move upstream by anticipating risk, advising the business, and fostering stronger collaboration across teams.

Continue reading
About the author
Amel Edmond
Chief Information Officer
Your data. Our AI.
Elevate your network security with Darktrace AI