Blog
/
Network
/
February 11, 2025

Defending Against Living-off-the-Land Attacks: Anomaly Detection in Action

Discover how Darktrace detected and responded to cyberattacks using Living-off-the-Land (LOTL) tactics to exploit trusted services and tools on customer networks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Feb 2025

What is living-off-the-land?

Threat actors employ a variety of techniques to compromise target networks, including exploiting unpatched vulnerabilities, abusing misconfigurations, deploying backdoors, and creating custom malware. However, these methods generate a lot of noise and are relatively easy for network and host-based monitoring tools to detect, especially once indicators of compromise (IoCs) and tactics, techniques, and procedures (TTPs) are published by the cybersecurity community.

Living-off-the-Land (LOTL) techniques, however, allow attacks to remain nearly invisible to Endpoint Detection and Response (EDR) tools – leveraging trusted protocols, applications and native systems to carry out malicious activity. While mitigations exist, they are often poorly implemented. The Cybersecurity and Infrastructure Security Agency (CISA) found that some organizations “lacked security baselines, allowing [Living-off-the-Land binaries (LOLBins)] to execute and leaving analysts unable to identify anomalous activity” and “organizations did not appropriately tune their detection tools to reduce alert noise, leading to an unmanageable level of alerts to sift through and action" [1].

Darktrace / NETWORK addresses this challenge across Information Technology (IT), Operational Technology (OT), and cloud environments by continuously analyzing network traffic and identifying deviations from normal behavior with its multi-layered AI – helping organizations detect and respond to LOTL attacks in real time.

Darktrace’s detection of LOTL attacks

This blog will review two separate attacks detected by Darktrace that leveraged LOTL techniques at several stages of the intrusion.

Case A

Reconnaissance

In September 2024, a malicious actor gained access to a customer network via their Virtual Private Network (VPN) from two desktop devices that had no prior connection history. Over two days, the attacker conducted multiple network scans, targeting ports associated with Remote Desktop Protocol (RDP) and NTLM authentication. Darktrace detected this unusual activity, triggering multiple alerts for scanning and enumeration activity.

Unusual NTLM authentication attempts using default accounts like “Guest” and “Administrator” were detected. Two days after the initial intrusion, suspicious DRSGetNCChanges requests were observed on multiple domain controllers (DCs), targeting the Directory Replication Service RPC interface (i.e., drsuapi) – a technique used to extract account hashes from DCs. This process can be automated using tools like Mimikatz's DcSync and DCShadow

Around the same time, attacker-controlled devices were seen presenting an admin credential and another credential potentially granting access to Cisco Firewall systems, suggesting successful privilege escalation. Due to the severity of this activity, Darktrace’s Autonomous Response was triggered to prevent the device from further deviation from its normal behavior. However, because Autonomous Response was configured in Human Confirmation mode, the response actions had to be manually applied by the customer.

Cyber AI Analyst Critical Incident showing the unusual DRSGetNCChanges requests following unusual scanning activity.
Figure 1: Cyber AI Analyst Critical Incident showing the unusual DRSGetNCChanges requests following unusual scanning activity.

Lateral movement

Darktrace also detected anomalous RDP connections to domain controllers, originating from an attacker-controlled device using admin and service credentials. The attacker then successfully pivoted to a likely RDP server, leveraging the RDP protocol – one of the most commonly used for lateral movement in network compromises observed by Darktrace.

Cyber Analyst Incident displaying unusual RDP lateral movement connections
Figure 2: Cyber Analyst Incident displaying unusual RDP lateral movement connections.

Tooling

Following an incoming RDP connection, one of the DCs made a successful GET request to the URI '/download/122.dll' on the 100% rare IP, 146.70.145[.]189. The request returned an executable file, which open-source intelligence (OSINT) suggests is likely a CobaltStrike C2 sever payload [2] [3]. Had Autonomous Response been enabled here, it would have blocked all outgoing traffic from the DC allowing the customer to investigate and remediate.

Additionally, Darktrace detected a suspicious CreateServiceW request to the Service Control (SVCCTL) RPC interface on a server. The request executed commands using ‘cmd.exe’ to perform the following actions

  1. Used ‘tasklist’ to filter processes named ”lsass.exe” (Local Security Authority Subsystem Service) to find its specific process ID.
  2. Used “rundll32.exe” to execute the MiniDump function from the “comsvcs.dll” library, creating a memory dump of the “lsass.exe” process.
  3. Saved the output to a PNG file in a temporary folder,

Notably, “cmd.exe” was referenced as “CMd.EXE” within the script, likely an attempt to evade detection by security tools monitoring for specific keywords and patterns.

Model Alert Log showing the unusual SVCCTL create request.
Figure 3: Model Alert Log showing the unusual SVCCTL create request.

Over the course of three days, this activity triggered around 125 Darktrace / NETWORK alerts across 11 internal devices. In addition, Cyber AI Analyst launched an autonomous investigation into the activity, analyzing and connecting 16 separate events spanning multiple stages of the cyber kill chain - from initial reconnaissance to payload retrieval and lateral movement.

Darktrace’s comprehensive detection enabled the customer’s security team to remediate the compromise before any further escalation was observed.

Case B

Between late 2023 and early 2024, Darktrace identified a widespread attack that combined insider and external threats, leveraging multiple LOTL tools for reconnaissance and lateral movement within a customer's network.

Reconnaissance

Initially, Darktrace detected the use of a new administrative credential by a device, which then made unusual RDP connections to multiple internal systems, including a 30-minute connection to a DC. Throughout the attack, multiple unusual RDP connections using the new administrative credential “%admin!!!” were observed, indicating that this protocol was leveraged for lateral movement.

The next day, a Microsoft Defender Security Integration alert was triggered on the device due to suspicious Windows Local Security Authority Subsystem Service (LSASS) credential dump behavior. Since the LSASS process memory can store operating system and domain admin credentials, obtaining this sensitive information can greatly facilitate lateral movement within a network using legitimate tools such as PsExec or Windows Management Instrumentation (WMI) [4]. Security integrations with other security vendors like this one can provide insights into host-based processes, which are typically outside of Darktrace’s coverage. Darktrace’s anomaly detection and network activity monitoring help prioritize the investigation of these alerts.

Three days later, the attacker was observed logging into the DC and querying tickets for the Lightweight Directory Access Protocol (LDAP) service using the default credential “Administrator.” This activity, considered new by Darktrace, triggered an Autonomous Response action that blocked further connections on Kerberos port 88 to the DC. LDAP provides a central location to access and manage data about computers, servers, users, groups, and policies within a network. LDAP enumeration can provide valuable Active Directory (AD) object information to an attacker, which can be used to identify critical attack paths or accounts with high privileges.

Lateral movement

Following the incoming RDP connection, the DC began scanning activities, including RDP and Server Block Message (SMB) services, suggesting the attacker was using remote access for additional reconnaissance. Outgoing RDP connection attempts to over 100 internal devices were observed, with around 5% being successful, highlighting the importance of this protocol for the threat actor’s lateral movement.

Around the same time, the DC made WMI, PsExec, and service control connections to two other DCs, indicating further lateral movement using native administrative protocols and tools. These functions can be leveraged by attackers to query system information, run malicious code, and maintain persistent access to compromised devices while avoiding traditional security tool alarms. In this case, requested services included the IWbemServices (used to access WMI services) and IWbemFetchSmartEnum (used to retrieve a network-optimized enumerator interface) interfaces, with ExecQuery operations detected for the former. This method returns an enumerable collection of IWbemClassObject interface objects based on a query.

Additionally, unusual Windows Remote Management (WinRM) connections to another domain controller were observed. WinRM is a Microsoft protocol that allows systems to exchange and access management information over HTTP(S) across a network, such as running executables or modifying the registry and services.

Cyber AI Analyst Incident showing unusual WMI activity between the two DCs.
Figure 4: Cyber AI Analyst Incident showing unusual WMI activity between the two DCs.

The DC was also detected writing the file “PSEXESVC.exe” to the “ADMIN$” share of another internal device over the SMB file transfer network protocol. This activity was flagged as highly unusual by Darktrace, as these two devices had not previously engaged in this type of SMB connectivity.

It is rare for an attacker to immediately find the information or systems they are after, making it likely they will need to move around the network before achieving their objectives. Tools such as PsExec enable attackers to do this while largely remaining under the radar. With PsExec, attackers who gain access to a single system can connect to and execute commands remotely on other internal systems, access sensitive information, and spread their attack further into the environment.

Model Alert Event Log showing the new write of the file “PSEXESVC.exe” by one of the compromised devices over an SMB connection initiated at an unusual time.
Figure 5. Model Alert Event Log showing the new write of the file “PSEXESVC.exe” by one of the compromised devices over an SMB connection initiated at an unusual time.

Darktrace further observed the DC connecting to the SVCCTL endpoint on a remote device and performing the CreateServiceW operation, which was flagged as highly unusual based on previous behavior patterns between the two devices. Additionally, new ChangeServiceConfigW operations were observed from another device.

Aside from IWbemServices requests seen on multiple devices, Darktrace also detected multiple internal devices connecting to the ITaskSchedulerService interface over DCE-RPC and performing new SchRpcRegisterTask operations, which register a task on the destination system. Attackers can exploit the task scheduler to facilitate the initial or recurring execution of malicious code by a trusted system process, often with elevated permissions. The creation of these tasks was considered new or highly unusual and triggered several anomalous ITaskScheduler activity alerts.

Conclusion

As pointed out by CISA, threat actors frequently exploit the lack of implemented controls on their target networks, as demonstrated in the incidents discussed here. In the first case, VPN access was granted to all domain users, providing the attacker with a point of entry. In the second case, there were no restrictions on the use of RDP within the targeted network segment, allowing the attackers to pivot from device to device.

Darktrace assists security teams in monitoring for unusual use of LOTL tools and protocols that can be leveraged by threat actors to achieve a wide range of objectives. Darktrace’s Self-Learning AI sifts through the network traffic noise generated by these trusted tools, which are essential to administrators and developers in their daily tasks, and highlights any anomalous and potentially unexpected use.

Credit to Alexandra Sentenac (Senior Cyber Analyst) and Ryan Traill (Analyst Content Lead)

References

[1] https://www.cisa.gov/sites/default/files/2024-02/Joint-Guidance-Identifying-and-Mitigating-LOTL_V3508c.pdf

[2] https://www.virustotal.com/gui/ip-address/146.70.145.189/community

[3] https://www.virustotal.com/gui/file/cc9a670b549d84084618267fdeea13f196e43ae5df0d88e2e18bf5aa91b97318

[4]https://www.microsoft.com/en-us/security/blog/2022/10/05/detecting-and-preventing-lsass-credential-dumping-attacks

MITRE Mapping

INITIAL ACCESS - External Remote Services

DISCOVERY - Remote System Discovery

DISCOVERY - Network Service Discovery

DISCOVERY - File and Directory Discovery

CREDENTIAL ACCESS – OS Credential Dumping: LSASS Memory

LATERAL MOVEMENT - Remote Services: Remote Desktop Protocol

LATERAL MOVEMENT - Remote Services: SMB/Windows Admin Shares

EXECUTION - System Services: Service Execution

PERSISTENCE - Scheduled Task

COMMAND AND CONTROL - Ingress Tool Transfer

Darktrace Model Detections

Case A

Device / Suspicious Network Scan Activity

Device / Network Scan

Device / ICMP Address Scan

Device / Reverse DNS Sweep

Device / Suspicious SMB Scanning Activity

Device / Possible SMB/NTLM Reconnaissance

Anomalous Connection / Unusual Admin SMB Session

Device / SMB Session Brute Force (Admin)

Device / Possible SMB/NTLM Brute Force

Device / SMB Lateral Movement

Device / Anomalous NTLM Brute Force

Anomalous Connection / SMB Enumeration

Device / SMB Session Brute Force (Non-Admin)

Device / Anomalous SMB Followed By Multiple Model Breaches

Anomalous Connection / Possible Share Enumeration Activity

Device / RDP Scan

Device / Anomalous RDP Followed By Multiple Model Breaches

Anomalous Connection / Unusual Admin RDP Session

Anomalous Connection / Active Remote Desktop Tunnel

Anomalous Connection / Anomalous DRSGetNCChanges Operation

Anomalous Connection / High Priority DRSGetNCChanges

Compliance / Default Credential Usage

User / New Admin Credentials on Client

User / New Admin Credentials on Server

Device / Large Number of Model Breaches from Critical Network Device

User / New Admin Credential Ticket Request

Compromise / Unusual SVCCTL Activity

Anomalous Connection / New or Uncommon Service Control

Anomalous File / Script from Rare External Location

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous File / EXE from Rare External Location

Anomalous File / Numeric File Download

Device / Initial Breach Chain Compromise

Device / Multiple Lateral Movement Model Breaches

Device / Large Number of Model Breaches

Compromise / Multiple Kill Chain Indicators

Case B

User / New Admin Credentials on Client

Compliance / Default Credential Usage

Anomalous Connection / SMB Enumeration

Device / Suspicious SMB Scanning Activity

Device / RDP Scan

Device / New or Uncommon WMI Activity

Device / Anomaly Indicators / New or Uncommon WMI Activity Indicator

Device / New or Unusual Remote Command Execution

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Active Remote Desktop Tunnel

Compliance / SMB Drive Write

Anomalous Connection / Anomalous DRSGetNCChanges Operation

Device / Multiple Lateral Movement Model Breaches

Device / Anomalous ITaskScheduler Activity

Anomalous Connection / Unusual Admin RDP Session

Device / Large Number of Model Breaches from Critical Network Device

Compliance / Default Credential Usage

IOC - Type - Description/Probability

146.70.145[.]189 - IP Address - Likely C2 Infrastructure

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

August 15, 2025

From Exploit to Escalation: Tracking and Containing a Real-World Fortinet SSL-VPN Attack

Fortinet SSL-VPN AttackDefault blog imageDefault blog image

Threat actors exploiting Fortinet CVEs

Over the years, Fortinet has issued multiple alerts about a wave of sophisticated attacks targeting vulnerabilities in its SSL-VPN infrastructure. Despite the release of patches to address these vulnerabilities, threat actors have continued to exploit a trio of Common Vulnerabilities and Exposures (CVEs) disclosed between 2022 and 2024 to gain unauthorized access to FortiGate devices.

Which vulnerabilities are exploited?

The vulnerabilities—CVE-2022-42475, CVE-2023-27997, and CVE-2024-21762—affect Fortinet’s SSL-VPN services and have been actively exploited by threat actors to establish initial access into target networks.

The vulnerabilities affect core components of FortiOS, allowing attackers to execute remote code on affected systems.

CVE-2022-42475

Type: Heap-Based Buffer Overflow in FortiOS SSL-VPN

Impact: Remote Code Execution (Actively Exploited)

This earlier vulnerability also targets the SSL-VPN interface and has been actively exploited in the wild. It allows attackers to execute arbitrary code remotely by overflowing a buffer in memory, often used to deploy malware or establish persistent backdoors [6].

CVE-2023-27997

Type: Heap-Based Buffer Overflow in FortiOS and FortiProxy

Impact: Remote Code Execution

This flaw exists in the SSL-VPN component of both FortiOS and FortiProxy. By exploiting a buffer overflow in the heap memory, attackers can execute malicious code remotely. This vulnerability is particularly dangerous because it can be triggered without authentication, making it ideal for an initial compromise [5].

CVE-2024-21762

Type: Out-of-Bounds Write in sslvpnd

Impact: Remote Code Execution

This vulnerability affects the SSL-VPN daemon (sslvpnd) in FortiOS. It allows unauthenticated remote attackers to send specially crafted HTTP requests that write data outside of allocated memory bounds. This can lead to arbitrary code execution, giving attackers full control over a device [4].

In short, these flaws enable remote attackers to execute arbitrary code without authentication by exploiting memory corruption issues such as buffer overflows and out-of-bounds writes. Once inside, threat actors use symbolic link (symlink) in order to maintain persistence on target devices across patches and firmware updates. This persistence then enables them to bypass security controls and manipulate firewall configurations, effectively turning patched systems into long-term footholds for deeper network compromise [1][2][3].

Darktrace’s Coverage

Darktrace detected a series of suspicious activities originating from a compromised Fortinet VPN device, including anomalous HTTP traffic, internal network scanning, and SMB reconnaissance, all indicative of post-exploitation behavior. Following initial detection by Darktrace’s real-time models, its Autonomous Response capability swiftly acted on the malicious activity, blocking suspicious connections and containing the threat before further compromise could occur.

Further investigation by Darktrace’s Threat Research team uncovered a stealthy and persistent attack that leveraged known Fortinet SSL-VPN vulnerabilities to facilitate lateral movement and privilege escalation within the network.

Phase 1: Initial Compromise – Fortinet VPN Exploitation

The attack on a Darktrace customer likely began on April 11 with the exploitation of a Fortinet VPN device running an outdated version of FortiOS. Darktrace observed a high volume of HTTP traffic originating from this device, specifically targeting internal systems. Notably, many of these requests were directed at the /cgi-bin/ directory,  a common target for attackers attempting to exploit web interfaces to run unauthorized scripts or commands. This pattern strongly indicated remote code execution attempts via the SSL-VPN interface [7].

Once access was gained, the threat actor likely modified existing firewall rules, a tactic often used to disable security controls or create hidden backdoors for future access. While Darktrace does not have direct visibility into firewall configuration changes, the surrounding activity and post-exploitation behavior indicated that such modifications were made to support long-term persistence within the network.

HTTP activity from the compromised Fortinet device, including repeated requests to /cgi-bin/ over port 8080.
Figure 1: HTTP activity from the compromised Fortinet device, including repeated requests to /cgi-bin/ over port 8080

Phase 2: Establishing Persistence & Lateral Movement

Shortly after the initial compromise of the Fortinet VPN device, the threat actor began to expand their foothold within the internal network. Darktrace detected initial signs of network scanning from this device, including the use of Nmap to probe the internal environment, likely in an attempt to identify accessible services and vulnerable systems.

Darktrace’s detection of unusual network scanning activities on the affected device.
Figure 2: Darktrace’s detection of unusual network scanning activities on the affected device.

Around the same time, Darktrace began detecting anomalous activity on a second device, specifically an internal firewall interface device. This suggested that the attacker had established a secondary foothold and was leveraging it to conduct deeper reconnaissance and move laterally through the network.

In an effort to maintain persistence within the network, the attackers likely deployed symbolic links in the SSL-VPN language file directory on the Fortinet device. While Darktrace did not directly observe symbolic link abuse, Fortinet has identified this as a known persistence technique in similar attacks [2][3]. Based on the observed post-exploitation behavior and likely firewall modifications, it is plausible that such methods were used here.

Phase 3: Internal Reconnaissance & Credential Abuse

With lateral movement initiated from the internal firewall interface device, the threat actor proceeded to escalate their efforts to map the internal network and identify opportunities for privilege escalation.

Darktrace observed a successful NTLM authentication from the internal firewall interface to the domain controller over the outdated protocol SMBv1, using the account ‘anonymous’. This was immediately followed by a failed NTLM session connection using the hostname ‘nmap’, further indicating the use of Nmap for enumeration and brute-force attempts. Additional credential probes were also identified around the same time, including attempts using the credential ‘guest’.

Darktrace detection of a series of login attempts using various credentials, with a mix of successful and unsuccessful attempts.
Figure 3: Darktrace detection of a series of login attempts using various credentials, with a mix of successful and unsuccessful attempts.

The attacker then initiated DCE_RPC service enumeration, with over 300 requests to the Endpoint Mapper endpoint on the domain controller. This technique is commonly used to discover available services and their bindings, often as a precursor to privilege escalation or remote service manipulation.

Over the next few minutes, Darktrace detected more than 1,700 outbound connections from the internal firewall interface device to one of the customer’s subnets. These targeted common services such as FTP (port 21), SSH (22), Telnet (23), HTTP (80), and HTTPS (443). The threat actor also probed administrative and directory services, including ports 135, 137, 389, and 445, as well as remote access via RDP on port 3389.

Further signs of privilege escalation attempts were observed with the detection of over 300 Netlogon requests to the domain controller. Just over half of these connections were successful, indicating possible brute-force authentication attempts, credential testing, or the use of default or harvested credentials.

Netlogon and DCE-RPC activity from the affected device, showing repeated service bindings to epmapper and Netlogon, followed by successful and failed NetrServerAuthenticate3 attempts.
Figure 4: Netlogon and DCE-RPC activity from the affected device, showing repeated service bindings to epmapper and Netlogon, followed by successful and failed NetrServerAuthenticate3 attempts.

Phase 4: Privilege Escalation & Remote Access

A few minutes later, the attacker initiated an RDP session from the internal firewall interface device to an internal server. The session lasted over three hours, during which more than 1.5MB of data was uploaded and over 5MB was downloaded.

Notably, no RDP cookie was observed during this session, suggesting manual access, tool-less exploitation, or a deliberate attempt to evade detection. While RDP cookie entries were present on other occasions, none were linked to this specific session—reinforcing the likelihood of stealthy remote access.

Additionally, multiple entries during and after this session show SSL certificate validation failures on port 3389, indicating that the RDP connection may have been established using self-signed or invalid certificates, a common tactic in unauthorized or suspicious remote access scenarios.

Darktrace’s detection of an RDP session from the firewall interface device to the server, lasting over 3 hours.
Figure 5: Darktrace’s detection of an RDP session from the firewall interface device to the server, lasting over 3 hours.

Darktrace Autonomous Response

Throughout the course of this attack, Darktrace’s Autonomous Response capability was active on the customer’s network. This enabled Darktrace to autonomously intervene by blocking specific connections and ports associated with the suspicious activity, while also enforcing a pre-established “pattern of life” on affected devices to ensure they were able to continue their expected business activities while preventing any deviations from it. These actions were crucial in containing the threat and prevent further lateral movement from the compromised device.

Darktrace’s Autonomous Response targeted specific connections and restricted affected devices to their expected patterns of life.
Figure 6: Darktrace’s Autonomous Response targeted specific connections and restricted affected devices to their expected patterns of life.

Conclusion

This incident highlights the importance of important staying on top of patching and closely monitoring VPN infrastructure, especially for internet-facing systems like Fortinet devices. Despite available patches, attackers were still able to exploit known vulnerabilities to gain access, move laterally and maintain persistence within the customer’s network.

Attackers here demonstrated a high level of stealth and persistence. Not only did they gain access to the network and carry out network scans and lateral movement, but they also used techniques such as symbolic link abuse, credential probing, and RDP sessions without cookies to avoid detection.  Darktrace’s detection of the post-exploitation activity, combined with the swift action of its Autonomous Response technology, successfully blocked malicious connections and contained the attack before it could escalate

Credit to Priya Thapa (Cyber Analyst), Vivek Rajan (Cyber Analyst), and Ryan Traill (Analyst Content Lead)

Appendices

Real-time Detection Model Alerts

·      Device / Suspicious SMB Scanning Activity

·      Device / Anomalous Nmap Activity

·      Device / Network Scan

·      Device / RDP Scan

·      Device / ICMP Address Scan

Autonomous Response Model Alerts:  

·      Antigena / Network / Insider Threat / Antigena Network Scan Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

MITRE ATT&CK Mapping

Initial Access – External Remote Services – T1133

Initial Access – Valid Accounts – T1078

Execution – Exploitation for Client Execution – T1203

Persistence – Account Manipulation – T1098

Persistence – Application Layer Protocol – T1071.001

Privilege Escalation – Exploitation for Privilege Escalation – T1068

Privilege Escalation – Valid Accounts – T1078

Defense Evasion – Masquerading – T1036

Credential Access – Brute Force – T1110

Discovery – Network Service Scanning – T1046

Discovery – Remote System Discovery – T1018

Lateral Movement – Remote Services – T1021

Lateral Movement – Software Deployment Tools – T1072

Collection – Data from Local System – T1005

Collection – Data Staging – T1074

Exfiltration – Exfiltration Over Alternative Protocol – T1048

References

[1]  https://www.tenable.com/blog/cve-2024-21762-critical-fortinet-fortios-out-of-bound-write-ssl-vpn-vulnerability

[2] https://thehackernews.com/2025/04/fortinet-warns-attackers-retain.html

[3] https://www.cisa.gov/news-events/alerts/2025/04/11/fortinet-releases-advisory-new-post-exploitation-technique-known-vulnerabilities

[4] https://www.fortiguard.com/psirt/FG-IR-24-015

[5] https://www.tenable.com/blog/cve-2023-27997-heap-based-buffer-overflow-in-fortinet-fortios-and-fortiproxy-ssl-vpn-xortigate

[6]  https://www.tenable.com/blog/cve-2022-42475-fortinet-patches-zero-day-in-fortios-ssl-vpns

[7] https://www.fortiguard.com/encyclopedia/ips/12475

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Priya Thapa
Cyber Analyst

Blog

/

Cloud

/

August 15, 2025

How Organizations are Addressing Cloud Investigation and Response

Cloud investigation and responseDefault blog imageDefault blog image

Why cloud investigation and response needs to evolve

As organizations accelerate their move to the cloud, they’re confronting two interrelated pressures: a rapidly expanding attack surface and rising regulatory scrutiny. The dual pressure is forcing security practitioners to evolve their strategies in the cloud, particularly around investigation and response, where we see analysts spending the most time. This work is especially difficult in the cloud, often requiring experienced analysts to manually stitch together evidence across fragmented systems, unfamiliar platforms, and short-lived assets.

However, adapting isn’t easy. Many teams are operating with limited budgets and face a shortage of cloud-specific security talent. That’s why more organizations are now prioritizing tools that not only deliver deep visibility and rapid response in the cloud, but also help upskill their analysts to keep pace with threats and compliance demands.

Our 2024 survey report highlights just how organizations are recognizing gaps in their cloud security, feeling the heat from regulators, and making significant investments to bolster their cloud investigation capabilities.

In this blog post, we’ll explore the current challenges, approaches, and strategies organizations are employing to enhance their cloud investigation and incident response.

Recognizing the gaps in current cloud investigation and response methods

Complex environments & static tools

Due to the dynamic nature of cloud infrastructure, ephemeral assets, autoscaling environments, and multi-cloud complexity, traditional investigation and response methods which rely on static snapshots and point-in-time data, are fundamentally mismatched. And with Cloud environment APIs needing deep provider knowledge and scripting skills to extract much needed evidence its unrealistic for one person to master all aspects of cloud incident response.

Analysts are still stitching together logs from fragmented systems, manually correlating events, and relying on post-incident forensics that often arrive too late to drive meaningful response. These approaches were built for environments that rarely changed. In the cloud, where assets may only exist for minutes and attacker movement can span regions or accounts in seconds, point-in-time visibility simply can’t keep up. As a result, critical evidence is missed, timelines are incomplete, and investigations drag on longer than they should.

Even some modern approaches still depend heavily on static configurations, delayed snapshots, or siloed visibility that can’t keep pace with real-time attacker movement.

There is even the problem of  identifying what cloud data sources hold the valuable information needed to investigate in the first place. With AWS alone having over 200 products, each with its own security practices and data sources.It can be challenging to identify where you need to be looking.  

To truly secure the cloud, investigation and response must be continuous, automated, and context-rich. Tools should be able to surface the signal from the noise and support analysts at every step, even without deep forensics expertise.

Increasing compliance pressure

With the rise of data privacy regulations and incident reporting mandates worldwide, organizations face heightened scrutiny. Noncompliance can lead to severe penalties, making it crucial to have robust cloud investigation and response mechanisms in place. 74% of organizations surveyed reported that data privacy regulations complicate incident response, underscoring the urgency to adapt to regulatory requirements.

In addition, a majority of organizations surveyed (89%) acknowledged that they suffer damage before they can fully contain and investigate incidents, particularly in cloud environments, highlighting the need for enhanced cloud capabilities.  

Enhancing cloud investigation and response

To address these challenges, organizations are actively growing their capabilities to perform investigations in the cloud. Key steps include:

Allocating and increasing budgets:  

Recognizing the importance of cloud-specific investigation tools, many organizations have started to allocate dedicated budgets for cloud forensics. 83% of organizations have budgeted for cloud forensics, with 77% expecting this budget to increase. This reflects a strong commitment to improving cloud security.

Implementing automation that understands cloud behavior

Automation isn’t just about speeding up tasks. While modern threats require speed and efficiency from defenders, automation aims to achieve this by enabling consistent decision making across unique and dynamic environments. Traditional SOAR platforms, often designed for static on-prem environments, struggle to keep pace with the dynamic and ephemeral nature of the cloud, where resources can disappear before a human analyst even has a chance to look at them. Cloud-native automation, designed to act on transient infrastructure and integrate seamlessly with cloud APIs, is rapidly emerging as the more effective approach for real-time investigation and response. Automation can cover collection, processing, and storage of incident evidence without ever needing to wait for human intervention and the evidence is ready and waiting all in once place, regardless of if the evidence is cloud-provider logs, disk images, or  memory dumps. With the right automation tools you can even go further and automate the full process from end to end covering acquisition, processing, analysis, and response.

Artificial Intelligence (AI) that augments analysts’ intuition not just adds speed

While many vendors tout AI’s ability to “analyze large volumes of data,” that’s table stakes. The real differentiator is how AI understands the narrative of an incident, surfacing high-fidelity alerts, correlating attacker movement across cloud and hybrid environments, and presenting findings in a way that upskills rather than overwhelms analysts.  

In this space, AI isn’t just accelerating investigations, it’s democratizing them by reducing the reliance on highly specialized forensic expertise.  

Strategies for effective cloud investigation and response

Organizations are also exploring various strategies to optimize their cloud investigation and response capabilities:

Enhancing visibility and control:

  • Unified platforms: Implementing platforms that provide a unified view across multiple cloud environments can help organizations achieve better visibility and control. This consolidation reduces the complexity of managing disparate tools and data sources.
  • Improved integration: Ensuring that all security tools and platforms are seamlessly integrated is critical. This integration facilitates better data sharing and cohesive incident management.
  • Cloud specific expertise: Training and Recruitment: Investing in training programs to develop cloud-specific skills among existing staff and recruiting experts with cloud security knowledge can bridge the skill gap.
  • Continuous learning: Given the constantly evolving nature of cloud threats, continuous learning and adaptation are essential for maintaining effective security measures.

Leveraging automation and AI:

  • Automation solutions: Automation solutions for cloud environments can significantly speed up and simplify incident response efficiency. These solutions can handle repetitive tasks, allowing security teams to focus on more complex issues.
  • AI powered analysis: AI can assist in rapidly analyzing incident data, identifying anomalies, and predicting potential threats. This proactive approach can help prevent incidents before they escalate.

Cloud investigation and response with Darktrace

Darktrace’s  forensic acquisition & investigation capabilities helps organizations address the complexities of cloud investigations and incident response with ease. The product seamlessly integrates with AWS, GCP, and Azure, consolidating data from multiple cloud environments into one unified platform. This integration enhances visibility and control, making it easier to manage and respond to incidents across diverse cloud infrastructures.

By leveraging machine learning and automation, Forensic Acquisition & Investigation accelerates the investigation process by quickly analyzing vast amounts of data, identifying patterns, and providing actionable insights. Automation reduces manual effort and response times, allowing your security team to focus on the most pressing issues.

Forensic Acquisition & Investigation can help you stay ahead of threats whilst also meeting regulatory requirements, helping you to maintain a robust cloud security position.

Continue reading
About the author
Calum Hall
Technical Content Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI