Blog
/
Network
/
December 20, 2023

Ivanti Sentry Vulnerability | Analysis & Insights

Darktrace observed a critical vulnerability in Ivanti Sentry's cybersecurity. Learn how this almost become a huge threat and how we stopped it in its tracks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Dec 2023

In an increasingly interconnected digital landscape, the prevalence of critical vulnerabilities in internet-facing systems stands as an open invitation to malicious actors. These vulnerabilities serve as a near limitless resource, granting attackers a continually array of entry points into targeted networks.

In the final week of August 2023, Darktrace observed malicious actors validating exploits for one such critical vulnerability, likely the critical RCE vulnerability, CVE-2023-38035, on Ivanti Sentry servers within multiple customer networks. Shortly after these successful tests were carried out, malicious actors were seen delivering crypto-mining and reconnaissance tools onto vulnerable Ivanti Sentry servers.

Fortunately, Darktrace DETECT™ was able to identify this post-exploitation activity on the compromised servers at the earliest possible stage, allowing the customer security teams to take action against affected devices. In environments where Darktrace RESPOND™ was enabled in autonomous response mode, Darktrace was further able inhibit the identified post-exploitation activity and stop malicious actors from progressing towards their end goals.

Exploitation of Vulnerabilities in Ivanti Products

The software provider, Ivanti, offers a variety of widely used endpoint management, service management, and security solutions. In July and August 2023, the Norwegian cybersecurity company, Mnemonic, disclosed three vulnerabilities in Ivanti products [1]/[2]/[3]; two in Ivanti's endpoint management solution, Ivanti Endpoint Manager Mobile (EPMM) (formerly called 'MobileIron Core'), and one in Ivanti’s security gateway solution, Ivanti Sentry (formerly called 'MobileIron Sentry'):

CVE-2023-35078

  • CVSS Score: 10.0
  • Affected Product: Ivanti EPMM
  • Details from Ivanti: [4]/[5]/[6]
  • Vulnerability type: Authentication bypass

CVE-2023-35081

  • CVSS Score: 7.2
  • Affected Product: Ivanti EPMM
  • Details from Ivanti: [7]/[8]/[9]
  • Vulnerability type: Directory traversal

CVE-2023-38035

  • CVSS Score:
  • Affected Product: Ivanti Sentry
  • Details from Ivanti: [10]/[11]/[12]
  • Vulnerability type: Authentication bypass

At the beginning of August 2023, the Cybersecurity and Infrastructure Security Agency (CISA) and the Norwegian National Cyber Security Centre (NCSC-NO) provided details of advanced persistent threat (APT) activity targeting EPMM systems within Norwegian private sector and government networks via exploitation of CVE-2023-35078 combined with suspected exploitation of CVE-2023-35081.

In an article published in August 2023 [12], Ivanti disclosed that a very limited number of their customers had been subjected to exploitation of the Ivanti Sentry vulnerability, CVE-2023-38035, and on the August 22, 2023, CISA added the Ivanti Sentry vulnerability, CVE-2023-38035 to its ‘Known Exploited Vulnerabilities Catalogue’.  CVE-2023-38035 is a critical authentication bypass vulnerability affecting the System Manager Portal of Ivanti Sentry systems. The System Manager Portal, which is accessible by default on port 8433, is used for administration of the Ivanti Sentry system. Through exploitation of CVE-2023-38035, an unauthenticated actor with access to the System Manager Portal can achieve Remote Code Execution (RCE) on the underlying Ivanti Sentry system.

Observed Exploitation of CVE-2023-38035

On August 24, Darktrace observed Ivanti Sentry servers within several customer networks receiving successful SSL connections over port 8433 from the external endpoint, 34.77.65[.]112. The usage of port 8433 indicates that the System Manager Portal was accessed over the connections. Immediately after receiving these successful connections, Ivanti Sentry servers made GET requests over port 4444 to 34.77.65[.]112. The unusual string ‘Wget/1.14 (linux-gnu)’ appeared in the User-Agent headers of these requests, indicating that the command-line utility, wget, was abused to initiate the requests.

Figure 1: Event Log data for an Ivanti Sentry system showing the device breaching a range of DETECT models after contacting 34.77.65[.]112.The suspicious behavior highlighted by DETECT was subsequently investigated by Darktrace’s Cyber AI Analyst™, which was able to weave together these separate behaviors into single incidents representing the whole attack chain.

Figure 2: AI Analyst Incident representing a chain of suspicious activities from an Ivanti Sentry server.

In cases where Darktrace RESPOND was enabled in autonomous response mode, RESPOND was able to automatically enforce the Ivanti Sentry server’s normal pattern of life, thus blocking further exploit testing.

Figure 3: Event Log for an Ivanti Sentry server showing the device receiving a RESPOND action immediately after trying to 34.77.65[.]112.

The GET requests to 34.77.65[.]112 were responded to with the following HTML document:

Figure 4: Snapshot of the HTML document returned by 34.77.65[.]112.

None of the links within this HTML document were functional. Furthermore, the devices’ downloads of these HTML documents do not appear to have elicited further malicious activities. These facts suggest that the observed 34.77.65[.]112 activities were representative of a malicious actor validating exploits (likely for CVE-2023-38035) on Ivanti Sentry systems.

Over the next 24 hours, these Ivanti Sentry systems received successful SSL connections over port 8433 from a variety of suspicious external endpoints, such as 122.161.66[.]161. These connections resulted in Ivanti Sentry systems making HTTP GET requests to subdomains of ‘oast[.]site’ and ‘oast[.]live’. Strings containing ‘curl’ appeared in the User-Agent headers of these requests, indicating that the command-line utility, cURL, was abused to initiate the requests.

These ‘oast[.]site’ and ‘oast[.]live’ domains are used by the out-of-band application security testing (OAST) service, Interactsh. Malicious actors are known to abuse this service to carry out out-of-band (OOB) exploit testing. It, therefore, seems likely that these activities were also representative of a malicious actor validating exploits for CVE-2023-38035 on Ivanti Sentry systems.

Figure 5: Event Log for Ivanti Sentry system showing the device contacting an 'oast[.]site' endpoint after receiving connections from the suspicious, external endpoint 122.161.66[.]161.

The actors seen validating exploits for CVE-2023-38035 may have been conducting such activities in preparation for their own subsequent malicious activities. However, given the variety of attack chains which ensued from these exploit validation activities, it is also possible that they were carried out by Initial Access Brokers (IABs) The activities which ensued from exploit validation activities identified by Darktrace fell into two categories: internal network reconnaissance and cryptocurrency mining.

Reconnaissance Activities

In one of the reconnaissance cases, immediately after receiving successful SSL connections over port 8443 from the external endpoints 190.2.131[.]204 and 45.159.248[.]179, an Ivanti Sentry system was seen making a long SSL connection over port 443 to 23.92.29[.]148, and making wget GET requests over port 4444 with the Target URIs '/ncat' and ‘/TxPortMap’ to the external endpoints, 45.86.162[.]147 and 195.123.240[.]183.  

Figure 6: Event Log data for an Ivanti Sentry system showing the device making connections to the external endpoints, 45.86.162[.]147, 23.92.29[.]148, and 195.123.240[.]183, immediately after receiving connections from rare external endpoints.

The Ivanti Sentry system then went on to scan for open SMB ports on systems within the internal network. This activity likely resulted from an attacker dropping a port scanning utility on the vulnerable Ivanti Sentry system.

Figure 7: Event Log data for an Ivanti Sentry server showing the device breaching several DETECT models after downloading a port scanning tool from 195.123.240[.]183.

In another reconnaissance case, Darktrace observed multiple wget HTTP requests with Target URIs such as ‘/awp.tar.gz’ and ‘/resp.tar.gz’ to a suspicious, external server (78.128.113[.]130).  Shortly after making these requests, the Ivanti Sentry system started to scan for open SMB ports and to respond to LLMNR queries from other internal devices. These behaviors indicate that the server may have installed an LLMNR poisoning tool, such as Responder. The Ivanti Sentry server also went on to conduct further information-gathering activities, such as LDAP reconnaissance, HTTP-based vulnerability scanning, HTTP-based password searching, and RDP port scanning.

Figure 8: Event Log data for an Ivanti Sentry system showing the device making connections to 78.128.113[.]130, scanning for an open SMB port on internal endpoints, and responding to LLMNR queries from internal endpoints.

In cases where Darktrace RESPOND was active, reconnaissance activities resulted in RESPOND enforcing the Ivanti Sentry server’s pattern of life.

Figure 9: Event Log data for an Ivanti Sentry system receiving a RESPOND action as a result of its SMB port scanning activity.
Figure 10: Event Log data for an Ivanti Sentry system receiving a RESPOND action as a result of its LDAP reconnaissance activity.

Crypto-Mining Activities

In one of the cryptomining cases, Darktrace detected an Ivanti Sentry server making SSL connections to aelix[.]xyz and mining pool endpoints after receiving successful SSL connections over port 8443 from the external endpoint, 140.228.24[.]160.

Figure 11: Event Log data for an Ivanti Sentry system showing the device contacting aelix[.]xyz and mining pool endpoints immediately after receiving connections from the external endpoint, 140.228.24[.]160.

In a cryptomining case on another customer’s network, an Ivanti Sentry server was seen making GET requests indicative of Kinsing malware infection. These requests included wget GET requests to 185.122.204[.]197 with the Target URIs ‘/unk.sh’ and ‘/se.sh’ and a combination of GET and POST requests to 185.221.154[.]208 with the User-Agent header ‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36’ and the Target URIs, ‘/mg’, ‘/ki’, ‘/get’, ‘/h2’, ‘/ms’, and ‘/mu’. These network-based artefacts have been observed in previous Kinsing infections [13].

Figure 12: Event Log data for an Ivanti Sentry system showing the device displaying likely Kinsing C2 activity.

On customer environments where RESPOND was active, Darktrace was able to take swift autonomous action by blocking cryptomining connection attempts to malicious command-and-control (C2) infrastructure, in this case Kinsing servers.

Figure 13: Event Log data for an Ivanti Sentry server showing the device receiving a RESPOND action after attempting to contact Kinsing C2 infrastructure.

Fortunately, due to Darktrace DETECT+RESPOND prompt identification and targeted actions against these emerging threats, coupled with remediating steps taken by affected customers’ security teams, neither the cryptocurrency mining activities nor the network reconnaissance activities led to significant disruption.  

Figure 14: Timeline of observed malicious activities.

Conclusion The inevitable presence of critical vulnerabilities in internet-facing systems underscores the perpetual challenge of defending against malicious intrusions. The near inexhaustible supply of entry routes into organizations’ networks available to malicious actors necessitates a more proactive and vigilant approach to network security.

While it is, of course, essential for organizations to secure their digital environments through the regular patching of software and keeping abreast of developing vulnerabilities that could impact their network, it is equally important to have a safeguard in place to mitigate against attackers who do manage to exploit newly discovered vulnerabilities.

In the case of Ivanti Sentry, Darktrace observed malicious actors validating exploits against affected servers on customer networks just a few days after the public disclosure of the critical vulnerability.  This activity was followed up by a variety of malicious and disruptive, activities including cryptocurrency mining and internal network reconnaissance.

Darktrace DETECT immediately detected post-exploitation activities on compromised Ivanti Sentry servers, enabling security teams to intervene at the earliest possible stage. Darktrace RESPOND, when active, autonomously inhibited detected post-exploitation activities. These DETECT detections, along with their accompanying RESPOND interventions, prevented malicious actors from being able to progress further towards their likely harmful objectives.

Credit to Sam Lister, Senior Cyber Analyst, and Trent Kessler, SOC Analyst  

Appendices

MITRE ATT&CK Mapping

Initial Access techniques:

  • Exploit Public-Facing Application (T1190)

Credential Access techniques:

  • Unsecured Credentials: Credentials In Files (T1552.001)
  • Adversary-in-the-Middle: LLMNR/NBT-NS Poisoning and SMB Relay (T1557.001)

Discovery

  • Network Service Discovery (T1046)
  • Remote System Discovery (T1018)
  • Account Discovery: Domain Account (T1087.002)

Command and Control techniques:

  • Application Layer Protocol: Web Protocols (T1071.001)
  • Ingress Tool Transfer (T1105)
  • Non-Standard Port (T1571)
  • Encrypted Channel: Asymmetric Cryptography (T1573.002)

Impact techniques

  • Resource Hijacking (T1496)
List of IoCs

Exploit testing IoCs:

·      34.77.65[.]112

·      Wget/1.14 (linux-gnu)

·      cjjovo7mhpt7geo8aqlgxp7ypod6dqaiz.oast[.]site • 178.128.16[.]97

·      curl/7.19.7 (x86_64-redhat-linux-gnu) libcurl/7.19.7 NSS/3.27.1 zlib/1.2.3 libidn/1.18 libssh2/1.4.2

·      cjk45q1chpqflh938kughtrfzgwiofns3.oast[.]site • 178.128.16[.]97

·      curl/7.29.0

Kinsing-related IoCs:

·      185.122.204[.]197

·      /unk.sh

·      /se.sh

·      185.221.154[.]208

·      185.221.154[.]208

·      45.15.158[.]124

·      Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36

·      /mg

·      /ki

·      /get

·      /h2

·      /ms

·      /mu

·      vocaltube[.]ru • 185.154.53[.]140

·      92.255.110[.]4

·      194.87.254[.]160

Responder-related IoCs:

·      78.128.113[.]130

·      78.128.113[.]34

·      /awp.tar.gz

·      /ivanty

·      /resp.tar.gz

Crypto-miner related IoCs:

·      140.228.24[.]160

·      aelix[.]xyz • 104.21.60[.]147 / 172.67.197[.]200

·      c8446f59cca2149cb5f56ced4b448c8d (JA3 client fingerprint)

·      b5eefe582e146aed29a21747a572e11c (JA3 client fingerprint)

·      pool.supportxmr[.]com

·      xmr.2miners[.]com

·      xmr.2miners[.]com

·      monerooceans[.]stream

·      xmr-eu2.nanopool[.]org

Port scanner-related IoCs:

·      122.161.66[.]161

·      192.241.235[.]32

·      45.86.162[.]147

·      /ncat

·      Wget/1.14 (linux-gnu)

·      45.159.248[.]179

·      142.93.115[.]146

·      23.92.29[.]148

·      /TxPortMap

·      195.123.240.183

·      6935a8d379e086ea1aed159b8abcb0bc8acf220bd1cbc0a84fd806f14014bca7 (SHA256 hash of downloaded file)

Darktrace DETECT Model Breaches

·      Anomalous Server Activity / New User Agent from Internet Facing System

·      Device / New User Agent

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Device / New User Agent and New IP

·      Anomalous Connection / Application Protocol on Uncommon Port

·      Anomalous Connection / Callback on Web Facing Device

·      Compromise / High Volume of Connections with Beacon Score

·      Compromise / Large Number of Suspicious Failed Connections

·      Compromise / High Volume of Connections with Beacon Score

·      Compromise / Beacon for 4 Days

·      Compromise / Agent Beacon (Short Period)

·      Device / Large Number of Model Breaches

·      Anomalous Server Activity / Rare External from Server

·      Compromise / Large Number of Suspicious Successful Connections

·      Compromise / Monero Mining

·      Compromise / High Priority Crypto Currency Mining

·      Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

·      Device / Internet Facing Device with High Priority Alert

·      Device / Suspicious SMB Scanning Activity

·      Device / Internet Facing Device with High Priority Alert

·      Device / Network Scan

·      Device / Unusual LDAP Bind and Search Activity

·      Compliance / Vulnerable Name Resolution

·      Device / Anomalous SMB Followed By Multiple Model Breaches

·      Device / New User Agent To Internal Server

·      Anomalous Connection / Suspicious HTTP Activity

·      Anomalous Connection / Unusual Internal Connections

·      Anomalous Connection / Suspicious HTTP Activity

·      Device / RDP Scan

·      Device / Large Number of Model Breaches

·      Compromise / Beaconing Activity To External Rare

·      Compromise / Beacon to Young Endpoint

·      Anomalous Connection / Suspicious HTTP Activity

·      Compromise / Suspicious Internal Use Of Web Protocol

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Internet Facing System File Download

·      Device / Suspicious SMB Scanning Activity

·      Device / Internet Facing Device with High Priority Alert

·      Device / Network Scan

·      Device / Initial Breach Chain Compromise

References

[1] https://www.mnemonic.io/resources/blog/ivanti-endpoint-manager-mobile-epmm-authentication-bypass-vulnerability/
[2] https://www.mnemonic.io/resources/blog/threat-advisory-remote-file-write-vulnerability-in-ivanti-epmm/
[3] https://www.mnemonic.io/resources/blog/threat-advisory-remote-code-execution-vulnerability-in-ivanti-sentry/
[4] https://www.ivanti.com/blog/cve-2023-35078-new-ivanti-epmm-vulnerability
[5] https://forums.ivanti.com/s/article/CVE-2023-35078-Remote-unauthenticated-API-access-vulnerability?language=en_US
[6] https://forums.ivanti.com/s/article/KB-Remote-unauthenticated-API-access-vulnerability-CVE-2023-35078?language=en_US
[7] https://www.ivanti.com/blog/cve-2023-35081-new-ivanti-epmm-vulnerability
[8] https://forums.ivanti.com/s/article/CVE-2023-35081-Arbitrary-File-Write?language=en_US
[9] https://forums.ivanti.com/s/article/KB-Arbitrary-File-Write-CVE-2023-35081?language=en_US
[10] https://www.ivanti.com/blog/cve-2023-38035-vulnerability-affecting-ivanti-sentry
[11] https://forums.ivanti.com/s/article/CVE-2023-38035-API-Authentication-Bypass-on-Sentry-Administrator-Interface?language=en_US
[12] https://forums.ivanti.com/s/article/KB-API-Authentication-Bypass-on-Sentry-Administrator-Interface-CVE-2023-38035?language=en_US
[13] https://isc.sans.edu/diary/Your+Business+Data+and+Machine+Learning+at+Risk+Attacks+Against+Apache+NiFi/29900

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
SOC Analyst

More in this series

No items found.

Blog

/

/

April 24, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats using signatures and threat intelligence, Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI