Blog
/
Network
/
December 20, 2023

Ivanti Sentry Vulnerability | Analysis & Insights

Darktrace observed a critical vulnerability in Ivanti Sentry's cybersecurity. Learn how this almost become a huge threat and how we stopped it in its tracks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Dec 2023

In an increasingly interconnected digital landscape, the prevalence of critical vulnerabilities in internet-facing systems stands as an open invitation to malicious actors. These vulnerabilities serve as a near limitless resource, granting attackers a continually array of entry points into targeted networks.

In the final week of August 2023, Darktrace observed malicious actors validating exploits for one such critical vulnerability, likely the critical RCE vulnerability, CVE-2023-38035, on Ivanti Sentry servers within multiple customer networks. Shortly after these successful tests were carried out, malicious actors were seen delivering crypto-mining and reconnaissance tools onto vulnerable Ivanti Sentry servers.

Fortunately, Darktrace DETECT™ was able to identify this post-exploitation activity on the compromised servers at the earliest possible stage, allowing the customer security teams to take action against affected devices. In environments where Darktrace RESPOND™ was enabled in autonomous response mode, Darktrace was further able inhibit the identified post-exploitation activity and stop malicious actors from progressing towards their end goals.

Exploitation of Vulnerabilities in Ivanti Products

The software provider, Ivanti, offers a variety of widely used endpoint management, service management, and security solutions. In July and August 2023, the Norwegian cybersecurity company, Mnemonic, disclosed three vulnerabilities in Ivanti products [1]/[2]/[3]; two in Ivanti's endpoint management solution, Ivanti Endpoint Manager Mobile (EPMM) (formerly called 'MobileIron Core'), and one in Ivanti’s security gateway solution, Ivanti Sentry (formerly called 'MobileIron Sentry'):

CVE-2023-35078

  • CVSS Score: 10.0
  • Affected Product: Ivanti EPMM
  • Details from Ivanti: [4]/[5]/[6]
  • Vulnerability type: Authentication bypass

CVE-2023-35081

  • CVSS Score: 7.2
  • Affected Product: Ivanti EPMM
  • Details from Ivanti: [7]/[8]/[9]
  • Vulnerability type: Directory traversal

CVE-2023-38035

  • CVSS Score:
  • Affected Product: Ivanti Sentry
  • Details from Ivanti: [10]/[11]/[12]
  • Vulnerability type: Authentication bypass

At the beginning of August 2023, the Cybersecurity and Infrastructure Security Agency (CISA) and the Norwegian National Cyber Security Centre (NCSC-NO) provided details of advanced persistent threat (APT) activity targeting EPMM systems within Norwegian private sector and government networks via exploitation of CVE-2023-35078 combined with suspected exploitation of CVE-2023-35081.

In an article published in August 2023 [12], Ivanti disclosed that a very limited number of their customers had been subjected to exploitation of the Ivanti Sentry vulnerability, CVE-2023-38035, and on the August 22, 2023, CISA added the Ivanti Sentry vulnerability, CVE-2023-38035 to its ‘Known Exploited Vulnerabilities Catalogue’.  CVE-2023-38035 is a critical authentication bypass vulnerability affecting the System Manager Portal of Ivanti Sentry systems. The System Manager Portal, which is accessible by default on port 8433, is used for administration of the Ivanti Sentry system. Through exploitation of CVE-2023-38035, an unauthenticated actor with access to the System Manager Portal can achieve Remote Code Execution (RCE) on the underlying Ivanti Sentry system.

Observed Exploitation of CVE-2023-38035

On August 24, Darktrace observed Ivanti Sentry servers within several customer networks receiving successful SSL connections over port 8433 from the external endpoint, 34.77.65[.]112. The usage of port 8433 indicates that the System Manager Portal was accessed over the connections. Immediately after receiving these successful connections, Ivanti Sentry servers made GET requests over port 4444 to 34.77.65[.]112. The unusual string ‘Wget/1.14 (linux-gnu)’ appeared in the User-Agent headers of these requests, indicating that the command-line utility, wget, was abused to initiate the requests.

Figure 1: Event Log data for an Ivanti Sentry system showing the device breaching a range of DETECT models after contacting 34.77.65[.]112.The suspicious behavior highlighted by DETECT was subsequently investigated by Darktrace’s Cyber AI Analyst™, which was able to weave together these separate behaviors into single incidents representing the whole attack chain.

Figure 2: AI Analyst Incident representing a chain of suspicious activities from an Ivanti Sentry server.

In cases where Darktrace RESPOND was enabled in autonomous response mode, RESPOND was able to automatically enforce the Ivanti Sentry server’s normal pattern of life, thus blocking further exploit testing.

Figure 3: Event Log for an Ivanti Sentry server showing the device receiving a RESPOND action immediately after trying to 34.77.65[.]112.

The GET requests to 34.77.65[.]112 were responded to with the following HTML document:

Figure 4: Snapshot of the HTML document returned by 34.77.65[.]112.

None of the links within this HTML document were functional. Furthermore, the devices’ downloads of these HTML documents do not appear to have elicited further malicious activities. These facts suggest that the observed 34.77.65[.]112 activities were representative of a malicious actor validating exploits (likely for CVE-2023-38035) on Ivanti Sentry systems.

Over the next 24 hours, these Ivanti Sentry systems received successful SSL connections over port 8433 from a variety of suspicious external endpoints, such as 122.161.66[.]161. These connections resulted in Ivanti Sentry systems making HTTP GET requests to subdomains of ‘oast[.]site’ and ‘oast[.]live’. Strings containing ‘curl’ appeared in the User-Agent headers of these requests, indicating that the command-line utility, cURL, was abused to initiate the requests.

These ‘oast[.]site’ and ‘oast[.]live’ domains are used by the out-of-band application security testing (OAST) service, Interactsh. Malicious actors are known to abuse this service to carry out out-of-band (OOB) exploit testing. It, therefore, seems likely that these activities were also representative of a malicious actor validating exploits for CVE-2023-38035 on Ivanti Sentry systems.

Figure 5: Event Log for Ivanti Sentry system showing the device contacting an 'oast[.]site' endpoint after receiving connections from the suspicious, external endpoint 122.161.66[.]161.

The actors seen validating exploits for CVE-2023-38035 may have been conducting such activities in preparation for their own subsequent malicious activities. However, given the variety of attack chains which ensued from these exploit validation activities, it is also possible that they were carried out by Initial Access Brokers (IABs) The activities which ensued from exploit validation activities identified by Darktrace fell into two categories: internal network reconnaissance and cryptocurrency mining.

Reconnaissance Activities

In one of the reconnaissance cases, immediately after receiving successful SSL connections over port 8443 from the external endpoints 190.2.131[.]204 and 45.159.248[.]179, an Ivanti Sentry system was seen making a long SSL connection over port 443 to 23.92.29[.]148, and making wget GET requests over port 4444 with the Target URIs '/ncat' and ‘/TxPortMap’ to the external endpoints, 45.86.162[.]147 and 195.123.240[.]183.  

Figure 6: Event Log data for an Ivanti Sentry system showing the device making connections to the external endpoints, 45.86.162[.]147, 23.92.29[.]148, and 195.123.240[.]183, immediately after receiving connections from rare external endpoints.

The Ivanti Sentry system then went on to scan for open SMB ports on systems within the internal network. This activity likely resulted from an attacker dropping a port scanning utility on the vulnerable Ivanti Sentry system.

Figure 7: Event Log data for an Ivanti Sentry server showing the device breaching several DETECT models after downloading a port scanning tool from 195.123.240[.]183.

In another reconnaissance case, Darktrace observed multiple wget HTTP requests with Target URIs such as ‘/awp.tar.gz’ and ‘/resp.tar.gz’ to a suspicious, external server (78.128.113[.]130).  Shortly after making these requests, the Ivanti Sentry system started to scan for open SMB ports and to respond to LLMNR queries from other internal devices. These behaviors indicate that the server may have installed an LLMNR poisoning tool, such as Responder. The Ivanti Sentry server also went on to conduct further information-gathering activities, such as LDAP reconnaissance, HTTP-based vulnerability scanning, HTTP-based password searching, and RDP port scanning.

Figure 8: Event Log data for an Ivanti Sentry system showing the device making connections to 78.128.113[.]130, scanning for an open SMB port on internal endpoints, and responding to LLMNR queries from internal endpoints.

In cases where Darktrace RESPOND was active, reconnaissance activities resulted in RESPOND enforcing the Ivanti Sentry server’s pattern of life.

Figure 9: Event Log data for an Ivanti Sentry system receiving a RESPOND action as a result of its SMB port scanning activity.
Figure 10: Event Log data for an Ivanti Sentry system receiving a RESPOND action as a result of its LDAP reconnaissance activity.

Crypto-Mining Activities

In one of the cryptomining cases, Darktrace detected an Ivanti Sentry server making SSL connections to aelix[.]xyz and mining pool endpoints after receiving successful SSL connections over port 8443 from the external endpoint, 140.228.24[.]160.

Figure 11: Event Log data for an Ivanti Sentry system showing the device contacting aelix[.]xyz and mining pool endpoints immediately after receiving connections from the external endpoint, 140.228.24[.]160.

In a cryptomining case on another customer’s network, an Ivanti Sentry server was seen making GET requests indicative of Kinsing malware infection. These requests included wget GET requests to 185.122.204[.]197 with the Target URIs ‘/unk.sh’ and ‘/se.sh’ and a combination of GET and POST requests to 185.221.154[.]208 with the User-Agent header ‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36’ and the Target URIs, ‘/mg’, ‘/ki’, ‘/get’, ‘/h2’, ‘/ms’, and ‘/mu’. These network-based artefacts have been observed in previous Kinsing infections [13].

Figure 12: Event Log data for an Ivanti Sentry system showing the device displaying likely Kinsing C2 activity.

On customer environments where RESPOND was active, Darktrace was able to take swift autonomous action by blocking cryptomining connection attempts to malicious command-and-control (C2) infrastructure, in this case Kinsing servers.

Figure 13: Event Log data for an Ivanti Sentry server showing the device receiving a RESPOND action after attempting to contact Kinsing C2 infrastructure.

Fortunately, due to Darktrace DETECT+RESPOND prompt identification and targeted actions against these emerging threats, coupled with remediating steps taken by affected customers’ security teams, neither the cryptocurrency mining activities nor the network reconnaissance activities led to significant disruption.  

Figure 14: Timeline of observed malicious activities.

Conclusion The inevitable presence of critical vulnerabilities in internet-facing systems underscores the perpetual challenge of defending against malicious intrusions. The near inexhaustible supply of entry routes into organizations’ networks available to malicious actors necessitates a more proactive and vigilant approach to network security.

While it is, of course, essential for organizations to secure their digital environments through the regular patching of software and keeping abreast of developing vulnerabilities that could impact their network, it is equally important to have a safeguard in place to mitigate against attackers who do manage to exploit newly discovered vulnerabilities.

In the case of Ivanti Sentry, Darktrace observed malicious actors validating exploits against affected servers on customer networks just a few days after the public disclosure of the critical vulnerability.  This activity was followed up by a variety of malicious and disruptive, activities including cryptocurrency mining and internal network reconnaissance.

Darktrace DETECT immediately detected post-exploitation activities on compromised Ivanti Sentry servers, enabling security teams to intervene at the earliest possible stage. Darktrace RESPOND, when active, autonomously inhibited detected post-exploitation activities. These DETECT detections, along with their accompanying RESPOND interventions, prevented malicious actors from being able to progress further towards their likely harmful objectives.

Credit to Sam Lister, Senior Cyber Analyst, and Trent Kessler, SOC Analyst  

Appendices

MITRE ATT&CK Mapping

Initial Access techniques:

  • Exploit Public-Facing Application (T1190)

Credential Access techniques:

  • Unsecured Credentials: Credentials In Files (T1552.001)
  • Adversary-in-the-Middle: LLMNR/NBT-NS Poisoning and SMB Relay (T1557.001)

Discovery

  • Network Service Discovery (T1046)
  • Remote System Discovery (T1018)
  • Account Discovery: Domain Account (T1087.002)

Command and Control techniques:

  • Application Layer Protocol: Web Protocols (T1071.001)
  • Ingress Tool Transfer (T1105)
  • Non-Standard Port (T1571)
  • Encrypted Channel: Asymmetric Cryptography (T1573.002)

Impact techniques

  • Resource Hijacking (T1496)
List of IoCs

Exploit testing IoCs:

·      34.77.65[.]112

·      Wget/1.14 (linux-gnu)

·      cjjovo7mhpt7geo8aqlgxp7ypod6dqaiz.oast[.]site • 178.128.16[.]97

·      curl/7.19.7 (x86_64-redhat-linux-gnu) libcurl/7.19.7 NSS/3.27.1 zlib/1.2.3 libidn/1.18 libssh2/1.4.2

·      cjk45q1chpqflh938kughtrfzgwiofns3.oast[.]site • 178.128.16[.]97

·      curl/7.29.0

Kinsing-related IoCs:

·      185.122.204[.]197

·      /unk.sh

·      /se.sh

·      185.221.154[.]208

·      185.221.154[.]208

·      45.15.158[.]124

·      Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36

·      /mg

·      /ki

·      /get

·      /h2

·      /ms

·      /mu

·      vocaltube[.]ru • 185.154.53[.]140

·      92.255.110[.]4

·      194.87.254[.]160

Responder-related IoCs:

·      78.128.113[.]130

·      78.128.113[.]34

·      /awp.tar.gz

·      /ivanty

·      /resp.tar.gz

Crypto-miner related IoCs:

·      140.228.24[.]160

·      aelix[.]xyz • 104.21.60[.]147 / 172.67.197[.]200

·      c8446f59cca2149cb5f56ced4b448c8d (JA3 client fingerprint)

·      b5eefe582e146aed29a21747a572e11c (JA3 client fingerprint)

·      pool.supportxmr[.]com

·      xmr.2miners[.]com

·      xmr.2miners[.]com

·      monerooceans[.]stream

·      xmr-eu2.nanopool[.]org

Port scanner-related IoCs:

·      122.161.66[.]161

·      192.241.235[.]32

·      45.86.162[.]147

·      /ncat

·      Wget/1.14 (linux-gnu)

·      45.159.248[.]179

·      142.93.115[.]146

·      23.92.29[.]148

·      /TxPortMap

·      195.123.240.183

·      6935a8d379e086ea1aed159b8abcb0bc8acf220bd1cbc0a84fd806f14014bca7 (SHA256 hash of downloaded file)

Darktrace DETECT Model Breaches

·      Anomalous Server Activity / New User Agent from Internet Facing System

·      Device / New User Agent

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Device / New User Agent and New IP

·      Anomalous Connection / Application Protocol on Uncommon Port

·      Anomalous Connection / Callback on Web Facing Device

·      Compromise / High Volume of Connections with Beacon Score

·      Compromise / Large Number of Suspicious Failed Connections

·      Compromise / High Volume of Connections with Beacon Score

·      Compromise / Beacon for 4 Days

·      Compromise / Agent Beacon (Short Period)

·      Device / Large Number of Model Breaches

·      Anomalous Server Activity / Rare External from Server

·      Compromise / Large Number of Suspicious Successful Connections

·      Compromise / Monero Mining

·      Compromise / High Priority Crypto Currency Mining

·      Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

·      Device / Internet Facing Device with High Priority Alert

·      Device / Suspicious SMB Scanning Activity

·      Device / Internet Facing Device with High Priority Alert

·      Device / Network Scan

·      Device / Unusual LDAP Bind and Search Activity

·      Compliance / Vulnerable Name Resolution

·      Device / Anomalous SMB Followed By Multiple Model Breaches

·      Device / New User Agent To Internal Server

·      Anomalous Connection / Suspicious HTTP Activity

·      Anomalous Connection / Unusual Internal Connections

·      Anomalous Connection / Suspicious HTTP Activity

·      Device / RDP Scan

·      Device / Large Number of Model Breaches

·      Compromise / Beaconing Activity To External Rare

·      Compromise / Beacon to Young Endpoint

·      Anomalous Connection / Suspicious HTTP Activity

·      Compromise / Suspicious Internal Use Of Web Protocol

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Internet Facing System File Download

·      Device / Suspicious SMB Scanning Activity

·      Device / Internet Facing Device with High Priority Alert

·      Device / Network Scan

·      Device / Initial Breach Chain Compromise

References

[1] https://www.mnemonic.io/resources/blog/ivanti-endpoint-manager-mobile-epmm-authentication-bypass-vulnerability/
[2] https://www.mnemonic.io/resources/blog/threat-advisory-remote-file-write-vulnerability-in-ivanti-epmm/
[3] https://www.mnemonic.io/resources/blog/threat-advisory-remote-code-execution-vulnerability-in-ivanti-sentry/
[4] https://www.ivanti.com/blog/cve-2023-35078-new-ivanti-epmm-vulnerability
[5] https://forums.ivanti.com/s/article/CVE-2023-35078-Remote-unauthenticated-API-access-vulnerability?language=en_US
[6] https://forums.ivanti.com/s/article/KB-Remote-unauthenticated-API-access-vulnerability-CVE-2023-35078?language=en_US
[7] https://www.ivanti.com/blog/cve-2023-35081-new-ivanti-epmm-vulnerability
[8] https://forums.ivanti.com/s/article/CVE-2023-35081-Arbitrary-File-Write?language=en_US
[9] https://forums.ivanti.com/s/article/KB-Arbitrary-File-Write-CVE-2023-35081?language=en_US
[10] https://www.ivanti.com/blog/cve-2023-38035-vulnerability-affecting-ivanti-sentry
[11] https://forums.ivanti.com/s/article/CVE-2023-38035-API-Authentication-Bypass-on-Sentry-Administrator-Interface?language=en_US
[12] https://forums.ivanti.com/s/article/KB-API-Authentication-Bypass-on-Sentry-Administrator-Interface-CVE-2023-38035?language=en_US
[13] https://isc.sans.edu/diary/Your+Business+Data+and+Machine+Learning+at+Risk+Attacks+Against+Apache+NiFi/29900

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
SOC Analyst

More in this series

No items found.

Blog

/

Compliance

/

September 5, 2025

Cyber Assessment Framework v4.0 Raises the Bar: 6 Questions every security team should ask about their security posture

CAF v4.0 cyber assessment frameworkDefault blog imageDefault blog image

What is the Cyber Assessment Framework?

The Cyber Assessment Framework (CAF) acts as guide for organizations, specifically across essential services, critical national infrastructure and regulated sectors, across the UK for assessing, managing and improving their cybersecurity, cyber resilience and cyber risk profile.

The guidance in the Cyber Assessment Framework aligns with regulations such as The Network and Information Systems Regulations (NIS), The Network and Information Security Directive (NIS2) and the Cyber Security and Resilience Bill.

What’s new with the Cyber Assessment Framework 4.0?

On 6 August 2025, the UK’s National Cyber Security Centre (NCSC) released Cyber Assessment Framework 4.0 (CAF v4.0) a pivotal update that reflects the increasingly complex threat landscape and the regulatory need for organisations to respond in smarter, more adaptive ways.

The Cyber Assessment Framework v4.0 introduces significant shifts in expectations, including, but not limited to:

  • Understanding threats in terms of the capabilities, methods and techniques of threat actors and the importance of maintaining a proactive security posture (A2.b)
  • The use of secure software development principles and practices (A4.b)
  • Ensuring threat intelligence is understood and utilised - with a focus on anomaly-based detection (C1.f)
  • Performance of proactive threat hunting with automation where appropriate (C2.a)

This blog post will focus on these components of the framework. However, we encourage readers to get the full scope of the framework by visiting the NCSC website where they can access the full framework here.

In summary, the changes to the framework send a clear signal: the UK’s technical authority now expects organisations to move beyond static rule-based systems and embrace more dynamic, automated defences. For those responsible for securing critical national infrastructure and essential services, these updates are not simply technical preferences, but operational mandates.

At Darktrace, this evolution comes as no surprise. In fact, it reflects the approach we've championed since our inception.

Why Darktrace? Leading the way since 2013

Darktrace was built on the principle that detecting cyber threats in real time requires more than signatures, thresholds, or retrospective analysis. Instead, we pioneered a self-learning approach powered by artificial intelligence, that understands the unique “normal” for every environment and uses this baseline to spot subtle deviations indicative of emerging threats.

From the beginning, Darktrace has understood that rules and lists will never keep pace with adversaries. That’s why we’ve spent over a decade developing AI that doesn't just alert, it learns, reasons, explains, and acts.

With Cyber Assessment Framework v4.0, the bar has been raised to meet this new reality. For technical practitioners tasked with evaluating their organisation’s readiness, there are five essential questions that should guide the selection or validation of anomaly detection capabilities.

6 Questions you should ask about your security posture to align with CAF v4

1. Can your tools detect threats by identifying anomalies?

Cyber Assessment Framework v4.0 principle C1.f has been added in this version and requires that, “Threats to the operation of network and information systems, and corresponding user and system behaviour, are sufficiently understood. These are used to detect cyber security incidents.”

This marks a significant shift from traditional signature-based approaches, which rely on known Indicators of Compromise (IOCs) or predefined rules to an expectation that normal user and system behaviour is understood to an extent enabling abnormality detection.

Why this shift?

An overemphasis on threat intelligence alone leaves defenders exposed to novel threats or new variations of existing threats. By including reference to “understanding user and system behaviour” the framework is broadening the methods of threat detection beyond the use of threat intelligence and historical attack data.

While CAF v4.0 places emphasis on understanding normal user and system behaviour and using that understanding to detect abnormalities and as a result, adverse activity. There is a further expectation that threats are understood in terms of industry specific issues and that monitoring is continually updated  

Darktrace uses an anomaly-based approach to threat detection which involves establishing a dynamic baseline of “normal” for your environment, then flagging deviations from that baseline — even when there’s no known IoCs to match against. This allows security teams to surface previously unseen tactics, techniques, and procedures in real time, whether it’s:

  • An unexpected outbound connection pattern (e.g., DNS tunnelling);
  • A first-time API call between critical services;
  • Unusual calls between services; or  
  • Sensitive data moving outside normal channels or timeframes.

The requirement that organisations must be equipped to monitor their environment, create an understanding of normal and detect anomalous behaviour aligns closely with Darktrace’s capabilities.

2. Is threat hunting structured, repeatable, and improving over time?

CAF v4.0 introduces a new focus on structured threat hunting to detect adverse activity that may evade standard security controls or when such controls are not deployable.  

Principle C2.a outlines the need for documented, repeatable threat hunting processes and stresses the importance of recording and reviewing hunts to improve future effectiveness. This inclusion acknowledges that reactive threat hunting is not sufficient. Instead, the framework calls for:

  • Pre-determined and documented methods to ensure threat hunts can be deployed at the requisite frequency;
  • Threat hunts to be converted  into automated detection and alerting, where appropriate;  
  • Maintenance of threat hunt  records and post-hunt analysis to drive improvements in the process and overall security posture;
  • Regular review of the threat hunting process to align with updated risks;
  • Leveraging automation for improvement, where appropriate;
  • Focus on threat tactics, techniques and procedures, rather than one-off indicators of compromise.

Traditionally, playbook creation has been a manual process — static, slow to amend, and limited by human foresight. Even automated SOAR playbooks tend to be stock templates that can’t cover the full spectrum of threats or reflect the specific context of your organisation.

CAF v4.0 sets the expectation that organisations should maintain documented, structured approaches to incident response. But Darktrace / Incident Readiness & Recovery goes further. Its AI-generated playbooks are bespoke to your environment and updated dynamically in real time as incidents unfold. This continuous refresh of “New Events” means responders always have the latest view of what’s happening, along with an updated understanding of the AI's interpretation based on real-time contextual awareness, and recommended next steps tailored to the current stage of the attack.

The result is far beyond checkbox compliance: a living, adaptive response capability that reduces investigation time, speeds containment, and ensures actions are always proportionate to the evolving threat.

3. Do you have a proactive security posture?

Cyber Assessment Framework v4.0 does not want organisations to detect threats, it expects them to anticipate and reduce cyber risk before an incident ever occurs. That is s why principle A2.b calls for a security posture that moves from reactive detection to predictive, preventative action.

A proactive security posture focuses on reducing the ease of the most likely attack paths in advance and reducing the number of opportunities an adversary has to succeed in an attack.

To meet this requirement, organisations could benefit in looking for solutions that can:

  • Continuously map the assets and users most critical to operations;
  • Identify vulnerabilities and misconfigurations in real time;
  • Model likely adversary behaviours and attack paths using frameworks like MITRE ATT&CK; and  
  • Prioritise remediation actions that will have the highest impact on reducing overall risk.

When done well, this approach creates a real-time picture of your security posture, one that reflects the dynamic nature and ongoing evolution of both your internal environment and the evolving external threat landscape. This enables security teams to focus their time in other areas such as  validating resilience through exercises such as red teaming or forecasting.

4. Can your team/tools customize detection rules and enable autonomous responses?

CAF v4.0 places greater emphasis on reducing false positives and acting decisively when genuine threats are detected.  

The framework highlights the need for customisable detection rules and, where appropriate, autonomous response actions that can contain threats before they escalate:

The following new requirements are included:  

  • C1.c.: Alerts and detection rules should be adjustable to reduce false positives and optimise responses. Custom tooling and rules are used in conjunction with off the shelf tooling and rules;
  • C1.d: You investigate and triage alerts from all security tools and take action – allowing for improvement and prioritization of activities;
  • C1.e: Monitoring and detection personnel have sufficient understanding of operational context and deal with workload effectively as well as identifying areas for improvement (alert or triage fatigue is not present);
  • C2.a: Threat hunts should be turned into automated detections and alerting where appropriate and automation should be leveraged to improve threat hunting.

Tailored detection rules improve accuracy, while automation accelerates response, both of which help satisfy regulatory expectations. Cyber AI Analyst allows for AI investigation of alerts and can dramatically reduce the time a security team spends on alerts, reducing alert fatigue, allowing more time for strategic initiatives and identifying improvements.

5. Is your software secure and supported?  

CAF v4.0 introduced a new principle which requires software suppliers to leverage an established secure software development framework. Software suppliers must be able to demonstrate:  

  • A thorough understanding of the composition and provenance of software provided;  
  • That the software development lifecycle is informed by a detailed and up to date understanding of threat; and  
  • They can attest to the authenticity and integrity of the software, including updates and patches.  

Darktrace is committed to secure software development and all Darktrace products and internally developed systems are developed with secure engineering principles and security by design methodologies in place. Darktrace commits to the inclusion of security requirements at all stages of the software development lifecycle. Darktrace is ISO 27001, ISO 27018 and ISO 42001 Certified – demonstrating an ongoing commitment to information security, data privacy and artificial intelligence management and compliance, throughout the organisation.  

6. Is your incident response plan built on a true understanding of your environment and does it adapt to changes over time?

CAF v4.0 raises the bar for incident response by making it clear that a plan is only as strong as the context behind it. Your response plan must be shaped by a detailed, up-to-date understanding of your organisation’s specific network, systems, and operational priorities.

The framework’s updates emphasise that:

  • Plans must explicitly cover the network and information systems that underpin your essential functions because every environment has different dependencies, choke points, and critical assets.
  • They must be readily accessible even when IT systems are disrupted ensuring critical steps and contact paths aren’t lost during an incident.
  • They should be reviewed regularly to keep pace with evolving risks, infrastructure changes, and lessons learned from testing.

From government expectation to strategic advantage

Cyber Assessment Framework v4.0 signals a powerful shift in cybersecurity best practice. The newest version sets a higher standard for detection performance, risk management, threat hunting software development and proactive security posture.

For Darktrace, this is validation of the approach we have taken since the beginning: to go beyond rules and signatures to deliver proactive cyber resilience in real-time.

-----

Disclaimer:

This document has been prepared on behalf of Darktrace Holdings Limited. It is provided for information purposes only to provide prospective readers with general information about the Cyber Assessment Framework (CAF) in a cyber security context. It does not constitute legal, regulatory, financial or any other kind of professional advice and it has not been prepared with the reader and/or its specific organisation’s requirements in mind. Darktrace offers no warranties, guarantees, undertakings or other assurances (whether express or implied)  that: (i) this document or its content are  accurate or complete; (ii) the steps outlined herein will guarantee compliance with CAF; (iii) any purchase of Darktrace’s products or services will guarantee compliance with CAF; (iv) the steps outlined herein are appropriate for all customers. Neither the reader nor any third party is entitled to rely on the contents of this document when making/taking any decisions or actions to achieve compliance with CAF. To the fullest extent permitted by applicable law or regulation, Darktrace has no liability for any actions or decisions taken or not taken by the reader to implement any suggestions contained herein, or for any third party products, links or materials referenced. Nothing in this document negates the responsibility of the reader to seek independent legal or other advice should it wish to rely on any of the statements, suggestions, or content set out herein.  

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Mariana Pereira
VP, Field CISO

Blog

/

OT

/

September 5, 2025

Rethinking Signature-Based Detection for Power Utility Cybersecurity

power utility cybersecurityDefault blog imageDefault blog image

Lessons learned from OT cyber attacks

Over the past decade, some of the most disruptive attacks on power utilities have shown the limits of signature-based detection and reshaped how defenders think about OT security. Each incident reinforced that signatures are too narrow and reactive to serve as the foundation of defense.

2015: BlackEnergy 3 in Ukraine

According to CISA, on December 23, 2015, Ukrainian power companies experienced unscheduled power outages affecting a large number of customers — public reports indicate that the BlackEnergy malware was discovered on the companies’ computer networks.

2016: Industroyer/CrashOverride

CISA describes CrashOverride malwareas an “extensible platform” reported to have been used against critical infrastructure in Ukraine in 2016. It was capable of targeting industrial control systems using protocols such as IEC‑101, IEC‑104, and IEC‑61850, and fundamentally abused legitimate control system functionality to deliver destructive effects. CISA emphasizes that “traditional methods of detection may not be sufficient to detect infections prior to the malware execution” and recommends behavioral analysis techniques to identify precursor activity to CrashOverride.

2017: TRITON Malware

The U.S. Department of the Treasury reports that the Triton malware, also known as TRISIS or HatMan, was “designed specifically to target and manipulate industrial safety systems” in a petrochemical facility in the Middle East. The malware was engineered to control Safety Instrumented System (SIS) controllers responsible for emergency shutdown procedures. During the attack, several SIS controllers entered a failed‑safe state, which prevented the malware from fully executing.

The broader lessons

These events revealed three enduring truths:

  • Signatures have diminishing returns: BlackEnergy showed that while signatures can eventually identify adapted IT malware, they arrive too late to prevent OT disruption.
  • Behavioral monitoring is essential: CrashOverride demonstrated that adversaries abuse legitimate industrial protocols, making behavioral and anomaly detection more effective than traditional signature methods.
  • Critical safety systems are now targets: TRITON revealed that attackers are willing to compromise safety instrumented systems, elevating risks from operational disruption to potential physical harm.

The natural progression for utilities is clear. Static, file-based defenses are too fragile for the realities of OT.  

These incidents showed that behavioral analytics and anomaly detection are far more effective at identifying suspicious activity across industrial systems, regardless of whether the malicious code has ever been seen before.

Strategic risks of overreliance on signatures

  • False sense of security: Believing signatures will block advanced threats can delay investment in more effective detection methods.
  • Resource drain: Constantly updating, tuning, and maintaining signature libraries consumes valuable staff resources without proportional benefit.
  • Adversary advantage: Nation-state and advanced actors understand the reactive nature of signature defenses and design attacks to circumvent them from the start.

Recommended Alternatives (with real-world OT examples)

 Alternative strategies for detecting cyber attacks in OT
Figure 1: Alternative strategies for detecting cyber attacks in OT

Behavioral and anomaly detection

Rather than relying on signatures, focusing on behavior enables detection of threats that have never been seen before—even trusted-looking devices.

Real-world insight:

In one OT setting, a vendor inadvertently left a Raspberry Pi on a customer’s ICS network. After deployment, Darktrace’s system flagged elastic anomalies in its HTTPS and DNS communication despite the absence of any known indicators of compromise. The alerting included sustained SSL increases, agent‑beacon activity, and DNS connections to unusual endpoints, revealing a possible supply‑chain or insider risk invisible to static tools.  

Darktrace’s AI-driven threat detection aligns with the zero-trust principle of assuming the risk of a breach. By leveraging AI that learns an organization’s specific patterns of life, Darktrace provides a tailored security approach ideal for organizations with complex supply chains.

Threat intelligence sharing & building toward zero-trust philosophy

Frameworks such as MITRE ATT&CK for ICS provide a common language to map activity against known adversary tactics, helping teams prioritize detections and response strategies. Similarly, information-sharing communities like E-ISAC and regional ISACs give utilities visibility into the latest tactics, techniques, and procedures (TTPs) observed across the sector. This level of intel can help shift the focus away from chasing individual signatures and toward building resilience against how adversaries actually operate.

Real-world insight:

Darktrace’s AI embodies zero‑trust by assuming breach potential and continually evaluating all device behavior, even those deemed trusted. This approach allowed the detection of an anomalous SharePoint phishing attempt coming from a trusted supplier, intercepted by spotting subtle patterns rather than predefined rules. If a cloud account is compromised, unauthorized access to sensitive information could lead to extortion and lateral movement into mission-critical systems for more damaging attacks on critical-national infrastructure.

This reinforces the need to monitor behavioral deviations across the supply chain, not just known bad artifacts.

Defense-in-Depth with OT context & unified visibility

OT environments demand visibility that spans IT, OT, and IoT layers, supported by risk-based prioritization.

Real-world insight:

Darktrace / OT offers unified AI‑led investigations that break down silos between IT and OT. Smaller teams can see unusual outbound traffic or beaconing from unknown OT devices, swiftly investigate across domains, and get clear visibility into device behavior, even when they lack specialized OT security expertise.  

Moreover, by integrating contextual risk scoring, considering real-world exploitability, device criticality, firewall misconfiguration, and legacy hardware exposure, utilities can focus on the vulnerabilities that genuinely threaten uptime and safety, rather than being overwhelmed by CVE noise.  

Regulatory alignment and positive direction

Industry regulations are beginning to reflect this evolution in strategy. NERC CIP-015 requires internal network monitoring that detects anomalies, and the standard references anomalies 15 times. In contrast, signature-based detection is not mentioned once.

This regulatory direction shows that compliance bodies understand the limitations of static defenses and are encouraging utilities to invest in anomaly-based monitoring and analytics. Utilities that adopt these approaches will not only be strengthening their resilience but also positioning themselves for regulatory compliance and operational success.

Conclusion

Signature-based detection retains utility for common IT malware, but it cannot serve as the backbone of security for power utilities. History has shown that major OT attacks are rarely stopped by signatures, since each campaign targets specific systems with customized tools. The most dangerous adversaries, from insiders to nation-states, actively design their operations to avoid detection by signature-based tools.

A more effective strategy prioritizes behavioral analytics, anomaly detection, and community-driven intelligence sharing. These approaches not only catch known threats, but also uncover the subtle anomalies and novel attack techniques that characterize tomorrow’s incidents.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology
Your data. Our AI.
Elevate your network security with Darktrace AI