Blog
/
Network
/
August 3, 2022

The Risks of Remote Access Tools

Discover how remote access tools in exploitations across OT/ICS and corporate environments benefit from Darktrace's product suite.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dylan Hinz
Cyber Analyst
Written by
Gabriel Few-Wiegratz
Product Marketing Manager, Exposure Management and Incident Readiness
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
Aug 2022

Understanding remote access tools

In 2022, remote access tools continue to provide versatile support to organizations. By controlling devices remotely from across the globe, IT teams save on response costs, travel times, and can receive remote support from external parties like contractors [1 & 2]. This is particularly relevant in cases involving specialty machines such as OT/ICS systems where physical access is sometimes limited. These tools, however, come with their own risks. The following blog will discuss these risks and how they can be addressed (particularly in OT environments) by looking at two exploit examples from the popular sphere and within the Darktrace customer base. 

What are remote access tools?

One of the most popular remote tools is TeamViewer, a comprehensive videoconferencing and remote management tool which can be used on both desktop and handheld devices[3]. Like other sophisticated tools, when it works as intended, it can seem like magic. However, remote access tools can be exploited and may grant privileged network access to potential threat actors. Although TeamViewer needs to be installed on both perpetrator and victim devices, if an attacker has access to a misconfigured TeamViewer device, it becomes trivial to establish a foothold and deploy malware. 

How secure is remote access?

Security vulnerabilities in remote access tools

In early 2021, remote access tooling was seen on a new scale against the City of Oldsmar’s water treatment plant [4] (Figure 1). Oldsmar manages chemical concentration levels in the water for a 15,000-person city. The water treatment plant had been using TeamViewer to allow employees to share screens and work through IT issues. However, in February an employee noticed he had lost control of his mouse cursor. Initially he was unconcerned; the employee assumed that the cursor was being controlled by his boss, who regularly connected to the computer to monitor the facility’s systems. A few hours later though, the employee again saw his cursor moving out of his control and this time noticed that it was attempting to change levels of sodium hydroxide in the water supply (which is extremely dangerous for human consumption). Thankfully, the employee was able to quickly spot the changes and return them to their normal level. When looking back at the event, the key question posed by officials was where exactly the vulnerability was located in their security stack. [5]. The answer was unclear.

Photograph of compromised water plant in Florida 
Figure 1: Photograph of compromised water plant in Florida 

Tactics and strategies

When attackers get initial network access, the primary challenge for any enterprise is identifying a) that a device compromise has happened and b) how it happened. These were the same challenges seen in the Oldsmar attack. When the first physical signs of compromise occurred (cursor movement), the impacted user was still unsure whether the activity was malicious. A detailed investigation from Dragos revealed the how: evidence of a watering hole, reconnaissance activity a month prior, a targeted variant of the Tofsee botnet, and the potential presence of two separate threat actors [6 & 7]. The answer to both questions pointed to a complex attack. However, with Darktrace these questions become less important. 

How Darktrace stops compromised remote access

Darktrace does not rely on signatures but instead has AI-based models for live detection of these tools and anomalies within the wider network. Regardless of the security ‘hole’, live detection gives security teams the potential to respond in near-live time.

According to Darktrace’s Chief Product Officer, Max Heinemeyer, the Oldsmar attack was possible because it “Abused off-the-shelf tools that were already used by the client, specifically TeamViewer. This tactic, which targeted the domain controller as the initial vector, made the malware deployment easy and effective.” [8]. 

Darktrace has multiple DETECT models to provide visibility over anomalous TeamViewer or remote access tool usage:

·      Compliance / Incoming Remote Access Tool

·      Compliance / Remote Management Tool On Client

·      Compliance / Remote Management Tool On Server

·      Device / Activity Identifier / Teamviewer 

General incoming privileged connections:

·      Compliance / Incoming Remote Desktop

·      Compliance / Incoming SSH

Industrial DETECT can also highlight any new or unusual changes in ICS/OT systems:

·      ICS / Incoming ICS Command

·      ICS / Incoming RDP And ICS Commands

·      ICS / Uncommon ICS Error

Darktrace gives security teams the opportunity for a proactive response, and it is up to those teams to utilize that opportunity. In recent months our SOC Team have also seen remote access controls being abused for high-profile threats. In one example, Darktrace detected a ransomware attack supported by the installation of AnyDesk. 

Initial detection of compromise

In May a company’s mail server was detected making multiple external requests for an unusual file ‘106.exe’ using a PowerShell agent (6b79549200af33bf0322164f8a4d56a0fa08a5a62ab6a5c93a6eeef2065430ce). Although some requests were directed to sinkholes, many were otherwise successful. Subsequently a DDL file with hash f126ce9014ee87de92e734c509e1b5ab71ffb2d5a8b27171da111f96f3ba0e75 (marked by VirusTotal as malicious) was downloaded. This was followed by the installation of AnyDesk: a remote access tool likely deployed for backdoor purposes during further compromises. It is clear the threat actor then moved on to reconnaissance, with new Mimikatz use and a large volume of ICMP and SMBv.1 scanning sessions using a default credential. DCE-RPC calls were also made to the Netlogon service, suggesting a possible attempt to exploit 2020’s Zerologon vulnerability (CVE-2020-1472) [9]. When the customer then discovered a ransom note pertaining to LV (repurposed REvil), Darktrace analysts helped them to re-configure Darktrace RESPOND and turn it to active rather than human confirmation mode (Figure 2). 

Figure 2: Capture of LV ransom note provided by customer

Whilst in this instance the tool was not used for initial access, it was still an important contingency tool to ensure the threat actor’s persistency as the customer tried to respond to the ongoing breach. Yet it was the visibility provided by Darktrace model detection and changes to RESPOND configuration which ensured the customer kept up with this actor and reduced the impact of the attack. 

Looking back at Oldsmar, it is clear that being aware of remote access tools is only half the battle. More importantly, most organizations are asking if their use in attacks can be prevented in the first place. As an off-the-shelf tool, restricting TeamViewer use seems like an easy solution but such tools are often essential for maintenance and support operations. Even if limited to privileged users, these accounts are also subject to potential compromise. Instead, companies can take a large-scale view and consider the environment in which the Oldsmar attack occurred. 

How IT & OT convergence complicated this attack

In this context, the separation of OT and IT systems is a potential solution - if attackers cannot access at-risk systems, then they also cannot attack those systems. However, with recent discourse around the IT-OT convergence and increased use of IoT devices, this separation is increasingly challenging to implement [10]. Complex networking designs, stringent patching requirements and ever-changing business/operational needs are all big considerations when establishing industrial security. In fact, Tenable’s CEO Amit Yoran encouraged less separation following Oldsmar: “There’s business reasons and efficiency reasons that you might want to connect those to be able to predict when parts are going to fail or when outages are going to occur [sic].” [11]. 

When neither addressing remote access use or industrial set-up provides a quick solution, then security teams need to look to third-party support to stop similar attacks. In addition to Darktrace DETECT, our Darktrace PREVENT range with PREVENT/Attack Surface Management (ASM) can also alert security teams to internet-facing devices at risk of remote access exploitation. ASM actively queries the Shodan API for open ports on company websites and exposed servers. This highlights those assets which might be vulnerable to this type of remote access.   

Conclusion

In conclusion, TeamViewer and other remote access tools offer a lot of convenience for security teams but also for attackers. Attackers can remotely access important systems including those in the industrial network and install malware using remote access tools as leverage. Security teams need to know both their normal authorized activities and how to enforce them. With Darktrace DETECT, the tools are given transparency, with Darktrace RESPOND they can be blocked, and now Darktrace PREVENT/ASM helps to mitigate the risk of attack before it happens. As the professional world continues to embrace hybrid working, it becomes increasingly crucial to embrace these types of products and ensure protection against the dangers of unwanted remote access. 

Thanks to Connor Mooney for his contributions to this blog.

Appendices

References 

[1] https://goabacus.com/advantages-and-disadvantages-of-remote-access-service/ 

[2] https://blog.ericom.com/advantages-of-remote-access/ 

[3] https://www.teamviewer.com/en/documents/ 

[4] https://www.wired.com/story/oldsmar-florida-water-utility-hack/ 

[5 & 11] https://www.bankinfosecurity.com/ot-it-integration-raises-risk-for-water-providers-experts-say-a-18841 

[6] https://www.dragos.com/blog/industry-news/a-new-water-watering-hole/ 

[7] https://www.dragos.com/blog/industry-news/recommendations-following-the-oldsmar-water-treatment-facility-cyber-attack/

[8] https://customerportal.darktrace.com/darktrace-blogs/get-blog/53  

[9] https://www.crowdstrike.com/blog/cve-2020-1472-zerologon-security-advisory/

[10] https://www.mckinsey.com/business-functions/operations/our-insights/converge-it-and-ot-to-turbocharge-business-operations-scaling-power

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dylan Hinz
Cyber Analyst
Written by
Gabriel Few-Wiegratz
Product Marketing Manager, Exposure Management and Incident Readiness

More in this series

No items found.

Blog

/

Network

/

November 12, 2025

Unmasking Vo1d: Inside Darktrace’s Botnet Detection

Default blog imageDefault blog image

What is vo1d APK malware?

Vo1d malware first appeared in the wild in September 2024 and has since evolved into one of the most widespread Android botnets ever observed. This large-scale Android malware primarily targets smart TVs and low-cost Android TV boxes. Initially, Vo1d was identified as a malicious backdoor capable of installing additional third-party software [1]. Its functionality soon expanded beyond the initial infection to include deploying further malicious payloads, running proxy services, and conducting ad fraud operations. By early 2025, it was estimated that Vo1d had infected 1.3 to 1.6 million devices worldwide [2].

From a technical perspective, Vo1d embeds components into system storage to enable itself to download and execute new modules at any time. External researchers further discovered that Vo1d uses Domain Generation Algorithms (DGAs) to create new command-and-control (C2) domains, ensuring that regardless of existing servers being taken down, the malware can quickly reconnect to new ones. Previous published analysis identified dozens of C2 domains and hundreds of DGA seeds, along with new downloader families. Over time, Vo1d has grown increasingly sophisticated with clear signs of stronger obfuscation and encryption methods designed to evade detection [2].

Darktrace’s coverage

Earlier this year, Darktrace observed a surge in Vo1d-related activity across customer environments, with the majority of affected customers based in South Africa. Devices that had been quietly operating as expected began exhibiting unusual network behavior, including excessive DNS lookups. Open-source intelligence (OSINT) has long highlighted South Africa as one of the countries most impacted by Vo1d infections [2].

What makes the recent activity particularly interesting is that the surge observed by Darktrace appears to be concentrated specifically in South African environments. This localized spike suggests that a significant number of devices may have been compromised, potentially due to vulnerable software, outdated firmware, or even preloaded malware. Regions with high prevalence of low-cost, often unpatched devices are especially susceptible, as these everyday consumer electronics can be quietly recruited into the botnet’s network. This specifically appears to be the case with South Africa, where public reporting has documented widespread use of low-cost boxes, such as non-Google-certified Android TV sticks, that frequently ship with outdated firmware [3].

The initial triage highlighted the core mechanism Vo1d uses to remain resilient: its use of DGA. A DGA deterministically creates a large list of pseudo-random domain names on a predictable schedule. This enables the malware to compute hundreds of candidate domains using the same algorithm, instead of using a hard-coded single C2 hostname that defenders could easily block or take down. To ensure reproducible from the infected device’s perspective, Vo1d utilizes DGA seeds. These seeds might be a static string, a numeric value, or a combination of underlying techniques that enable infected devices to generate the same list of candidate domains for a time window, provided the same DGA code, seed, and date are used.

Interestingly, Vo1d’s DGA seeds do not appear to be entirely unpredictable, and the generated domains lack fully random-looking endings. As observed in Figure 1, there is a clear pattern in the names generated. In this case, researchers identified that while the first five characters would change to create the desired list of domain names, the trailing portion remained consistent as part of the seed: 60b33d7929a, which OSINT sources have linked to the Vo1d botnet. [2]. Darktrace’s Threat Research team also identified a potential second DGA seed, with devices in some cases also engaging in activity involving hostnames matching the regular expression /[a-z]{5}fc975904fc9\.(com|top|net). This second seed has not been reported by any OSINT vendors at the time of writing.

Another recurring characteristic observed across multiple cases was the choice of top-level domains (TLDs), which included .com, .net, and .top.

Figure 1: Advanced Search results showing DNS lookups, providing a glimpse on the DGA seed utilized.

The activity was detected by multiple models in Darktrace / NETWORK, which triggered on devices making an unusually large volume of DNS requests for domains uncommon across the network.

During the network investigation, Darktrace analysts traced Vo1d’s infrastructure and uncovered an interesting pattern related to responder ASNs. A significant number of connections pointed to AS16509 (AMAZON-02). By hosting redirectors or C2 nodes inside major cloud environments, Vo1d is able to gain access to highly available and geographically diverse infrastructure. When one node is taken down or reported, operators can quickly enable a new node under a different IP within the same ASN. Another feature of cloud infrastructure that hardens Vo1d’s resilience is the fact that many organizations allow outbound connections to cloud IP ranges by default, assuming they are legitimate. Despite this, Darktrace was able to identify the rarity of these endpoints, identifying the unusualness of the activity.

Analysts further observed that once a generated domain successfully resolved, infected devices consistently began establishing outbound connections to ephemeral port ranges like TCP ports 55520 and 55521. These destination ports are atypical for standard web or DNS traffic. Even though the choice of high-numbered ports appears random, it is likely far from not accidental. Commonly used ports such as port 80 (HTTP) or 443 (HTTPS) are often subject to more scrutiny and deeper inspection or content filtering, making them riskier for attackers. On the other hand, unregistered ports like 55520 and 55521 are less likely to be blocked, providing a more covert channel that blends with outbound TCP traffic. This tactic helps evade firewall rules that focus on common service ports. Regardless, Darktrace was able to identify external connections on uncommon ports to locations that the network does not normally visit.

The continuation of the described activity was identified by Darktrace’s Cyber AI Analyst, which correlated individual events into a broader interconnected incident. It began with the multiple DNS requests for the algorithmically generated domains, followed by repeated connections to rare endpoints later confirmed as attacker-controlled infrastructure. Cyber AI Analyst’s investigation further enabled it to categorize the events as part of the “established foothold” phase of the attack.

Figure 2: Cyber AI Analyst incident illustrating the transition from DNS requests for DGA domains to connections with resolved attacker-controlled infrastructure.

Conclusion

The observations highlighted in this blog highlight the precision and scale of Vo1d’s operations, ranging from its DGA-generated domains to its covert use of high-numbered ports. The surge in affected South African environments illustrate how regions with many low-cost, often unpatched devices can become major hubs for botnet activity. This serves as a reminder that even everyday consumer electronics can play a role in cybercrime, emphasizing the need for vigilance and proactive security measures.

Credit to Christina Kreza (Cyber Analyst & Team Lead) and Eugene Chua (Principal Cyber Analyst & Team Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Devices Beaconing to New Rare IP
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / DGA Beacon
  • Compromise / Domain Fluxing
  • Compromise / Fast Beaconing to DGA
  • Unusual Activity / Unusual External Activity

List of Indicators of Compromise (IoCs)

  • 3.132.75[.]97 – IP address – Likely Vo1d C2 infrastructure
  • g[.]sxim[.]me – Hostname – Likely Vo1d C2 infrastructure
  • snakeers[.]com – Hostname – Likely Vo1d C2 infrastructure

Selected DGA IoCs

  • semhz60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • ggqrb60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • eusji60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • uacfc60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • qilqxfc975904fc9[.]top – Hostname – Possible Vo1d C2 DGA endpoint

MITRE ATT&CK Mapping

  • T1071.004 – Command and Control – DNS
  • T1568.002 – Command and Control – Domain Generation Algorithms
  • T1568.001 – Command and Control – Fast Flux DNS
  • T1571 – Command and Control – Non-Standard Port

[1] https://news.drweb.com/show/?lng=en&i=14900

[2] https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/

[3] https://mybroadband.co.za/news/broadcasting/596007-warning-for-south-africans-using-specific-types-of-tv-sticks.html

Continue reading
About the author
Christina Kreza
Cyber Analyst

Blog

/

Network

/

November 6, 2025

Darktrace Named the Only 2025 Gartner® Peer Insights™ Customers’ Choice for Network Detection and Response

Default blog imageDefault blog image

Darktrace: The only Customers’ Choice for NDR in 2025

In a year defined by rapid change across the threat landscape, recognition from those who use and rely on security technology every day means the most.

That’s why we’re proud to share that Darktrace has been named the only Customers’ Choice in the 2025 Gartner® Peer Insights™ Voice of the Customer for Network Detection and Response (NDR).

Out of 11 leading NDR vendors evaluated, Darktrace stood alone as the sole Customers’ Choice, a recognition that we feel reflects not just our innovation, but the trust and satisfaction of the customers who secure their networks with Darktrace every day.

What the Gartner® Peer Insights™ Voice of the Customer means

“Voice of the Customer” is a document that synthesizes Gartner Peer Insights reviews into insights for buyers of technology and services. This aggregated peer perspective, along with the individual detailed reviews, is complementary to Gartner expert research and can play a key role in your buying process. Peers are verified reviewers of a technology product or service, who not only rate the offering, but also provide valuable feedback to consider before making a purchase decision. Vendors placed in the upper-right “Customers’ Choice” quadrant of the “Voice of the Customer” have scores that meet or exceed the market average for both axes (User Interest and Adoption, and Overall Experience).It’s not just a rating. We feel it’s a reflection of genuine customer sentiment and success in the field.

In our view, Customers consistently highlight Darktrace’s ability to:

  • Detect and respond to unknown threats in real time
  • Deliver unmatched visibility across IT, OT, and cloud environments
  • Automate investigations and responses through AI-driven insights

We believe this recognition reinforces what our customers already know: that Darktrace helps them see, understand, and stop attacks others miss.

A rare double: recognized by customers and analysts alike

This distinction follows another major recogniton. Darktrace’s placement as a Leader in the Gartner® Magic Quadrant™ for Network Detection and Response earlier this year.

That makes Darktrace the only vendor to achieve both:

  • A Leader status in the Gartner Magic Quadrant for NDR, and
  • A Customers’ Choice in Gartner Peer Insights 2025

It’s a rare double that we feel reflects both industry leadership and customer trust, two perspectives that, together, define what great cybersecurity looks like.

A Customers’ Choice across the network and the inbox

To us, this recognition also builds on Darktrace’s momentum across multiple domains. Earlier this year, Darktrace was also named a Customers’ Choice for Email Security Platforms in the Gartner® Peer Insights™ report.

With more than 1,000 verified reviews across Network Detection and Response, Email Security Platforms, and Cyber Physical Systems (CPS), we at Darktrace are proud to be trusted across the full attack surface, from the inbox to the industrial network.

Thank you to our customers

We’re deeply grateful to every customer who shared their experience with Darktrace on Gartner Peer Insights. Your insights drive our innovation and continue to shape how we protect complex, dynamic environments across the world.

Discover why customers choose Darktrace for network and email security.

Gartner® Peer Insights™ content consists of the opinions of individual end users based on their own experiences, and should not be construed as statements of fact, nor do they represent the views of Gartner or its affiliates. Gartner does not endorse any vendor, product or service depicted in this content nor makes any warranties, expressed or implied, with respect to this content, about its accuracy or completeness, including any warranties of merchantability or fitness for a particular purpose.

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved.

Magic Quadrant and Peer Insights are registered trademarks of Gartner, Inc. and/or its affiliates and is used herein with permission. All rights reserved.

Gartner, Voice of the Customer for Network Detection and Response, By Peer Community Contributor, 30 October 2025

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI