Blog
/
/
May 5, 2020

The Ongoing Threat of Dharma Ransomware Attacks

Stay informed about the dangers of Dharma ransomware and its methods of attack, ensuring your defenses are strong against potential intrusions.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
05
May 2020

Executive summary

  • In the past few weeks, Darktrace has observed an increase in attacks against internet-facing systems, such as RDP. The initial intrusions usually take place via existing vulnerabilities or stolen, legitimate credentials. The Dharma ransomware attack described in this blog post is one such example.
  • Old threats can be damaging – Dharma and its variants have been around for four years. This is a classic example of ‘legacy’ ransomware morphing and adapting to bypass traditional defenses.
  • The intrusion shows signs that indicate the threat-actors are aware of – and are actively exploiting – the COVID-19 situation.
  • In the current threat landscape surrounding COVID-19, Darktrace recommends monitoring internet-facing systems and critical servers closely – keeping track of administrative credentials and carefully considering security when rapidly deploying internet-facing infrastructure.

Introduction

In mid-April, Darktrace detected a targeted Dharma ransomware attack on a UK company. The initial point of intrusion was via RDP – this represents a very common attack method of infection that Darktrace has observed in the broader threat landscape over the past few weeks.

This blog post highlights every stage of the attack lifecycle and details the attacker’s techniques, tools and procedures (TTP) – all detected by Darktrace.

Dharma – a varient of the CrySIS malware family – first appeared in 2016 and uses multiple intrusion vectors. It distributes its malware as an attachment in a spam email, by disguising it as an installation file for legitimate software, or by exploiting an open RDP connection through internet-facing servers. When Dharma has finished encrypting files, it drops a ransom note with the contact email address in the encrypted SMB files.

Darktrace had strong, real-time detections of the attack – however the absence of eyes on the user interface prior to the encryption activity, and without Autonomous Response deployed in Active Mode, these alerts were only actioned after the ransomware was unleashed. Fortunately, it was unable to spread within the organization, thanks to human intervention at the peak of the attack. However, Darktrace Antigena in active mode would have significantly slowed down the attack.

Timeline

The timeline below provides a rough overview of the major attack phases over five days of activity.

Figure 1: A timeline of the attack

Technical analysis

Darktrace detected that the main device hit by the attack was an internet-facing RDP server (‘RDP server’). Dharma used network-level encryption here: the ransomware activity takes place over the network protocol SMB.

Below is a chronological overview of all Darktrace detections that fired during this attack: Darktrace detected and reported every single unusual or suspicious event occurring on the RDP server.

Figure 2: An overview of Darktrace detections

Initial compromise

On April 7, the RDP server began receiving a large number of incoming connections from rare IP addresses on the internet.

On April 7, the RDP server began receiving a large number of incoming connections from rare IP addresses on the internet. This means a lot of IP addresses on the internet that usually don’t connect to this company started connection attempts over RDP. The top five cookies used to authenticate show that the source IPs were located in Russia, the Netherlands, Korea, the United States, and Germany.

It is highly likely that the RDP credential used in this attack had been compromised prior to the attack – either via common brute-force methods, credential stuffing attacks, or phishing. Indeed, a TTP growing in popularity is to buy RDP credentials on marketplaces and skip to initial access.

Attempted privilege escalation

The following day, the malicious actor abused the SMB version 1 protocol, notorious for always-on null sessions which offer unauthenticated users’ information about the machine – such as password policies, usernames, group names, machine names, user and host SIDs. What followed was very unusual: the server connected externally to a rare IP address located in Morocco.

Next, the attacker attempted a failed SMB session to the external IP over an unusual port. Darktrace detected this activity as highly anomalous, as it had previously learned that SMB is usually not used in this fashion within this organization – and certainly not for external communication over this port.

Figure 3: Darktrace detecting the rare external IP address

Figure 4: The SMB session failure and the rare connection over port 1047

Command and control traffic

As the entire attack occurred over five days, this aligns with a smash-and-grab approach, rather than a highly covert, low-and-slow operation.

Two hours later, the server initiated a large number of anomalous and rare connections to external destinations located in India, China, and Italy – amongst other destinations the server had never communicated with before. The attacker was now attempting to establish persistence and create stronger channels for command and control (C2). As the entire attack occurred over five days, this aligns with a smash-and-grab approach, rather than a highly covert, low-and-slow operation.

Actions on target

Notwithstanding this approach, the malicious actor remained dormant for two days, biding their time until April 10 — a public holiday in the UK — when security teams would be notably less responsive. This pause in activity provides supporting evidence that the attack was human-driven.

Figure 5: The unusual RDP connections detected by Darktrace

The RDP server then began receiving incoming remote desktop connections from 100% rare IP addresses located in the Netherlands, Latvia, and Poland.

Internal reconnaissance

The IP address 85.93.20[.]6, hosted at the time of investigation in Panama, made two connections to the server, using an administrative credential. On April 12, as other inbound RDP connections scanned the network, the volume of data transferred by the RDP server to this IP address spiked. The RDP server never scans the internal network. Darktrace identified this as highly unusual activity.

Figure 6: Darktrace detects the anomalous external data transfer

Lateral movement and payload execution

Finally, on April 12, the attackers executed the Dharma payload at 13:45. The RDP server wrote a number of files over the SMB protocol, appended with a file extension containing a throwaway email account possibly evoking the current COVID-19 pandemic, ‘cov2020@aol[.]com’. The use of string ‘…@aol.com].ROGER’ and presence of a file named ‘FILES ENCRYPTED.txt’ resembles previous Dharma compromises.

Parallel to the encryption activity, the ransomware tried to spread and infect other machines by initiating successful SMB authentications using the same administrator credential seen during the internal reconnaissance. However, the destination devices did not encrypt any files themselves.

It was during the encryption activity that the internal IT staff pulled the plug from the compromised RDP server, thus ending the ransomware activity.

Conclusion

This incident supports the idea that ‘legacy’ ransomware may morph to resurrect itself to exploit vulnerabilities in remote working infrastructure during this pandemic.

Dharma executed here a fast-acting, planned, targeted, ransomware attack. The attackers used off-the-shelf tools (RDP, abusing SMB1 protocol) blurring detection and attribution by blending in with typical administrator activity.

Darktrace detected every stage of the attack without having to depend on threat intelligence or rules and signatures, and the internal security team acted on the malicious activity to prevent further damage.

This incident supports the idea that ‘legacy’ ransomware may morph to resurrect itself to exploit vulnerabilities in remote working infrastructure during this pandemic. Poorly-secured public-facing systems have been rushed out and security is neglected as companies prioritize availability – sacrificing security in the process. Financially-motivated actors weaponize these weak points.

The use of the COVID-related email ‘cov2020@aol[.]com’ during the attack indicates that the threat-actor is aware of and abusing the current global pandemic.

Recent attacks, such as APT41’s exploitation of the Zoho Manage Engine vulnerability last March, show that attacks against internet-facing infrastructure are gaining popularity as the initial intrusion vector. Indeed, as many as 85% of ransomware attacks use RDP as an entry vector. Ensuring that backups are isolated, configurations are hardened, and systems are patched is not enough – real-time detection of every anomalous action can help protect potential victims of ransomware.

Technical Details

Some of the detections on the RDP server:

  • Compliance / Internet Facing RDP server – exposure of critical server to Internet
  • Anomalous Connection / Application Protocol on Uncommon Port – external connections using an unusual port to rare endpoints
  • Device / Large Number of Connections to New Endpoints – indicative of peer-to-peer or scanning activity
  • Compliance / Incoming Remote Desktop – device is remotely controlled from an external source, increased rick of bruteforce
  • Compromise / Ransomware / Suspicious SMB Activity – reading and writing similar volumes of data to remote file shares, indicative of files being overwritten and encrypted
  • Anomalous File / Internal / Additional Extension Appended to SMB File – device is renaming network share files with an added extension, seen during ransomware activity

The graph below shows the timeline of Darktrace detections on the RDP server. The attack lifecycle is clearly observable.

Figure 7: The model breaches occurring over time

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

April 24, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats using signatures and threat intelligence, Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI