Blog
/
Email
/
February 27, 2025

Fighting the Real Enemy: The Importance of Responsible Vulnerability Disclosure Between Email Security Vendors

This blog explores an exploitation capability observed by Darktrace in another email security vendor’s link rewriting and the steps Darktrace took to inform and resolve the issue.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Feb 2025

Part of being a cybersecurity vendor is recognizing our responsibility to the security community – while vendor competition exists, it pales in comparison to the threat of our shared adversary: malicious threat actors.

Darktrace is proud to be contributing to the shared mission of fighting attackers; without goodwill among defenders that task is made more difficult for everyone. Through collaboration, we can advance security standards across the board and make the world a safer place.  

With that in mind, Darktrace recently observed an exploitation capability latent in a competing email security vendor’s link rewriting infrastructure, which posed a risk to organizations. Following identification, Darktrace was able to report it to the vendor following their disclosure process. We’ll explore the vulnerability, the potential impact it may have had, how it could have been resolved, and the steps Darktrace took to raise it with the vendor.  

Please note that the following vulnerability we’re about to expose has already been resolved, so there is no risk of it being exploited by others. While keeping this vendor anonymous, we also want to thank them for their cordial response and swift remediation of the issue.

For more information about vulnerability disclosure best practices, refer to the UK National Cyber Security Center’s Vulnerability Disclosure Toolkit.

Details of the vulnerability

Let’s take a look at the weakness Darktrace identified in the link rewriting infrastructure.

In January 2025, Darktrace observed that links generated by a URL rewriting infrastructure could be re-engineered by a malicious actor to point to a URL of their choosing. In this way, a threat actor could effectively use the vendor’s domain to create a malicious domain under their control.

Because a majority of security vendors default to trust from known-safe domains, using one of these links as the payload greatly enhances the likelihood of that email being allow-listed to bypass email security, network URL filtering, and other such security tools, to reach the inbox. This issue meant any adversary could have abused the vendor’s safelink structure to deliver a malicious phishing link payload to any organization. It is likely this exploitation capability could have been found and abused at scale if not addressed.

The problem with said vendor’s link rewriting process was in using standard base-64 encoding instead of randomized encoding, so that anyone could replace the value of the parameter “b=” which contains a base64-encoded form of the original link with a base64-encoded form of a URL of their choosing.

This also posed issues from a privacy perspective. If, for example the encoded link was a SharePoint file, all the included folder names would be available for anyone to see in plaintext.

Example of a phishing attack caught by Darktrace that uses another email security solution’s compromised safelink
Fig 1: Example of a phishing attack caught by Darktrace that uses another email security solution’s compromised safelink

How the vulnerability was resolved

The solution for developers is to ensure the use of randomized encoding when developing link rewriting infrastructure to close the possibility of safelinks being deciphered and re-engineered by malicious actors.

Once Darktrace found this link issue we followed the vendor’s disclosure process to report the potential risk to customers and the wider community, while also conducting a review to ensure that Darktrace customers and their supply chains remained safe. We continued to follow up with the company directly to ensure that the vulnerability was fixed.

This instance highlights the importance of vendors having clear and visible vulnerability disclosure processes (such as RFC9116) and being available to listen to the security community in case of disclosures of this nature.

Why Darktrace was obliged to disclose this vulnerability

Here, Darktrace had two responsibilities: to the security community and to our customers.

As a company whose mission is to protect organizations today and for an ever-changing future, we will never stand by if there is a known risk. If attackers had used the safelinks to create new attacks, any organization could have been exposed due to the inherent trust in this vendor’s links within services that distribute or maintain global whitelists, harm which could have been multiplied by the interlinked nature of supply chains.

This means that not only the vendor’s customers were exposed, but any organization with their safelink in a whitelist was also exposed to this vulnerability. For Darktrace customers, an attack using this link would have been detected and stopped across various service offerings, and a secondary escalation by our Cyber AI Analyst would ensure security teams were aware. Even so, Darktrace has a responsibility to these customers to do everything in its power to minimize their exposure to risk, even if it comes from within their own security stack.

Why Darktrace customers remain protected

If a Darktrace / EMAIL, Darktrace / NETWORK, or any other Darktrace ActiveAI Security Platform customer was exposed to this type of vulnerability, our unique Self-Learning AI approach and defense-in-depth philosophy means they stay protected.

Darktrace / EMAIL doesn’t approach links from a binary perspective – as safe, or unsafe – instead every link is analyzed for hundreds of metrics including the content and context in which it was delivered. Because every user’s normal behavior is baselined, Darktrace can immediately detect anomalies in link-sharing patterns that may point to a threat. Furthermore, our advanced link analysis includes metrics on how links perform within a browser and in-depth visual analysis, to detect even well-disguised payloads.

None of Darktrace’s customers were compromised as a result of this vulnerability. But should a customer have clicked on a similar malicious link, that’s where a platform approach to security comes in. Detecting threats that traverse domains is one strength of the Darktrace ActiveAI Security Platform. Our AI correlates data from across the digital estate to spot suspicious activity in the network, endpoint or cloud that may have originated from a malicious email. Darktrace’s Cyber AI Analyst then performs triage and investigation of alerts to raise those of high importance to an incident, allowing for human-analyst validation and escalation.

As demonstrated by finding this vulnerability in another vendor, Darktrace’s R&D teams are always thinking like an attacker as they develop our products, to allow us to remain one step ahead for our customers.

Conclusion

We hope this example can be useful to developers working on link rewriting infrastructure, or to vendors figuring out how to proceed with a disclosure to another vendor. We’re pleased to have been able to collaborate with said vendor in this instance, and hope that it serves to illustrate the importance of defenders working together towards the common goal of keeping organizations safe from hostile cyber actors.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community

More in this series

No items found.

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI