Blog
/
Email
/
June 25, 2024

Following up on our Conversation: Detecting & Containing a LinkedIn Phishing Attack with Darktrace

Darktrace/Email detected a phishing attack that had originated from LinkedIn, where the attacker impersonated a well known construction company to conduct a credential harvesting attack on the target. Darktrace’s ActiveAI Security Platform played a critical role in investigating the activity and initiating real-time responses that were outside the physical capability of human security teams.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Jun 2024

Note: Real organization, domain and user names have been modified and replaced with fictitious names to maintain anonymity.  

Social media cyber-attacks

Social media is a known breeding ground for cyber criminals to easily connect with a near limitless number of people and leverage the wealth of personal information shared on these platforms to defraud the general public.  Analysis suggests even the most tech savvy ‘digital natives’ are vulnerable to impersonation scams over social media, as criminals weaponize brands and trends, using the promise of greater returns to induce sensitive information sharing or fraudulent payments [1].

LinkedIn phishing

As the usage of a particular social media platform increases, cyber criminals will find ways to exploit the increasing user base, and this trend has been observed with the rise in LinkedIn scams in recent years [2].  LinkedIn is the dominant professional networking site, with a forecasted 84.1million users by 2027 [3].  This platform is data-driven, so users are encouraged to share information publicly, including personal life updates, to boost visibility and increase job prospects [4] [5].  While this helps legitimate recruiters to gain a good understanding of the user, an attacker could also leverage the same personal content to increase the sophistication and success of their social engineering attempts.  

Darktrace detection of LinkedIn phishing

Darktrace detected a Software-as-a-Service (SaaS) compromise affecting a construction company, where the attack vector originated from LinkedIn (outside the monitoring of corporate security tools), but then pivoted to corporate email where a credential harvesting payload was delivered, providing the attacker with credentials to access a corporate file storage platform.  

Because LinkedIn accounts are typically linked to an individual’s personal email and are most commonly accessed via the mobile application [6] on personal devices that are not monitored by security teams, it can represent an effective initial access point for attackers looking to establish an initial relationship with their target. Moreover, user behaviors to ignore unsolicited emails from new or unknown contacts are less frequently carried over to platforms like LinkedIn, where interactions with ‘weak ties’ as opposed to ‘strong ties’ are a better predictor of job mobility [7]. Had this attack been allowed to continue, the threat actor could have leveraged access to further information from the compromised business cloud account to compromise other high value accounts, exfiltrate sensitive data, or defraud the organization.

LinkedIn phishing attack details

Reconnaissance

The initial reconnaissance and social engineering occurred on LinkedIn and was thus outside the purview of corporate security tools, Darktrace included.

However, the email domain “hausconstruction[.]com” used by the attacker in subsequent communications appears to be a spoofed domain impersonating a legitimate construction company “haus[.]com”, suggesting the attacker may have also impersonated an employee of this construction company on LinkedIn.  In addition to spoofing the domain, the attacker seemingly went further to register “hausconstruction.com” on a commercial web hosting platform.  This is a technique used frequently not just to increase apparent legitimacy, but also to bypass traditional security tools since newly registered domains will have no prior threat intelligence, making them more likely to evade signature and rules-based detections [8].  In this instance, open-source intelligence (OSINT) sources report that the domain was created several months earlier, suggesting this may have been part of a targeted attack on construction companies.  

Initial Intrusion

It was likely that during the correspondence over LinkedIn, the target user was solicited into following up over email regarding a prospective construction project, using their corporate email account.  In a probable attempt to establish a precedent of bi-directional correspondence so that subsequent malicious emails would not be flagged by traditional security tools, the attacker did not initially include suspicious links, attachments or use solicitous or inducive language within their initial emails.

Example of bi-directional email correspondence between the target and the attacker impersonating a legitimate employee of the construction company haus.com.
Figure 1: Example of bi-directional email correspondence between the target and the attacker impersonating a legitimate employee of the construction company haus.com.
Cyber AI Analyst investigation into one of the initial emails the target received from the attacker.
Figure 2: Cyber AI Analyst investigation into one of the initial emails the target received from the attacker.  

To accomplish the next stage of their attack, the attacker shared a link, hidden behind the inducing text “VIEW ALL FILES”, to a malicious file using the Hightail cloud storage service. This is also a common method employed by attackers to evade detection, as this method of file sharing does not involve attachments that can be scanned by traditional security tools, and legitimate cloud storage services are less likely to be blocked.

OSINT analysis on the malicious link link shows the file hosted on Hightail was a HTML file with the associated message “Following up on our LinkedIn conversation”.  Further analysis suggests the file contained obfuscated Javascript that, once opened, would automatically redirect the user to a malicious domain impersonating a legitimate Microsoft login page for credential harvesting purposes.  

The malicious HTML file containing obfuscated Javascript, where the highlighted string references the malicious credential harvesting domain.
Figure 3: The malicious HTML file containing obfuscated Javascript, where the highlighted string references the malicious credential harvesting domain.
Screenshot of fraudulent Microsoft Sign In page hosted on the malicous credential harvesting domain.
Figure 4: Screenshot of fraudulent Microsoft Sign In page hosted on the malicious credential harvesting domain.

Although there was prior email correspondence with the attacker, this email was not automatically deemed safe by Darktrace and was further analyzed for unusual properties and unusual communications for the recipient and the recipient’s peer group.  

Darktrace determined that:

  • It was unusual for this file storage solution to be referenced in communications to the user and the wider network
  • Textual properties of the email body suggested a high level of inducement from the sender, with a high level of focus on the phishing link.
  • The full link contained suspicious properties suggesting it is high risk.
Darktrace’s analysis of the phishing email, presenting key information about the unusual characteristics of this email, information on highlighted content, and an overview of actions that were initially applied.
Figure 5: Darktrace’s analysis of the phishing email, presenting key information about the unusual characteristics of this email, information on highlighted content, and an overview of actions that were initially applied.  

Based on these anomalies, Darktrace initially moved the phishing email to the junk folder and locked the link, preventing the user from directly accessing the malicious file hosted on Hightail.  However, the customer’s security team released the email, likely upon end-user request, allowing the target user to access the file and ultimately enter their credentials into that credential harvesting domain.

Darktrace alerts triggered by the malicious phishing email and the corresponding Autonomous Response actions.
Figure 6: Darktrace alerts triggered by the malicious phishing email and the corresponding Autonomous Response actions.

Lateral Movement

Correspondence between the attacker and target continued for two days after the credential harvesting payload was delivered.  Five days later, Darktrace detected an unusual login using multi-factor authentication (MFA) from a rare external IP and ASN that coincided with Darktrace/Email logs showing access to the credential harvesting link.

This attempt to bypass MFA, known as an Office365 Shell WCSS attack, was likely achieved by inducing the target to enter their credentials and legitimate MFA token into the fake Microsoft login page. This was then relayed to Microsoft by the attacker and used to obtain a legitimate session. The attacker then reused the legitimate token to log into Exchange Online from a different IP and registered their own device for MFA.

Screenshot within Darktrace/Email of the phishing email that was released by the security team, showing the recipient clicked the link to file storage where the malicious payload was stored.
Figure 7: Screenshot within Darktrace/Email of the phishing email that was released by the security team, showing the recipient clicked the link to file storage where the malicious payload was stored.

Event Log showing a malicious login and MFA bypass at 17:57:16, shortly after the link was clicked.  Highlighted in green is activity from the legitimate user prior to the malicious login, using Edge.
Figure 8: Event Log showing a malicious login and MFA bypass at 17:57:16, shortly after the link was clicked.  Highlighted in green is activity from the legitimate user prior to the malicious login, using Edge. Highlighted in orange and red is the malicious activity using Chrome.

The IP addresses used by the attacker appear to be part of anonymization infrastructure, but are not associated with any known indicators of compromise (IoCs) that signature-based detections would identify [9] [10].

In addition to  logins being observed within half an hour of each other from multiple geographically impossible locations (San Francisco and Phoenix), the unexpected usage of Chrome browser, compared to Edge browser previously used, provided Darktrace with further evidence that this activity was unlikely to originate from the legitimate user.  Although the user was a salesperson who frequently travelled for their role, Darktrace’s Self-Learning AI understood that the multiple logins from these locations was highly unusual at the user and group level, and coupled with the subsequent unexpected account modification, was a likely indicator of account compromise.  

Accomplish mission

Although the email had been manually released by the security team, allowing the attack to propagate, additional layers of defense were triggered as Darktrace's Autonomous Response initiated “Disable User” actions upon detection of the multiple unusual logins and the unauthorized registration of security information.  

However, the customer had configured Autonomous Response to require human confirmation, therefore no actions were taken until the security team manually approved them over two hours later. In that time, access to mail items and other SharePoint files from the unusual IP address was detected, suggesting a potential loss of confidentiality to business data.

Advanced Search query showing several FilePreviewed and MailItemsAccessed events from either the IPs used by the attacker, or using the software Chrome.  Note some of the activity originated from Microsoft IPs which may be whitelisted by traditional security tools.
Figure 9: Advanced Search query showing several FilePreviewed and MailItemsAccessed events from either the IPs used by the attacker, or using the software Chrome.  Note some of the activity originated from Microsoft IPs which may be whitelisted by traditional security tools.

However, it appears that the attacker was able to maintain access to the compromised account, as login and mail access events from 199.231.85[.]153 continued to be observed until the afternoon of the next day.  

Conclusion

This incident demonstrates the necessity of AI to security teams, with Darktrace’s ActiveAI Security Platform detecting a sophisticated phishing attack where human judgement fell short and initiated a real-time response when security teams could not physically respond as fast.  

Security teams are very familiar with social engineering and impersonation attempts, but these attacks remain highly prevalent due to the widespread adoption of technologies that enable these techniques to be deployed with great sophistication and ease.  In particular, the popularity of information-rich platforms like LinkedIn that are geared towards connecting with unknown people make it an attractive initial access point for malicious attackers.

In the second half of 2023 alone, over 200 thousand fake profiles were reported by members on LinkedIn [11].  Fake profiles can be highly sophisticated, use professional images, contain compelling descriptions, reference legitimate company listings and present believable credentials.  

It is unrealistic to expect end users to defend themselves against such sophisticated impersonation attempts. Moreover, it is extremely difficult for human defenders to recognize every fraudulent interaction amidst a sea of fake profiles. Instead, defenders should leverage AI, which can conduct autonomous investigations without human biases and limitations. AI-driven security can ensure successful detection of fraudulent or malicious activity by learning what real users and devices look like and identifying deviations from their learned behaviors that may indicate an emerging threat.

Appendices

Darktrace Model Detections

DETECT/ Apps

SaaS / Compromise / SaaS Anomaly Following Anomalous Login

SaaS / Compromise / Unusual Login and Account Update

SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Compliance / M365 Security Information Modified

RESPOND/ Apps

Antigena / SaaS / Antigena Suspicious SaaS Activity Block

Antigena / SaaS / Antigena Unusual Activity Block

DETECT & RESPOND/ Email

·      Link / High Risk Link + Low Sender Association

·      Link / New Correspondent Classified Link

·      Link / Watched Link Type

·      Antigena Anomaly

·      Association / Unknown Sender

·      History / New Sender

·      Link / Link to File Storage

·      Link / Link to File Storage + Unknown Sender

·      Link / Low Link Association

List of IoCs

·      142.252.106[.]251 - IP            - Possible malicious IP used by attacker during cloud account compromise

·      199.231.85[.]153 – IP - Probable malicious IP used by attacker during cloud account compromise

·      vukoqo.hebakyon[.]com – Endpoint - Credential harvesting endpoint

MITRE ATT&CK Mapping

·      Resource Development - T1586 - Compromise Accounts

·      Resource Development - T1598.003 – Spearphishing Link

·      Persistence - T1078.004 - Cloud Accounts

·      Persistence - T1556.006 - Modify Authentication Process: Multi-Factor Authentication

·      Reconnaissance - T1593.001 – Social Media

·      Reconnaissance - T1598 – Phishing for Information

·      Reconnaissance - T1589.001 – Credentials

·      Reconnaissance - T1591.002 – Business Relationships

·      Collection - T1111 – Multifactor Authentication Interception

·      Collection - T1539 – Steal Web Session Cookie

·      Lateral Movement - T1021.007 – Cloud Services

·      Lateral Movement - T1213.002 - Sharepoint

References

[1] Jessica Barker, Hacked: The secrets behind cyber attacks, (London: Kogan Page, 2024), p. 130-146.

[2] https://www.bitdefender.co.uk/blog/hotforsecurity/5-linkedin-scams-and-how-to-avoid-them/

[3] https://www.washingtonpost.com/technology/2023/08/31/linkedin-personal-posts/

[4] https://www.forbes.com/sites/joshbersin/2012/05/21/facebook-vs-linkedin-whats-the-difference/

[5] https://thelinkedblog.com/2022/3-reasons-why-you-should-make-your-profile-public-1248/

[6] https://www.linkedin.com/pulse/50-linkedin-statistics-every-professional-should-ti9ue

[7] https://www.nytimes.com/2022/09/24/business/linkedin-social-experiments.html

[8] https://darktrace.com/blog/the-domain-game-how-email-attackers-are-buying-their-way-into-inboxes

[9] https://spur.us/context/142.252.106[.]251

[10] https://spur.us/context/199.231.85[.]153

[11]https://www.statista.com/statistics/1328849/linkedin-number-of-fake-accounts-detected-and-removed

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst

More in this series

No items found.

Blog

/

/

October 24, 2025

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents Default blog imageDefault blog image

Most risk management programs remain anchored in enumeration: scanning every asset, cataloging every CVE, and drowning in lists that rarely translate into action. Despite expensive scanners, annual pen tests, and countless spreadsheets, prioritization still falters at two critical points.

Context gaps at the device level: It’s hard to know which vulnerabilities actually matter to your business given existing privileges, what software it runs, and what controls already reduce risk.

Business translation: Even when the technical priority is clear, justifying effort and spend in financial terms—especially across many affected devices—can delay action. Especially if it means halting other areas of the business that directly generate revenue.

The result is familiar: alert fatigue, “too many highs,” and remediation that trails behind the threat landscape. Darktrace / Proactive Exposure Management addresses this by pairing precise, endpoint‑level context with clear, financial insight so teams can prioritize confidently and mobilize faster.

A powerful combination: No-Telemetry Endpoint Agent + Cost-Benefit Analysis

Darktrace / Proactive Exposure Management now uniquely combines technical precision with business clarity in a single workflow.  With this release, Darktrace / Proactive Exposure Management delivers a more holistic approach, uniting technical context and financial insight to drive proactive risk reduction. The result is a single solution that helps security teams stay ahead of threats while reducing noise, delays, and complexity.

  • No-Telemetry Endpoint: Collects installed software data and maps it to known CVEs—without network traffic—providing device-level vulnerability context and operational relevance.
  • Cost-Benefit Analysis for Patching: Calculates ROI by comparing patching effort with potential exploit impact, factoring in headcount time, device count, patch difficulty, and automation availability.

Introducing the No-Telemetry Endpoint Agent

Darktrace’s new endpoint agent inventories installed software on devices and maps it to known CVEs without collecting network data so you can prioritize using real device context and available security controls.

By grounding vulnerability findings in the reality of each endpoint, including its software footprint and existing controls, teams can cut through generic severity scores and focus on what matters most. The agent is ideal for remote devices, BYOD-adjacent fleets, or environments standardizing on Darktrace, and is available without additional licensing cost.

Darktrace / Proactive Exposure Management user interface
Figure 1: Darktrace / Proactive Exposure Management user interface

Built-In Cost-Benefit Analysis for Patching

Security teams often know what needs fixing but stakeholders need to understand why now. Darktrace’s new cost-benefit calculator compares the total cost to patch against the potential cost of exploit, producing an ROI for the patch action that expresses security action in clear financial terms.

Inputs like engineer time, number of affected devices, patch difficulty, and automation availability are factored in automatically. The result is a business-aligned justification for every patching decision—helping teams secure buy-in, accelerate approvals, and move work forward with one-click ticketing, CSV export, or risk acceptance.

Darktrace / Proactive Exposure Management Cost Benefit Analysis
Figure 2: Darktrace / Proactive Exposure Management Cost Benefit Analysis

A Smarter, Faster Approach to Exposure Management

Together, the no-telemetry endpoint and Cost–Benefit Analysis advance the CTEM motion from theory to practice. You gain higher‑fidelity discovery and validation signals at the device level, paired with business‑ready justification that accelerates mobilization. The result is fewer distractions, clearer priorities, and faster measurable risk reduction. This is not from chasing every alert, but by focusing on what moves the needle now.

  • Smarter Prioritization: Device‑level context trims noise and spotlights the exposures that matter for your business.
  • Faster Decisions: Built‑in ROI turns technical urgency into executive clarity—speeding approvals and action.
  • Practical Execution: Privacy‑conscious endpoint collection and ticketing/export options fit neatly into existing workflows.
  • Better Outcomes: Close the loop faster—discover, prioritize, validate, and mobilize—on the same operating surface.

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author

Blog

/

/

October 24, 2025

Darktrace Announces Extended Visibility Between Confirmed Assets and Leaked Credentials from the Deep and Dark Web

Darktrace Announces Extended Visibility Between Confirmed Assets and Leaked Credentials from the Deep and Dark Web Default blog imageDefault blog image

Why exposure management needs to evolve beyond scans and checklists

The modern attack surface changes faster than most security programs can keep up. New assets appear, environments change, and adversaries are increasingly aided by automation and AI. Traditional approaches like periodic scans, static inventories, or annual pen tests are no longer enough. Without a formal exposure program, many businesses are flying blind, unaware of where the next threat may emerge.

This is where Continuous Threat Exposure Management (CTEM) becomes essential. Introduced by Gartner, CTEM helps organizations continuously assess, validate, and improve their exposure to real-world threats. It reframes the problem: scope your true attack surface, prioritize based on business impact and exploitability, and validate what attackers can actually do today, not once a year.

With two powerful new capabilities, Darktrace / Attack Surface Management helps organizations evolve their CTEM programs to meet the demands of today’s threat landscape. These updates make CTEM a reality, not just a strategy.

Too much data, not enough direction

Modern Attack Surface Management tools excel at discovering assets such as cloud workloads, exposed APIs, and forgotten domains. But they often fall short when it comes to prioritization. They rely on static severity scores or generic CVSS ratings, which do not reflect real-world risk or business impact.

This leaves security teams with:

  • Alert fatigue from hundreds of “critical” findings
  • Patch paralysis due to unclear prioritization
  • Blind spots around attacker intent and external targeting

CISOs need more than visibility. They need confidence in what to fix first and context to justify those decisions to stakeholders.

Evolving Attack Surface Management

Attack Surface Management (ASM) must evolve from static lists and generic severity scores to actionable intelligence that helps teams make the right decision now.

Joining the recent addition of Exploit Prediction Assessment, which debuted in late June 2025, today we’re introducing two capabilities that push ASM into that next era:

  • Exploit Prediction Assessment: Continuously validates whether top-priority exposures are actually exploitable in your environment without waiting for patch cycles or formal pen tests.  
  • Deep & Dark Web Monitoring: Extends visibility across millions of sources in the deep and dark web to detect leaked credentials linked to your confirmed domains.
  • Confidence Score: our newly developed AI classification platform will compare newly discovered assets to assets that are known to belong to your organization. The more these newly discovered assets look similar to assets that belong to your organization, the higher the score will be.

Together, these features compress the window from discovery to decision, so your team can act with precision, not panic. The result is a single solution that helps teams stay ahead of attackers without introducing new complexities.

Exploit Prediction Assessment

Traditional penetration tests are invaluable, but they’re often a snapshot of that point-in-time, are potentially disruptive, and compliance frameworks still expect them. Not to mention, when vulnerabilities are present, teams can act immediately rather than relying solely on information from CVSS scores or waiting for patch cycles.  

Unlike full pen tests which can be obtrusive and are usually done only a couple times per year, Exploit Prediction Assessment is surgical, continuous, and focused only on top issues Instead of waiting for vendor patches or the next pen‑test window. It helps confirm whether a top‑priority exposure is actually exploitable in your environment right now.  

For more information on this visit our blog: Beyond Discovery: Adding Intelligent Vulnerability Validation to Darktrace / Attack Surface Management

Deep and Dark Web Monitoring: Extending the scope

Customers have been asking for this for years, and it is finally here. Defense against the dark web. Darktrace / Attack Surface Management’s reach now spans millions of sources across the deep and dark web including forums, marketplaces, breach repositories, paste sites, and other hard‑to‑reach communities to detect leaked credentials linked to your confirmed domains.  

Monitoring is continuous, so you’re alerted as soon as evidence of compromise appears. The surface web is only a fraction of the internet, and a sizable share of risk hides beyond it. Estimates suggest the surface web represents roughly ~10% of all online content, with the rest gated or unindexed—and the TOR-accessible dark web hosts a high proportion of illicit material (a King’s College London study found ~57% of surveyed onion sites contained illicit content), underscoring why credential leakage and brand abuse often appear in places traditional monitoring doesn’t reach. Making these spaces high‑value for early warning signals when credentials or brand assets appear. Most notably, this includes your company’s reputation, assets like servers and systems, and top executives and employees at risk.

What changes for your team

Before:

  • Hundreds of findings, unclear what to start with
  • Reactive investigations triggered by incidents

After:

  • A prioritized backlog based on confidence score or exploit prediction assessment verification
  • Proactive verification of exposure with real-world risk without manual efforts

Confidence Score: Prioritize based on the use-case you care most about

What is it?

Confidence Score is a metric that expresses similarity of newly discover assets compared to the confirmed asset inventory. Several self-learning algorithms compare features of assets to be able to calculate a score.

Why it matters

Traditional Attack Surface Management tools treat all new discovery equally, making it unclear to your team how to identify the most important newly discovered assets, potentially causing you to miss a spoofing domain or shadow IT that could impact your business.

How it helps your team

We’re dividing newly discovered assets into separate insight buckets that each cover a slightly different business case.

  • Low scoring assets: to cover phishing & spoofing domains (like domain variants) that are just being registered and don't have content yet.
  • Medium scoring assets: have more similarities to your digital estate, but have better matching to HTML, brand names, keywords. Can still be phishing but probably with content.
  • High scoring assets: These look most like the rest of your confirmed digital estate, either it's phishing that needs the highest attention, or the asset belongs to your attack surface and requires asset state confirmation to enable the platform to monitor it for risks.

Smarter Exposure Management for CTEM Programs

Recent updates to Darktrace / Attack Surface Management directly advance the core phases of Continuous Threat Exposure Management (CTEM): scope, discover, prioritize, validate, and mobilize. The new Exploit Prediction Assessment helps teams validate and prioritize vulnerabilities based on real-world exploitability, while Deep & Dark Web Monitoring extends discovery into hard-to-reach areas where stolen data and credentials often surface. Together, these capabilities reduce noise, accelerate remediation, and help organizations maintain continuous visibility over their expanding attack surface.

Building on these innovations, Darktrace / Attack Surface Management empowers security teams to focus on what truly matters. By validating exploitability, it cuts through the noise of endless vulnerability lists—helping defenders concentrate on exposures that represent genuine business risk. Continuous monitoring for leaked credentials across the deep and dark web further extends visibility beyond traditional asset discovery, closing critical blind spots where attackers often operate. Crucially, these capabilities complement, not replace, existing security controls such as annual penetration tests, providing continuous, low-friction validation between formal assessments. The result is a more adaptive, resilient security posture that keeps pace with an ever-evolving threat landscape.

If you’re building or maturing a CTEM program—and want fewer open exposures, faster remediation, and better outcomes, Darktrace / Attack Surface Management’s new Exploit Prediction Assessment and Deep & Dark Web Monitoring are ready to help.

  • Want a more in-depth look at how Exploit Prediction Assessment functions? Read more here

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI