Blog
/
/
January 14, 2020

How RESPOND Neutralizes Zero-Day Ransomware Attacks

Discover how Cyber AI is taking back the advantage over cyber security threats. See how Darktrace helps save time, money, resources, and reputation.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Jan 2020

The FBI estimates that, on average, more than 4,000 ransomware attacks have occurred every day since 2016. Operating at machine speeds, ransomware is capable of wreaking havoc on a digital enterprise within mere seconds. And unfortunately, traditional security tools are only programmed to detect known cyber-threats using rules and signatures – leaving them blind to tailored and novel ransomware threats that have never been seen before in the wild.

Because Darktrace’s fundamental approach to cyber defense does not rely on rules and signatures to identify emerging threats, it is in a unique position to neutralize novel attacks. In one recent customer environment, Darktrace RESPOND (formerly known as 'Antigena') stopped a previously-unknown ‘zero-day’ ransomware attack targeting an electronics manufacturer. Even when deployed over a fraction of the digital estate, Darktrace RESPOND was able to neutralize this never-before-seen ransomware strain before it could do any damage.

Imperfect visibility, perfect response

While Darktrace provides 100% coverage of the entire digital infrastructure, from email and cloud to IoT and networks, business challenges sometimes prevent users from obtaining full visibility into their environment. However, even when working with imperfect data and suboptimal coverage, Cyber AI can still identify ongoing threats as they emerge. In the below attack, Darktrace was not covering the initial stages of the attack lifecycle, including the initial infection and command & control establishment – yet the AI was able to autonomously respond within seconds, before the attack escalated into a crisis.

Anatomy of a ransomware attack

In this example, Darktrace’s AI identified patient zero deviating significantly from its typical pattern of internal behavior. This was illustrated by a spike in the pattern of regular connections made by patient zero and a series of high-confidence alerts firing in quick succession. These included:

  1. Compromise / Ransomware / Suspicious SMB Activity — triggers when a device begins making unusual SMB connections across the organization
  2. Antigena Ransomware Block — triggers Antigena to take an action when the behavior is significantly similar to ransomware
  3. Device / Reverse DNS Sweep — triggers when a device makes unusual reverse DNS lookups, a tactic often used during reconnaissance

Figure 1: Several Darktrace alerts fire, and a deviation from the regular pattern of life is visible

Indeed, not only was the device observed making an unexpectedly large number of connections, but it was also reading and writing a large number of SMB files and transferring this data internally to a server it did not usually communicate with. The spike in internal connections between patient zero and the server was a strong indicator of malware attempting to move laterally through the network.

Figure 2: Four model breaches observed on October 30th and a dotted line representing Antigena’s actions

Further investigation into the SMB activity revealed that hundreds of Dropbox-related files were accessed on SMB shares that the device had not previously accessed. Moreover, several of these files started becoming encrypted, appended with a [HELP_DECRYPT] extension.

Figure 3: Darktrace detects SMB activity relating to Dropbox files

Fortunately, Darktrace RESPOND was in Active Mode, and kicked in a second later, enforcing the usual pattern of life by blocking anomalous connections for five minutes, immediately stopping the encryption. By the time Darktrace’s AI took action, only four of these files were successfully encrypted.

Figure 4: Darktrace RESPOND kicks in 1 second after ransomware was detected

Figure 5: More Antigena (RESPOND) alerts and a clear indication of the unusual activity detected

RESPOND then took a second action to stop the ransomware from spreading to other devices. The combination of various anomalous activities was sufficient evidence for Autonomous Response to neutralize the threat: patient zero was quarantined for 24 hours, unable to connect to the server or any other device on the network.

Figure 6: Darktrace stops the infected device from conducting lateral movement & ransom activity

Darktrace RESPOND therefore not only stopped the encryption activity in its tracks, but also prevented the attackers from moving laterally across the network unimpeded – either by scanning, using harvested admin credentials, or performing internal reconnaissance. Autonomous Response initiated a surgical intervention that halted the malware’s spread, all while allowing normal business operations to continue.

No signatures, no problem

Crucially, this strain of ransomware was not associated with any publicly known indicators of compromise such as blacklisted command & control domains or malware file hashes. Darktrace was able to detect this never-before-seen attack based purely on its comprehensive understanding of the normal pattern of life for every device and user within the organization. Once the deviation from this normal behavior was identified, Antigena was able to stop it immediately – without relying on rules, signatures, or historical data. With autonomous response acting decisively and immediately, the security team had enough time to catch up and perform hands-on incident response work.

Darktrace’s AI provides a potent combination: Darktrace DETECT's capacity to reveal deviations in a device’s behavior together with RESPOND acting to block connections and contain the ransomware from spreading across the enterprise. AI-enabled Autonomous Response neutralized the threat by recognizing the lethal recipe of these unusual internal alerts and taking targeted action against the ransomware. This stealthy strain of ransomware is unlikely to have been noticed, let alone stopped, by a security team reliant on legacy tools.

The Return-On-Security-Investment (ROSI) is often discussed when it comes to cyber security expenditure, and this incident provides a great example of the ROSI manifesting itself – recent ransomware attacks usually demand hundreds of thousands of dollars’ worth of ransom payments. Without Darktrace RESPOND containing the threat at an early stage, it is likely that thousands of files would have been encrypted. By relying on Cyber AI, the company was able to take back the advantage over an ever-evolving adversary, saving time, money, resources, and – perhaps most critically – the company’s reputation.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI