Blog
/
Email
/
August 2, 2024

Safelink Smuggling: Enhancing Resilience Against Malicious Links

Gain insights into safelink smuggling tactics and learn strategies to protect your organization from the dangers posed by malicious links.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Carlos Gray
Senior Product Marketing Manager, Email
Written by
Stephen Pickman
Senior Vice President, Engineering
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Aug 2024

Darktrace security members and researchers have recently seen a rise in what we are calling Safelink Smuggling. Safelinks are URLs rewritten by security solutions to enable additional analysis when the URL is clicked. Once analyzed, they may prompt a user, redirect the browser back to the original URL, or block further access if deemed necessary.

What is Safelink Smuggling?

Safelink Smuggling is a technique that involves an attacker purposely getting their malicious payload rewritten by a security solution’s Safelink capability to then propagate the rewritten URL to others. This technique is a way for attackers to not only avoid detection by traditional email security and other solutions, but also to instill mistrust in all email security solutions. As a result, Safelinks from a range of popular email security providers are often seen in phishing or supply chain attacks. In fact, Darktrace has observed over 300,000 cases of Safelinks being included in unexpected and suspicious contexts over the last 3 months.

How does Safelink Smuggling work?

Safelink Smuggling has two key stages: Getting a malicious link rewritten by an email security solution, then propagating that rewritten link to other victims.

Step one:

Obfuscated a malicious payload through a Safelink capability rewriting the link; Darktrace has seen this attempted through two methods – Compromised Account or Reply-Chain.

  • Method 1: Compromised Account

If an attacker can gain access to a compromised account – whether that’s through brute force, malware or credential theft – they can infiltrate it with malicious links, and then exfiltrate the Safelinks created as the email passes through security filtering. In other words, attackers will send a malicious payload to the compromised inbox, with the intent that the malicious URL gets rewritten. Unlike a normal phishing email where the threat actor wants to avoid having their email blocked, in this case the objective is for the email to get through to the inbox with the link rewritten. As observed by Darktrace, attackers often send the link in isolation as any additional components (i.e., body text or other content in the email) could cause a more severe action such as the email security solution holding the message.

  • Method 2: Reply-Chain

With this method, the attacker sends a malicious link to an email security vendor’s customer in an attempt to solicit a reply from an internal user. This allows them to grab the re-written URL within the reply chain. However, this is a risky tactic which can fail at several points. The attacker has to be confident the initial email won't be blocked outright; they also risk alerting security vendors to the address and the URL intended to be used for the main campaign. They also must be confident that the checks made when the re-written URL is clicked will not lead to a block at the final destination.
Regardless of the method used, the end result will appear as follows:

For example, the original malicious URL may look like this,

faceldu[.]org/Invoice112.zip

(negative surface indicators: recently registered domain, file extension)

And after being rewritten,

securityvevndor[.]com/safe?q=aNDF80dfaAkAH930adbd

(positive surface indicators: established domain, positive reputation, associated with safe content)

Step Two:

Now that the attacker has access to a malicious URL that has been obfuscated by a safe rewrite, attackers can forward or craft an email leveraging that same link. In fact, we have even seen multiple layers of Safelink Smuggling being used to mask a payload further.

The Challenge of Link Rewriting

Traditional email security solutions rewrite all links sent to an organization, but there is an inherent risk to this methodology. Rewriting every link, whether harmless or harmful, leads employees to lose context and creates a false sense of security when interacting with rewritten links in emails. Furthermore, it provides attackers with many opportunities to exploit Safelinks. As demonstrated in Method 2 above, if an email security solution does not rewrite every link, executing such attacks would be significantly more challenging.

Traditionally, rewriting every link made sense from a security perspective, as it allowed servers to thoroughly analyze links for known attack patterns and signatures. However, this approach relies on identifying previously recognized threats. Conversely, Darktrace / EMAIL gathers sufficient information about a link without needing to rewrite it, by analyzing the context and content of the email and the link itself.

In fact, Darktrace is the pioneer in applying selective rewriting to URLs based on suspicious properties or context, a method that other solutions have since adopted. While traditional solutions rewrite links to assess them only after they are clicked, Darktrace / EMAIL takes immediate action to neutralize threats before they reach the inbox.

Darktrace achieves high success rates in detecting malicious links and emails on the first encounter using Self-Learning AI. By understanding 'normal' behavior in email communications, Darktrace identifies subtle deviations indicative of cyber threats and selectively rewrites only those links deemed suspicious, ensuring a targeted, proportionate, and non-disruptive response.

Why do traditional email security solutions miss Safelink attacks?

Traditional security solutions that focus on learning attack patterns will miss Safelink threats as they are often utilized in attacks that have a variety of layers which help the email seem legitimate. Leveraging all the classic techniques seen in a supply chain attack to disguise the sender's intent, taking advantage of the users' inherent trust in familiar sources, the user is more likely to lower their defenses.

For more information: https://darktrace.com/products/email/use-cases/supply-chain-attack

In terms of the URL, if the payload is malicious, why is it difficult for email security solutions to catch it? Primarily, other security vendors will focus on the payload in isolation, attempting to find known attack patterns or signatures such as a domain name or IP with a bad reputation. Unfortunately, with this technique, if the URL has a legitimate domain, it will return a clean track record. Common obfuscation techniques such as captchas, short-links, and click throughs can all be deployed to add layers of complexity to the analysis.

Safelink Smuggling relies heavily on link redirects, which means that web analysis tools will falter as they will only analyze the first redirect. Consequently, when more in-depth analysis on the link itself is performed, the first place the URL takes the user is not the malicious site but rather the default on-click analysis of the vendor in question. Therefore, any traditional browser or link analysis will also return a negative result.

Finally, the context itself is important. In contrast to traditional email security solutions, Darktrace / EMAIL asks who, what, when, where, and why for every single email, and compares it to the pattern of life of both the internal recipient and the external sender, rather than attempting to match patterns with historical threat data. When analyzing an email from an inbound perspective, Darktrace reveals potential deviations from normal, that, when considered sufficiently anomalous, will result in taking a proportional action to the threat assessed.

To illustrate the above, let’s take a look at an example email that Darktrace recently caught.

The following is an email a Darktrace customer received, which Darktrace / EMAIL held before it reached the inbox. In this case, the smuggled Safelink was further obfuscated behind a QR Code. The accompanying document also presented some anomalies in terms of its intent, perceived as a potential social engineering attempt. Finally, the lack of association and low mailing history meant there was no prior context for this email.  

Example of a Safelink Smuggling attack using a popular email security solution’s safelink.
Fig 1: Example of a Safelink Smuggling attack using a popular email security solution’s safelink.

How to mitigate against Safelink Smuggling?

It's difficult for email security vendors to do anything about their links being reused, and reuse should almost be expected by popular operators in the email security space. Therefore, the presence of links from a vendor’s domain in a suspicious email communication rarely indicates a compromise of the link rewrite infrastructure or a compromise of the third-party vendor.

Email security vendors can improve their defense-in-depth, especially around their email provider accounts to avoid Method 1 (Compromised Account attacks) and become more selective with their rewrites to curtail Method 2 (Reply Chain attacks).

Primary protection against Safelink Smuggling should be offered by the email security vendor responsible for inbound email analysis. They need to ensure that techniques such as Safelink Smuggling are not evaded by their detection mechanisms.

Darktrace has long been working on the betterment of security within the email community and innovating our link analysis infrastructure to mitigate against this attack methodology (read more about our major update in 6.2 here), regardless of whether the receiving organization are Darktrace customers.

How does Darktrace deal with Safelink Smuggling today?

Darktrace has been dealing with Safelink Smuggling since launch and has a standardized recommendation for customers who are looking to defend against this threat.

Customers want to avoid being 1) the propagators of this threat and potentially damaging their brand reputation, and 2) being victims of the supply chain attack thereafter.

The principal recommendation to protect customer accounts and consequently their brands is to ensure defense-in-depth. As accounts establish themselves as the crown jewels of any modern enterprise, organizations should vigilantly monitor their account activity with the same rigor they would analyze their network activity. Whether that is through the base account takeover protection offered by Darktrace / EMAIL, or the expanded defense offered by Darktrace / IDENTITY, it is crucial that the accounts themselves have a robust security solution in place.

Secondly, to avoid falling victim to the supply chain attack that leverages a third-party vendor’s link rewrite, it is imperative to use a solution that does not rely on static threat intelligence and link reputation analysis. Rather than chasing attackers by updating rules and signatures, Darktrace leverages Self-Learning AI to learn the communication patterns of both internal and external messages to reveal deviations in both content and context.

Finally, for those customers that already leverage Darktrace / EMAIL we recommend ensuring that lock links are enabled, and that the default warning page is displayed every time a link is rewritten, no matter the perceived severity of the link. This will allow any potential user that clicks on a rewritten Darktrace / EMAIL link to be alerted to the potential nature of the site they are trying to access.

Safelink smuggling example caught by Darktrace

While most cases involve other vendors, analysts recently saw a case where Darktrace's own links were used in this type of attack. A small number of links were leveraged in a campaign targeting both Darktrace and non-Darktrace customers alike. Thankfully, these attempts were all appropriately actioned by those customers that had Darktrace / EMAIL deployed.

In the example below, you will see how Darktrace Cyber AI Analyst describes the example at hand under the Anomaly Indicators section.

Example of Safelink Smuggling attack on Darktrace using the Darktrace Safelink Infrastructure.
Fig 2: Example of Safelink Smuggling attack on Darktrace using the Darktrace Safelink Infrastructure.

First, the display name mismatch can be interpreted as an indicator of social engineering, attempting to deceive the recipient with an IT policy change.

Second, the link itself, which in this case is a hidden redirect to an unusual host for this environment.

Finally, there is a suspected account takeover due to the origin of the email being a long-standing, validated domain that contains a wide variety of suspicious elements.

Darktrace / EMAIL would have held this email from being delivered.

Conclusion

By investigating Safelink Smuggling, Darktrace wants to shine a light on the technique for security teams and help raise awareness of how it can be used to dupe users into lowering their defenses. Challenge your email security vendor on how it deals with link analysis, particularly from trusted senders and applications.

Interested in Darktrace’s approach to defense-in-depth? Check out Darktrace / EMAIL

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Carlos Gray
Senior Product Marketing Manager, Email
Written by
Stephen Pickman
Senior Vice President, Engineering

More in this series

No items found.

Blog

/

Endpoint

/

February 1, 2026

ClearFake: From Fake CAPTCHAs to Blockchain-Driven Payload Retrieval

fake captcha to blockchain driven palyload retrievalDefault blog imageDefault blog image

What is ClearFake?

As threat actors evolve their techniques to exploit victims and breach target networks, the ClearFake campaign has emerged as a significant illustration of this continued adaptation. ClearFake is a campaign observed using a malicious JavaScript framework deployed on compromised websites, impacting sectors such as e‑commerce, travel, and automotive. First identified in mid‑2023, ClearFake is frequently leveraged to socially engineer victims into installing fake web browser updates.

In ClearFake compromises, victims are steered toward compromised WordPress sites, often positioned by attackers through search engine optimization (SEO) poisoning. Once on the site, users are presented with a fake CAPTCHA. This counterfeit challenge is designed to appear legitimate while enabling the execution of malicious code. When a victim interacts with the CAPTCHA, a PowerShell command containing a download string is retrieved and executed.

Attackers commonly abuse the legitimate Microsoft HTML Application Host (MSHTA) in these operations. Recent campaigns have also incorporated Smart Chain endpoints, such as “bsc-dataseed.binance[.]org,” to obtain configuration code. The primary payload delivered through ClearFake is typically an information stealer, such as Lumma Stealer, enabling credential theft, data exfiltration, and persistent access [1].

Darktrace’s Coverage of ClearFake

Darktrace / ENDPOINT first detected activity likely associated with ClearFake on a single device on over the course of one day on November 18, 2025. The system observed the execution of “mshta.exe,” the legitimate Microsoft HTML Application Host utility. It also noted a repeated process command referencing “weiss.neighb0rrol1[.]ru”, indicating suspicious external activity. Subsequent analysis of this endpoint using open‑source intelligence (OSINT) indicated that it was a malicious, domain generation algorithm (DGA) endpoint [2].

The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.
Figure 1: The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.

This activity indicates that mshta.exe was used to contact a remote server, “weiss.neighb0rrol1[.]ru/rpxacc64mshta,” and execute the associated HTA file to initiate the next stage of the attack. OSINT sources have since heavily flagged this server as potentially malicious [3].

The first argument in this process uses the MSHTA utility to execute the HTA file hosted on the remote server. If successful, MSHTA would then run JavaScript or VBScript to launch PowerShell commands used to retrieve malicious payloads, a technique observed in previous ClearFake campaigns. Darktrace also detected unusual activity involving additional Microsoft executables, including “winlogon.exe,” “userinit.exe,” and “explorer.exe.” Although these binaries are legitimate components of the Windows operating system, threat actors can abuse their normal behavior within the Windows login sequence to gain control over user sessions, similar to the misuse of mshta.exe.

EtherHiding cover

Darktrace also identified additional ClearFake‑related activity, specifically a connection to bsc-testnet.drpc[.]org, a legitimate BNB Smart Chain endpoint. This activity was triggered by injected JavaScript on the compromised site www.allstarsuae[.]com, where the script initiated an eth_call POST request to the Smart Chain endpoint.

Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.
Figure 2: Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.

EtherHiding is a technique in which threat actors leverage blockchain technology, specifically smart contracts, as part of their malicious infrastructure. Because blockchain is anonymous, decentralized, and highly persistent, it provides threat actors with advantages in evading defensive measures and traditional tracking [4].

In this case, when a user visits a compromised WordPress site, injected base64‑encoded JavaScript retrieved an ABI string, which was then used to load and execute a contract hosted on the BNB Smart Chain.

JavaScript hosted on the compromised site www.allstaruae[.]com.
Figure 3: JavaScript hosted on the compromised site www.allstaruae[.]com.

Conducting malware analysis on this instance, the Base64 decoded into a JavaScript loader. A POST request to bsc-testnet.drpc[.]org was then used to retrieve a hex‑encoded ABI string that loads and executes the contract. The JavaScript also contained hex and Base64‑encoded functions that decoded into additional JavaScript, which attempted to retrieve a payload hosted on GitHub at “github[.]com/PrivateC0de/obf/main/payload.txt.” However, this payload was unavailable at the time of analysis.

Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 4: Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 5: Darktrace’s detection of the executable file and the malicious hostname.

Autonomous Response

As Darktrace’s Autonomous Response capability was enabled on this customer’s network, Darktrace was able to take swift mitigative action to contain the ClearFake‑related activity early, before it could lead to potential payload delivery. The affected device was blocked from making external connections to a number of suspicious endpoints, including 188.114.96[.]6, *.neighb0rrol1[.]ru, and neighb0rrol1[.]ru, ensuring that no further malicious connections could be made and no payloads could be retrieved.

Autonomous Response also acted to prevent the executable mshta.exe from initiating HTA file execution over HTTPS from this endpoint by blocking the attempted connections. Had these files executed successfully, the attack would likely have resulted in the retrieval of an information stealer, such as Lumma Stealer.

Autonomous Response’s intervention against the suspicious connectivity observed.
Figure 6: Autonomous Response’s intervention against the suspicious connectivity observed.

Conclusion

ClearFake continues to be observed across multiple sectors, but Darktrace remains well‑positioned to counter such threats. Because ClearFake’s end goal is often to deliver malware such as information stealers and malware loaders, early disruption is critical to preventing compromise. Users should remain aware of this activity and vigilant regarding fake CAPTCHA pop‑ups. They should also monitor unusual usage of MSHTA and outbound connections to domains that mimic formats such as “bsc-dataseed.binance[.]org” [1].

In this case, Darktrace was able to contain the attack before it could successfully escalate and execute. The attempted execution of HTA files was detected early, allowing Autonomous Response to intervene, stopping the activity from progressing. As soon as the device began communicating with weiss.neighb0rrol1[.]ru, an Autonomous Response inhibitor triggered and interrupted the connections.

As ClearFake continues to rise, users should stay alert to social engineering techniques, including ClickFix, that rely on deceptive security prompts.

Credit to Vivek Rajan (Senior Cyber Analyst) and Tara Gould (Malware Research Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

Process / New Executable Launched

Endpoint / Anomalous Use of Scripting Process

Endpoint / New Suspicious Executable Launched

Endpoint / Process Connection::Unusual Connection from New Process

Autonomous Response Models

Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

List of Indicators of Compromise (IoCs)

  • weiss.neighb0rrol1[.]ru – URL - Malicious Domain
  • 188.114.96[.]6 – IP – Suspicious Domain
  • *.neighb0rrol1[.]ru – URL – Malicious Domain

MITRE Tactics

Initial Access, Drive-by Compromise, T1189

User Execution, Execution, T1204

Software Deployment Tools, Execution and Lateral Movement, T1072

Command and Scripting Interpreter, T1059

System Binary Proxy Execution: MSHTA, T1218.005

References

1.        https://www.kroll.com/en/publications/cyber/rapid-evolution-of-clearfake-delivery

2.        https://www.virustotal.com/gui/domain/weiss.neighb0rrol1.ru

3.        https://www.virustotal.com/gui/file/1f1aabe87e5e93a8fff769bf3614dd559c51c80fc045e11868f3843d9a004d1e/community

4.        https://www.packetlabs.net/posts/etherhiding-a-new-tactic-for-hiding-malware-on-the-blockchain/

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

Network

/

January 30, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

6. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI