Blog
/
Email
/
August 2, 2024

Safelink Smuggling: Enhancing Resilience Against Malicious Links

Gain insights into safelink smuggling tactics and learn strategies to protect your organization from the dangers posed by malicious links.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Carlos Gray
Senior Product Marketing Manager, Email
Written by
Stephen Pickman
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Aug 2024

Darktrace security members and researchers have recently seen a rise in what we are calling Safelink Smuggling. Safelinks are URLs rewritten by security solutions to enable additional analysis when the URL is clicked. Once analyzed, they may prompt a user, redirect the browser back to the original URL, or block further access if deemed necessary.

What is Safelink Smuggling?

Safelink Smuggling is a technique that involves an attacker purposely getting their malicious payload rewritten by a security solution’s Safelink capability to then propagate the rewritten URL to others. This technique is a way for attackers to not only avoid detection by traditional email security and other solutions, but also to instill mistrust in all email security solutions. As a result, Safelinks from a range of popular email security providers are often seen in phishing or supply chain attacks. In fact, Darktrace has observed over 300,000 cases of Safelinks being included in unexpected and suspicious contexts over the last 3 months.

How does Safelink Smuggling work?

Safelink Smuggling has two key stages: Getting a malicious link rewritten by an email security solution, then propagating that rewritten link to other victims.

Step one:

Obfuscated a malicious payload through a Safelink capability rewriting the link; Darktrace has seen this attempted through two methods – Compromised Account or Reply-Chain.

  • Method 1: Compromised Account

If an attacker can gain access to a compromised account – whether that’s through brute force, malware or credential theft – they can infiltrate it with malicious links, and then exfiltrate the Safelinks created as the email passes through security filtering. In other words, attackers will send a malicious payload to the compromised inbox, with the intent that the malicious URL gets rewritten. Unlike a normal phishing email where the threat actor wants to avoid having their email blocked, in this case the objective is for the email to get through to the inbox with the link rewritten. As observed by Darktrace, attackers often send the link in isolation as any additional components (i.e., body text or other content in the email) could cause a more severe action such as the email security solution holding the message.

  • Method 2: Reply-Chain

With this method, the attacker sends a malicious link to an email security vendor’s customer in an attempt to solicit a reply from an internal user. This allows them to grab the re-written URL within the reply chain. However, this is a risky tactic which can fail at several points. The attacker has to be confident the initial email won't be blocked outright; they also risk alerting security vendors to the address and the URL intended to be used for the main campaign. They also must be confident that the checks made when the re-written URL is clicked will not lead to a block at the final destination.
Regardless of the method used, the end result will appear as follows:

For example, the original malicious URL may look like this,

faceldu[.]org/Invoice112.zip

(negative surface indicators: recently registered domain, file extension)

And after being rewritten,

securityvevndor[.]com/safe?q=aNDF80dfaAkAH930adbd

(positive surface indicators: established domain, positive reputation, associated with safe content)

Step Two:

Now that the attacker has access to a malicious URL that has been obfuscated by a safe rewrite, attackers can forward or craft an email leveraging that same link. In fact, we have even seen multiple layers of Safelink Smuggling being used to mask a payload further.

The Challenge of Link Rewriting

Traditional email security solutions rewrite all links sent to an organization, but there is an inherent risk to this methodology. Rewriting every link, whether harmless or harmful, leads employees to lose context and creates a false sense of security when interacting with rewritten links in emails. Furthermore, it provides attackers with many opportunities to exploit Safelinks. As demonstrated in Method 2 above, if an email security solution does not rewrite every link, executing such attacks would be significantly more challenging.

Traditionally, rewriting every link made sense from a security perspective, as it allowed servers to thoroughly analyze links for known attack patterns and signatures. However, this approach relies on identifying previously recognized threats. Conversely, Darktrace / EMAIL gathers sufficient information about a link without needing to rewrite it, by analyzing the context and content of the email and the link itself.

In fact, Darktrace is the pioneer in applying selective rewriting to URLs based on suspicious properties or context, a method that other solutions have since adopted. While traditional solutions rewrite links to assess them only after they are clicked, Darktrace / EMAIL takes immediate action to neutralize threats before they reach the inbox.

Darktrace achieves high success rates in detecting malicious links and emails on the first encounter using Self-Learning AI. By understanding 'normal' behavior in email communications, Darktrace identifies subtle deviations indicative of cyber threats and selectively rewrites only those links deemed suspicious, ensuring a targeted, proportionate, and non-disruptive response.

Why do traditional email security solutions miss Safelink attacks?

Traditional security solutions that focus on learning attack patterns will miss Safelink threats as they are often utilized in attacks that have a variety of layers which help the email seem legitimate. Leveraging all the classic techniques seen in a supply chain attack to disguise the sender's intent, taking advantage of the users' inherent trust in familiar sources, the user is more likely to lower their defenses.

For more information: https://darktrace.com/products/email/use-cases/supply-chain-attack

In terms of the URL, if the payload is malicious, why is it difficult for email security solutions to catch it? Primarily, other security vendors will focus on the payload in isolation, attempting to find known attack patterns or signatures such as a domain name or IP with a bad reputation. Unfortunately, with this technique, if the URL has a legitimate domain, it will return a clean track record. Common obfuscation techniques such as captchas, short-links, and click throughs can all be deployed to add layers of complexity to the analysis.

Safelink Smuggling relies heavily on link redirects, which means that web analysis tools will falter as they will only analyze the first redirect. Consequently, when more in-depth analysis on the link itself is performed, the first place the URL takes the user is not the malicious site but rather the default on-click analysis of the vendor in question. Therefore, any traditional browser or link analysis will also return a negative result.

Finally, the context itself is important. In contrast to traditional email security solutions, Darktrace / EMAIL asks who, what, when, where, and why for every single email, and compares it to the pattern of life of both the internal recipient and the external sender, rather than attempting to match patterns with historical threat data. When analyzing an email from an inbound perspective, Darktrace reveals potential deviations from normal, that, when considered sufficiently anomalous, will result in taking a proportional action to the threat assessed.

To illustrate the above, let’s take a look at an example email that Darktrace recently caught.

The following is an email a Darktrace customer received, which Darktrace / EMAIL held before it reached the inbox. In this case, the smuggled Safelink was further obfuscated behind a QR Code. The accompanying document also presented some anomalies in terms of its intent, perceived as a potential social engineering attempt. Finally, the lack of association and low mailing history meant there was no prior context for this email.  

Example of a Safelink Smuggling attack using a popular email security solution’s safelink.
Fig 1: Example of a Safelink Smuggling attack using a popular email security solution’s safelink.

How to mitigate against Safelink Smuggling?

It's difficult for email security vendors to do anything about their links being reused, and reuse should almost be expected by popular operators in the email security space. Therefore, the presence of links from a vendor’s domain in a suspicious email communication rarely indicates a compromise of the link rewrite infrastructure or a compromise of the third-party vendor.

Email security vendors can improve their defense-in-depth, especially around their email provider accounts to avoid Method 1 (Compromised Account attacks) and become more selective with their rewrites to curtail Method 2 (Reply Chain attacks).

Primary protection against Safelink Smuggling should be offered by the email security vendor responsible for inbound email analysis. They need to ensure that techniques such as Safelink Smuggling are not evaded by their detection mechanisms.

Darktrace has long been working on the betterment of security within the email community and innovating our link analysis infrastructure to mitigate against this attack methodology (read more about our major update in 6.2 here), regardless of whether the receiving organization are Darktrace customers.

How does Darktrace deal with Safelink Smuggling today?

Darktrace has been dealing with Safelink Smuggling since launch and has a standardized recommendation for customers who are looking to defend against this threat.

Customers want to avoid being 1) the propagators of this threat and potentially damaging their brand reputation, and 2) being victims of the supply chain attack thereafter.

The principal recommendation to protect customer accounts and consequently their brands is to ensure defense-in-depth. As accounts establish themselves as the crown jewels of any modern enterprise, organizations should vigilantly monitor their account activity with the same rigor they would analyze their network activity. Whether that is through the base account takeover protection offered by Darktrace / EMAIL, or the expanded defense offered by Darktrace / IDENTITY, it is crucial that the accounts themselves have a robust security solution in place.

Secondly, to avoid falling victim to the supply chain attack that leverages a third-party vendor’s link rewrite, it is imperative to use a solution that does not rely on static threat intelligence and link reputation analysis. Rather than chasing attackers by updating rules and signatures, Darktrace leverages Self-Learning AI to learn the communication patterns of both internal and external messages to reveal deviations in both content and context.

Finally, for those customers that already leverage Darktrace / EMAIL we recommend ensuring that lock links are enabled, and that the default warning page is displayed every time a link is rewritten, no matter the perceived severity of the link. This will allow any potential user that clicks on a rewritten Darktrace / EMAIL link to be alerted to the potential nature of the site they are trying to access.

Safelink smuggling example caught by Darktrace

While most cases involve other vendors, analysts recently saw a case where Darktrace's own links were used in this type of attack. A small number of links were leveraged in a campaign targeting both Darktrace and non-Darktrace customers alike. Thankfully, these attempts were all appropriately actioned by those customers that had Darktrace / EMAIL deployed.

In the example below, you will see how Darktrace Cyber AI Analyst describes the example at hand under the Anomaly Indicators section.

Example of Safelink Smuggling attack on Darktrace using the Darktrace Safelink Infrastructure.
Fig 2: Example of Safelink Smuggling attack on Darktrace using the Darktrace Safelink Infrastructure.

First, the display name mismatch can be interpreted as an indicator of social engineering, attempting to deceive the recipient with an IT policy change.

Second, the link itself, which in this case is a hidden redirect to an unusual host for this environment.

Finally, there is a suspected account takeover due to the origin of the email being a long-standing, validated domain that contains a wide variety of suspicious elements.

Darktrace / EMAIL would have held this email from being delivered.

Conclusion

By investigating Safelink Smuggling, Darktrace wants to shine a light on the technique for security teams and help raise awareness of how it can be used to dupe users into lowering their defenses. Challenge your email security vendor on how it deals with link analysis, particularly from trusted senders and applications.

Interested in Darktrace’s approach to defense-in-depth? Check out Darktrace / EMAIL

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Carlos Gray
Senior Product Marketing Manager, Email
Written by
Stephen Pickman

More in this series

No items found.

Blog

/

Identity

/

August 21, 2025

From VPS to Phishing: How Darktrace Uncovered SaaS Hijacks through Virtual Infrastructure Abuse

VPS phishingDefault blog imageDefault blog image

What is a VPS and how are they abused?

A Virtual Private Server (VPS) is a virtualized server that provides dedicated resources and control to users on a shared physical device.  VPS providers, long used by developers and businesses, are increasingly misused by threat actors to launch stealthy, scalable attacks. While not a novel tactic, VPS abuse is has seen an increase in Software-as-a-Service (SaaS)-targeted campaigns as it enables attackers to bypass geolocation-based defenses by mimicking local traffic, evade IP reputation checks with clean, newly provisioned infrastructure, and blend into legitimate behavior [3].

VPS providers like Hyonix and Host Universal offer rapid setup and minimal open-source intelligence (OSINT) footprint, making detection difficult [1][2]. These services are not only fast to deploy but also affordable, making them attractive to attackers seeking anonymous, low-cost infrastructure for scalable campaigns. Such attacks tend to be targeted and persistent, often timed to coincide with legitimate user activity, a tactic that renders traditional security tools largely ineffective.

Darktrace’s investigation into Hyonix VPS abuse

In May 2025, Darktrace’s Threat Research team investigated a series of incidents across its customer base involving VPS-associated infrastructure. The investigation began with a fleet-wide review of alerts linked to Hyonix (ASN AS931), revealing a noticeable spike in anomalous behavior from this ASN in March 2025. The alerts included brute-force attempts, anomalous logins, and phishing campaign-related inbox rule creation.

Darktrace identified suspicious activity across multiple customer environments around this time, but two networks stood out. In one instance, two internal devices exhibited mirrored patterns of compromise, including logins from rare endpoints, manipulation of inbox rules, and the deletion of emails likely used in phishing attacks. Darktrace traced the activity back to IP addresses associated with Hyonix, suggesting a deliberate use of VPS infrastructure to facilitate the attack.

On the second customer network, the attack was marked by coordinated logins from rare IPs linked to multiple VPS providers, including Hyonix. This was followed by the creation of inbox rules with obfuscated names and attempts to modify account recovery settings, indicating a broader campaign that leveraged shared infrastructure and techniques.

Darktrace’s Autonomous Response capability was not enabled in either customer environment during these attacks. As a result, no automated containment actions were triggered, allowing the attack to escalate without interruption. Had Autonomous Response been active, Darktrace would have automatically blocked connections from the unusual VPS endpoints upon detection, effectively halting the compromise in its early stages.

Case 1

Timeline of activity for Case 1 - Unusual VPS logins and deletion of phishing emails.
Figure 1: Timeline of activity for Case 1 - Unusual VPS logins and deletion of phishing emails.

Initial Intrusion

On May 19, 2025, Darktrace observed two internal devices on one customer environment initiating logins from rare external IPs associated with VPS providers, namely Hyonix and Host Universal (via Proton VPN). Darktrace recognized that these logins had occurred within minutes of legitimate user activity from distant geolocations, indicating improbable travel and reinforcing the likelihood of session hijacking. This triggered Darktrace / IDENTITY model “Login From Rare Endpoint While User Is Active”, which highlights potential credential misuse when simultaneous logins occur from both familiar and rare sources.  

Shortly after these logins, Darktrace observed the threat actor deleting emails referring to invoice documents from the user’s “Sent Items” folder, suggesting an attempt to hide phishing emails that had been sent from the now-compromised account. Though not directly observed, initial access in this case was likely achieved through a similar phishing or account hijacking method.

 Darktrace / IDENTITY model "Login From Rare Endpoint While User Is Active", which detects simultaneous logins from both a common and a rare source to highlight potential credential misuse.
Figure 2: Darktrace / IDENTITY model "Login From Rare Endpoint While User Is Active", which detects simultaneous logins from both a common and a rare source to highlight potential credential misuse.

Case 2

Timeline of activity for Case 2 – Coordinated inbox rule creation and outbound phishing campaign.
Figure 3: Timeline of activity for Case 2 – Coordinated inbox rule creation and outbound phishing campaign.

In the second customer environment, Darktrace observed similar login activity originating from Hyonix, as well as other VPS providers like Mevspace and Hivelocity. Multiple users logged in from rare endpoints, with Multi-Factor Authentication (MFA) satisfied via token claims, further indicating session hijacking.

Establishing control and maintaining persistence

Following the initial access, Darktrace observed a series of suspicious SaaS activities, including the creation of new email rules. These rules were given minimal or obfuscated names, a tactic often used by attackers to avoid drawing attention during casual mailbox reviews by the SaaS account owner or automated audits. By keeping rule names vague or generic, attackers reduce the likelihood of detection while quietly redirecting or deleting incoming emails to maintain access and conceal their activity.

One of the newly created inbox rules targeted emails with subject lines referencing a document shared by a VIP at the customer’s organization. These emails would be automatically deleted, suggesting an attempt to conceal malicious mailbox activity from legitimate users.

Mirrored activity across environments

While no direct lateral movement was observed, mirrored activity across multiple user devices suggested a coordinated campaign. Notably, three users had near identical similar inbox rules created, while another user had a different rule related to fake invoices, reinforcing the likelihood of a shared infrastructure and technique set.

Privilege escalation and broader impact

On one account, Darktrace observed “User registered security info” activity was shortly after anomalous logins, indicating attempts to modify account recovery settings. On another, the user reset passwords or updated security information from rare external IPs. In both cases, the attacker’s actions—including creating inbox rules, deleting emails, and maintaining login persistence—suggested an intent to remain undetected while potentially setting the stage for data exfiltration or spam distribution.

On a separate account, outbound spam was observed, featuring generic finance-related subject lines such as 'INV#. EMITTANCE-1'. At the network level, Darktrace / NETWORK detected DNS requests from a device to a suspicious domain, which began prior the observed email compromise. The domain showed signs of domain fluxing, a tactic involving frequent changes in IP resolution, commonly used by threat actors to maintain resilient infrastructure and evade static blocklists. Around the same time, Darktrace detected another device writing a file named 'SplashtopStreamer.exe', associated with the remote access tool Splashtop, to a domain controller. While typically used in IT support scenarios, its presence here may suggest that the attacker leveraged it to establish persistent remote access or facilitate lateral movement within the customer’s network.

Conclusion

This investigation highlights the growing abuse of VPS infrastructure in SaaS compromise campaigns. Threat actors are increasingly leveraging these affordable and anonymous hosting services to hijack accounts, launch phishing attacks, and manipulate mailbox configurations, often bypassing traditional security controls.

Despite the stealthy nature of this campaign, Darktrace detected the malicious activity early in the kill chain through its Self-Learning AI. By continuously learning what is normal for each user and device, Darktrace surfaced subtle anomalies, such as rare login sources, inbox rule manipulation, and concurrent session activity, that likely evade traditional static, rule-based systems.

As attackers continue to exploit trusted infrastructure and mimic legitimate user behavior, organizations should adopt behavioral-based detection and response strategies. Proactively monitoring for indicators such as improbable travel, unusual login sources, and mailbox rule changes, and responding swiftly with autonomous actions, is critical to staying ahead of evolving threats.

Credit to Rajendra Rushanth (Cyber Analyst), Jen Beckett (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

References

·      1: https://cybersecuritynews.com/threat-actors-leveraging-vps-hosting-providers/

·      2: https://threatfox.abuse.ch/asn/931/

·      3: https://www.cyfirma.com/research/vps-exploitation-by-threat-actors/

Appendices

Darktrace Model Detections

•   SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent

•   SaaS / Compromise / Suspicious Login and Mass Email Deletes

•   SaaS / Resource / Mass Email Deletes from Rare Location

•   SaaS / Compromise / Unusual Login and New Email Rule

•   SaaS / Compliance / Anomalous New Email Rule

•   SaaS / Resource / Possible Email Spam Activity

•   SaaS / Unusual Activity / Multiple Unusual SaaS Activities

•   SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

•   SaaS / Access / Unusual External Source for SaaS Credential Use

•   SaaS / Compromise / High Priority Login From Rare Endpoint

•   SaaS / Compromise / Login From Rare Endpoint While User Is Active

List of Indicators of Compromise (IoCs)

Format: IoC – Type – Description

•   38.240.42[.]160 – IP – Associated with Hyonix ASN (AS931)

•   103.75.11[.]134 – IP – Associated with Host Universal / Proton VPN

•   162.241.121[.]156 – IP – Rare IP associated with phishing

•   194.49.68[.]244 – IP – Associated with Hyonix ASN

•   193.32.248[.]242 – IP – Used in suspicious login activity / Mullvad VPN

•   50.229.155[.]2 – IP – Rare login IP / AS 7922 ( COMCAST-7922 )

•   104.168.194[.]248 – IP – Rare login IP / AS 54290 ( HOSTWINDS )

•   38.255.57[.]212 – IP – Hyonix IP used during MFA activity

•   103.131.131[.]44 – IP – Hyonix IP used in login and MFA activity

•   178.173.244[.]27 – IP – Hyonix IP

•   91.223.3[.]147 – IP – Mevspace Poland, used in multiple logins

•   2a02:748:4000:18:0:1:170b[:]2524 – IPv6 – Hivelocity VPS, used in multiple logins and MFA activity

•   51.36.233[.]224 – IP – Saudi ASN, used in suspicious login

•   103.211.53[.]84 – IP – Excitel Broadband India, used in security info update

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique

•   Initial Access – T1566 – Phishing

                       T1566.001 – Spearphishing Attachment

•   Execution – T1078 – Valid Accounts

•   Persistence – T1098 – Account Manipulation

                       T1098.002 – Exchange Email Rules

•   Command and Control – T1071 – Application Layer Protocol

                       T1071.001 – Web Protocols

•   Defense Evasion – T1036 – Masquerading

•   Defense Evasion – T1562 – Impair Defenses

                       T1562.001 – Disable or Modify Tools

•   Credential Access – T1556 – Modify Authentication Process

                       T1556.004 – MFA Bypass

•   Discovery – T1087 – Account Discovery

•      Impact – T1531 – Account Access Removal

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Rajendra Rushanth
Cyber Analyst

Blog

/

Network

/

August 15, 2025

From Exploit to Escalation: Tracking and Containing a Real-World Fortinet SSL-VPN Attack

Fortinet SSL-VPN AttackDefault blog imageDefault blog image

Threat actors exploiting Fortinet CVEs

Over the years, Fortinet has issued multiple alerts about a wave of sophisticated attacks targeting vulnerabilities in its SSL-VPN infrastructure. Despite the release of patches to address these vulnerabilities, threat actors have continued to exploit a trio of Common Vulnerabilities and Exposures (CVEs) disclosed between 2022 and 2024 to gain unauthorized access to FortiGate devices.

Which vulnerabilities are exploited?

The vulnerabilities—CVE-2022-42475, CVE-2023-27997, and CVE-2024-21762—affect Fortinet’s SSL-VPN services and have been actively exploited by threat actors to establish initial access into target networks.

The vulnerabilities affect core components of FortiOS, allowing attackers to execute remote code on affected systems.

CVE-2022-42475

Type: Heap-Based Buffer Overflow in FortiOS SSL-VPN

Impact: Remote Code Execution (Actively Exploited)

This earlier vulnerability also targets the SSL-VPN interface and has been actively exploited in the wild. It allows attackers to execute arbitrary code remotely by overflowing a buffer in memory, often used to deploy malware or establish persistent backdoors [6].

CVE-2023-27997

Type: Heap-Based Buffer Overflow in FortiOS and FortiProxy

Impact: Remote Code Execution

This flaw exists in the SSL-VPN component of both FortiOS and FortiProxy. By exploiting a buffer overflow in the heap memory, attackers can execute malicious code remotely. This vulnerability is particularly dangerous because it can be triggered without authentication, making it ideal for an initial compromise [5].

CVE-2024-21762

Type: Out-of-Bounds Write in sslvpnd

Impact: Remote Code Execution

This vulnerability affects the SSL-VPN daemon (sslvpnd) in FortiOS. It allows unauthenticated remote attackers to send specially crafted HTTP requests that write data outside of allocated memory bounds. This can lead to arbitrary code execution, giving attackers full control over a device [4].

In short, these flaws enable remote attackers to execute arbitrary code without authentication by exploiting memory corruption issues such as buffer overflows and out-of-bounds writes. Once inside, threat actors use symbolic link (symlink) in order to maintain persistence on target devices across patches and firmware updates. This persistence then enables them to bypass security controls and manipulate firewall configurations, effectively turning patched systems into long-term footholds for deeper network compromise [1][2][3].

Darktrace’s Coverage

Darktrace detected a series of suspicious activities originating from a compromised Fortinet VPN device, including anomalous HTTP traffic, internal network scanning, and SMB reconnaissance, all indicative of post-exploitation behavior. Following initial detection by Darktrace’s real-time models, its Autonomous Response capability swiftly acted on the malicious activity, blocking suspicious connections and containing the threat before further compromise could occur.

Further investigation by Darktrace’s Threat Research team uncovered a stealthy and persistent attack that leveraged known Fortinet SSL-VPN vulnerabilities to facilitate lateral movement and privilege escalation within the network.

Phase 1: Initial Compromise – Fortinet VPN Exploitation

The attack on a Darktrace customer likely began on April 11 with the exploitation of a Fortinet VPN device running an outdated version of FortiOS. Darktrace observed a high volume of HTTP traffic originating from this device, specifically targeting internal systems. Notably, many of these requests were directed at the /cgi-bin/ directory,  a common target for attackers attempting to exploit web interfaces to run unauthorized scripts or commands. This pattern strongly indicated remote code execution attempts via the SSL-VPN interface [7].

Once access was gained, the threat actor likely modified existing firewall rules, a tactic often used to disable security controls or create hidden backdoors for future access. While Darktrace does not have direct visibility into firewall configuration changes, the surrounding activity and post-exploitation behavior indicated that such modifications were made to support long-term persistence within the network.

HTTP activity from the compromised Fortinet device, including repeated requests to /cgi-bin/ over port 8080.
Figure 1: HTTP activity from the compromised Fortinet device, including repeated requests to /cgi-bin/ over port 8080

Phase 2: Establishing Persistence & Lateral Movement

Shortly after the initial compromise of the Fortinet VPN device, the threat actor began to expand their foothold within the internal network. Darktrace detected initial signs of network scanning from this device, including the use of Nmap to probe the internal environment, likely in an attempt to identify accessible services and vulnerable systems.

Darktrace’s detection of unusual network scanning activities on the affected device.
Figure 2: Darktrace’s detection of unusual network scanning activities on the affected device.

Around the same time, Darktrace began detecting anomalous activity on a second device, specifically an internal firewall interface device. This suggested that the attacker had established a secondary foothold and was leveraging it to conduct deeper reconnaissance and move laterally through the network.

In an effort to maintain persistence within the network, the attackers likely deployed symbolic links in the SSL-VPN language file directory on the Fortinet device. While Darktrace did not directly observe symbolic link abuse, Fortinet has identified this as a known persistence technique in similar attacks [2][3]. Based on the observed post-exploitation behavior and likely firewall modifications, it is plausible that such methods were used here.

Phase 3: Internal Reconnaissance & Credential Abuse

With lateral movement initiated from the internal firewall interface device, the threat actor proceeded to escalate their efforts to map the internal network and identify opportunities for privilege escalation.

Darktrace observed a successful NTLM authentication from the internal firewall interface to the domain controller over the outdated protocol SMBv1, using the account ‘anonymous’. This was immediately followed by a failed NTLM session connection using the hostname ‘nmap’, further indicating the use of Nmap for enumeration and brute-force attempts. Additional credential probes were also identified around the same time, including attempts using the credential ‘guest’.

Darktrace detection of a series of login attempts using various credentials, with a mix of successful and unsuccessful attempts.
Figure 3: Darktrace detection of a series of login attempts using various credentials, with a mix of successful and unsuccessful attempts.

The attacker then initiated DCE_RPC service enumeration, with over 300 requests to the Endpoint Mapper endpoint on the domain controller. This technique is commonly used to discover available services and their bindings, often as a precursor to privilege escalation or remote service manipulation.

Over the next few minutes, Darktrace detected more than 1,700 outbound connections from the internal firewall interface device to one of the customer’s subnets. These targeted common services such as FTP (port 21), SSH (22), Telnet (23), HTTP (80), and HTTPS (443). The threat actor also probed administrative and directory services, including ports 135, 137, 389, and 445, as well as remote access via RDP on port 3389.

Further signs of privilege escalation attempts were observed with the detection of over 300 Netlogon requests to the domain controller. Just over half of these connections were successful, indicating possible brute-force authentication attempts, credential testing, or the use of default or harvested credentials.

Netlogon and DCE-RPC activity from the affected device, showing repeated service bindings to epmapper and Netlogon, followed by successful and failed NetrServerAuthenticate3 attempts.
Figure 4: Netlogon and DCE-RPC activity from the affected device, showing repeated service bindings to epmapper and Netlogon, followed by successful and failed NetrServerAuthenticate3 attempts.

Phase 4: Privilege Escalation & Remote Access

A few minutes later, the attacker initiated an RDP session from the internal firewall interface device to an internal server. The session lasted over three hours, during which more than 1.5MB of data was uploaded and over 5MB was downloaded.

Notably, no RDP cookie was observed during this session, suggesting manual access, tool-less exploitation, or a deliberate attempt to evade detection. While RDP cookie entries were present on other occasions, none were linked to this specific session—reinforcing the likelihood of stealthy remote access.

Additionally, multiple entries during and after this session show SSL certificate validation failures on port 3389, indicating that the RDP connection may have been established using self-signed or invalid certificates, a common tactic in unauthorized or suspicious remote access scenarios.

Darktrace’s detection of an RDP session from the firewall interface device to the server, lasting over 3 hours.
Figure 5: Darktrace’s detection of an RDP session from the firewall interface device to the server, lasting over 3 hours.

Darktrace Autonomous Response

Throughout the course of this attack, Darktrace’s Autonomous Response capability was active on the customer’s network. This enabled Darktrace to autonomously intervene by blocking specific connections and ports associated with the suspicious activity, while also enforcing a pre-established “pattern of life” on affected devices to ensure they were able to continue their expected business activities while preventing any deviations from it. These actions were crucial in containing the threat and prevent further lateral movement from the compromised device.

Darktrace’s Autonomous Response targeted specific connections and restricted affected devices to their expected patterns of life.
Figure 6: Darktrace’s Autonomous Response targeted specific connections and restricted affected devices to their expected patterns of life.

Conclusion

This incident highlights the importance of important staying on top of patching and closely monitoring VPN infrastructure, especially for internet-facing systems like Fortinet devices. Despite available patches, attackers were still able to exploit known vulnerabilities to gain access, move laterally and maintain persistence within the customer’s network.

Attackers here demonstrated a high level of stealth and persistence. Not only did they gain access to the network and carry out network scans and lateral movement, but they also used techniques such as symbolic link abuse, credential probing, and RDP sessions without cookies to avoid detection.  Darktrace’s detection of the post-exploitation activity, combined with the swift action of its Autonomous Response technology, successfully blocked malicious connections and contained the attack before it could escalate

Credit to Priya Thapa (Cyber Analyst), Vivek Rajan (Cyber Analyst), and Ryan Traill (Analyst Content Lead)

Appendices

Real-time Detection Model Alerts

·      Device / Suspicious SMB Scanning Activity

·      Device / Anomalous Nmap Activity

·      Device / Network Scan

·      Device / RDP Scan

·      Device / ICMP Address Scan

Autonomous Response Model Alerts:  

·      Antigena / Network / Insider Threat / Antigena Network Scan Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

MITRE ATT&CK Mapping

Initial Access – External Remote Services – T1133

Initial Access – Valid Accounts – T1078

Execution – Exploitation for Client Execution – T1203

Persistence – Account Manipulation – T1098

Persistence – Application Layer Protocol – T1071.001

Privilege Escalation – Exploitation for Privilege Escalation – T1068

Privilege Escalation – Valid Accounts – T1078

Defense Evasion – Masquerading – T1036

Credential Access – Brute Force – T1110

Discovery – Network Service Scanning – T1046

Discovery – Remote System Discovery – T1018

Lateral Movement – Remote Services – T1021

Lateral Movement – Software Deployment Tools – T1072

Collection – Data from Local System – T1005

Collection – Data Staging – T1074

Exfiltration – Exfiltration Over Alternative Protocol – T1048

References

[1]  https://www.tenable.com/blog/cve-2024-21762-critical-fortinet-fortios-out-of-bound-write-ssl-vpn-vulnerability

[2] https://thehackernews.com/2025/04/fortinet-warns-attackers-retain.html

[3] https://www.cisa.gov/news-events/alerts/2025/04/11/fortinet-releases-advisory-new-post-exploitation-technique-known-vulnerabilities

[4] https://www.fortiguard.com/psirt/FG-IR-24-015

[5] https://www.tenable.com/blog/cve-2023-27997-heap-based-buffer-overflow-in-fortinet-fortios-and-fortiproxy-ssl-vpn-xortigate

[6]  https://www.tenable.com/blog/cve-2022-42475-fortinet-patches-zero-day-in-fortios-ssl-vpns

[7] https://www.fortiguard.com/encyclopedia/ips/12475

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Priya Thapa
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI