Blog
/
/
December 13, 2023

Defending Against Personalized Cyber Attacks

Stay informed about the latest trends in cyber threats with Darktrace experts, including how attacks are evolving and becoming more personalized.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Dec 2023

Cyber-attacks are getting personal. The usual opportunistic “spray and pray” attacks that reach many would-be targets at once are still present, but as cyber defence has advanced, today’s more sophisticated campaigns take precise aim at a particular company.

Threat actors willingly put in extra time and effort to realize a bigger payday at the end of it, but developments in the tools they have at their disposal are also making targeted, personal attacks easier.

CAPTCHA-breaking AI techniques like computer vision and convolutional neural networks can be used to gather information on an organization’s attack surface, and Generative AI is able to perform OSINT collection on a specific target, or targets, within an organization. Once inside, attackers can further leverage AI to automatically tweak attacks and create novel, highly targeted threats that elude defenses.

A new white paper, The CISO’s Guide to Cyber AI, explains how CISOs and their teams can make smarter use of defensive AI and machine learning (ML) to protect today’s digital environments from these and more advanced novel threats.

Today’s threats don’t necessarily resemble past attacks  

Darktrace analytics pointed to a sharp rise in novel cyber-attacks earlier this year. Generative AI and large language model (LLM) tools continue to lower the barrier to entry for threat actors, making it easier than ever to build smarter, faster, more targeted attacks.

But while attacks are getting personal, security tools that apply AI in the wrong way won’t see these attacks coming.

Here’s why: most cyber security tools and platforms rely on a combination of supervised machine learning, deep learning, and transformers to train and inform their systems. This entails shipping your company’s data out to a large data lake housed somewhere in the cloud where it gets blended with attack data from thousands of other organizations. The resulting homogenized data set gets used to train AI systems — yours and everyone else’s — to recognize patterns of attack based on previously encountered threats.

At its conception, this was a reasonably smart way of approaching cyber security. For a long time, the assumption that today’s threats will resemble yesterday’s attacks was a valid one. But in an age where the commoditization of cyber-crime has lowered the bar-to-entry for attackers, and where Generative AI and other open-source tools are enabling personalized attacks at scale, this is no longer the case.

Darktrace has seen evidence this year of a marked rise in more sophisticated attack techniques. Between May and July this year, our Cyber AI Research Centre observed that multistage payload attacks, in which a malicious email encourages the recipient to follow a series of steps before delivering a payload or attempting to harvest sensitive information, have increased by an average of 59% across Darktrace customers. Some of this will be QR code phishing, the latest trend in attack tactics, others will include automation. The speed of these types of attacks will likely rise as greater automation and AI are adopted and applied by attackers.

This ‘historical’ approach is not able to identify threats that haven’t been seen before: attacks that use new malware, novel social engineering, and those that are targeted to your organization. There are no indicators of compromise (IoCs) to teach your system to recognize these kinds of attacks.

IoC-based defenses won’t necessarily spot strange and unusual activity by an authorized user, device, or known IP address until threat actors tip their hand — and by then it’s too late. Looking for repeat patterns works well for detecting threats that resemble past attacks, but this increasingly won’t be the case. The only way to spot unique and novel threats is to build cyber security that’s tailored to you, and that requires a whole new approach.

Smarter use of AI levels the playing field

Security teams and adversaries continue to innovate to gain the upper-hand, and the advantage of time.

Since AI equips even novice cyber criminals to mount sophisticated attacks, AI must evolve to do three things:

  • Understand and continue to learn what “normal” looks like for your unique digital environment
  • Detect and alert on any anomalous behavior the instant it occurs
  • Initiate a targeted response to contain threats and give your analysts more time, without disrupting the flow of business

Darktrace uses Self-Learning AI to understand what constitutes ‘normal’ for everyone and everything in your business, including cloud resources, identities, email accounts, endpoint devices, and even OT controllers. As the name suggests, Self-Learning AI trains itself, developing and maintaining deep understanding of ‘patterns of life’ for your business environment. Used in combination with other AI methods such as LLMs, generative AI, and supervised ML, Self-Learning AI identifies novel cyber-threats most static (backward-looking) tools miss.

The technology learns ‘on the job’ and from scratch, without relying on historical data or a massive upfront effort by your team to train the system. Probabilistic mathematics revise assumptions about behavior on a constant basis so the system keeps itself up-to-date without repeat efforts by your team.

The result is that areas of risk, as well as real-time emerging attacks, are brought to the surface – regardless of whether those attacks have been seen before in the wild.

Surgical attacks warrant surgical response

Supervised ML continues to serve a purpose, but the dawning age of novel and AI-led attacks favors a more proactive approach to securing the cloud. Tools must take greater responsibility for their own education and greater initiative via autonomous response.

What some solutions call response ultimately amounts to sending alerts and opening tickets that create more needless work for analysts. Other tools claim to automate response, but either take very limited actions like automating the process of ticket creation, or overly ambitious steps like quarantining entire systems.

Darktrace’s dynamic understanding of your environment enables a truly autonomous and precise cloud-native response. Its understanding of ‘normal’ for every user and device allows it to enforce ‘normal’ – cutting out only the malicious activity, while allowing normal business to continue functioning.

How this response will take place will depend on where Darktrace is deployed in your environment. In the network, it might mean blocking specific, anomalous connections over a certain port. In the cloud, it could mean detaching EC2 instances and applying security groups to contain only assets at risk. In email, this could be locking links or flattening attachments.

Get personal with ‘One on One’ Security

The widespread accessibility of generative AI has altered the threat landscape permanently, allowing cyber-criminals to deploy unique and personalized attacks at scale and at machine speed. In the near future, we can expect to see more novel and sophisticated phishing attacks, new automated creation of malicious code, sustained attack campaigns targeting an individual or company, and even deep fakes designed to elicit human trust.

To meet the needs of today and tomorrow, cyber security needs to leverage AI deeply and intelligently – not just using it to automate outdated historical approaches, or bolting generative AI onto existing products to keep up with the latest trend. Since 2013 Darktrace has been using AI in a fundamentally unique way: a system that learns your unique organization and understands what’s normal at a granular level. Only with this personalized understanding can you be confident in your ability as an organization to identify and shut down novel threats on the first encounter.

This form of personalized, ‘One on One’ security is a no longer a ‘nice to have’ for defenders. ‘Spray and pray’ tactics will continue to exist, but the attacks most likely to slip through the net and cause you damage are the sophisticated, the personal, and the never-before-seen. That’s what Self-Learning AI was built for – learning your business to deliver personalized cyber security, meeting every attack one-on-one.

The CISO’s Guide to Cyber AI overviews the differences between common AI approaches in cyber security and offers a high-level checklist for choosing the ideal solution for stopping attacks — including new novel threats.  To learn more about making the smartest use of AI to stop novel and targeted cloud attacks, download the guide today.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

maduro arrest used as lure to deliver backdoorDefault blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI