Blog
/
/
July 10, 2025

Crypto Wallets Continue to be Drained in Elaborate Social Media Scam

Darktrace’s latest research reveals that an evolving social engineering campaign continues to target cryptocurrency users through fake startup companies. These malicious operations impersonate AI, gaming, and Web3 firms using spoofed social media accounts and project documentation hosted on legitimate platforms like Notion and GitHub.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher
password on computer screenDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
10
Jul 2025

Overview

Continued research by Darktrace has revealed that cryptocurrency users are being targeted by threat actors in an elaborate social engineering scheme that continues to evolve. In December 2024, Cado Security Labs detailed a campaign targeting Web 3 employees in the Meeten campaign. The campaign included threat actors setting up meeting software companies to trick users into joining meetings and installing the information stealer Realst disguised as video meeting software.

The latest research from Darktrace shows that this campaign is still ongoing and continues to trick targets to download software to drain crypto wallets. The campaign features:

  • Threat actors creating fake startup companies with AI, gaming, video meeting software, web3 and social media themes.
  • Use of compromised X (formerly Twitter) accounts for the companies and employees - typically with verification to contact victims and create a facade of a legitimate company.
  • Notion, Medium, Github used to provide whitepapers, project roadmaps and employee details.
  • Windows and macOS versions.
  • Stolen software signing certificates in Windows versions for credibility and defense evasion.
  • Anti-analysis techniques including obfuscation, and anti-sandboxing.

To trick as many victims as possible, threat actors try to make the companies look as legitimate as possible. To achieve this, they make use of sites that are used frequently with software companies such as Twitter, Medium, Github and Notion. Each company has a professional looking website that includes employees, product blogs, whitepapers and roadmaps. X is heavily used to contact victims, and to increase the appearance of legitimacy. Some of the observed X accounts appear to be compromised accounts that typically are verified and have a higher number of followers and following, adding to the appearance of a real company.

Example of a compromised X account to create a “BuzzuAI” employee.
Figure 1: Example of a compromised X account to create a “BuzzuAI” employee.

The threat actors are active on these accounts while the campaign is active, posting about developments in the software, and product marketing. One of the fake companies part of this campaign, “Eternal Decay”, a blockchain-powered game, has created fake pictures pretending to be presenting at conferences to post on social media, while the actual game doesn’t exist.

From the Eternal Decay X account, threat actors have altered a photo from an Italian exhibition (original on the right) to make it look like Eternal Decay was presented.
Figure 2: From the Eternal Decay X account, threat actors have altered a photo from an Italian exhibition (original on the right) to make it look like Eternal Decay was presented.

In addition to X, Medium is used to post blogs about the software. Notion has been used in various campaigns with product roadmap details, as well as employee lists.

Notion project team page for Swox.
Figure 3: Notion project team page for Swox.

Github has been used to detail technical aspects of the software, along with Git repositories containing stolen open-source projects with the name changed in order to make the code look unique. In the Eternal Decay example, Gitbook is used to detail company and software information. The threat actors even include company registration information from Companies House, however they have linked to a company with a similar name and are not a real registered company.

 From the Eternal Decay Gitbook linking to a company with a similar name on Companies House.
Figure 4: From the Eternal Decay Gitbook linking to a company with a similar name on Companies House.
Gitbook for “Eternal Decay” listing investors.
Figure 5: Gitbook for “Eternal Decay” listing investors.
Gameplay images are stolen from a different game “Zombie Within” and posted pretending to be Eternal Decay gameplay.
Figure 6: Gameplay images are stolen from a different game “Zombie Within” and posted pretending to be Eternal Decay gameplay.

In some of the fake companies, fake merchandise stores have even been set up. With all these elements combined, the threat actors manage to create the appearance of a legitimate start-up company, increasing their chances of infection.

Each campaign typically starts with a victim being contacted through X messages, Telegram or Discord. A fake employee of the company will contact a victim asking to test out their software in exchange for a cryptocurrency payment. The victim will be directed to the company website download page, where they need to enter a registration code, provided by the employee to download a binary. Depending on their operating system, the victim will be instructed to download a macOS DMG (if available) or a Windows Electron application.

Example of threat actor messaging a victim on X with a registration code.
Figure 7: Example of threat actor messaging a victim on X with a registration code.

Windows Version

Similar to the aforementioned Meeten campaign, the Windows version being distributed by the fake software companies is an Electron application. Electron is an open-source framework used to run Javascript apps as a desktop application. Once the user follows directions sent to them via message, opening the application will bring up a Cloudflare verification screen.

Cloudflare verification screen.
Figure 8: Cloudflare verification screen.

The malware begins by profiling the system, gathering information like the username, CPU and core count, RAM, operating system, MAC address, graphics card, and UUID.

Code from the Electron app showing console output of system profiling.
Figure 9: Code from the Electron app showing console output of system profiling.

A verification process occurs with a captcha token extracted from the app-launcher URL and sent along with the system info and UUID. If the verification is successful, an executable or MSI file is downloaded and executed quietly. Python is also retrieved and stored in /AppData/Temp, with Python commands being sent from the command-and-control (C2) infrastructure.

Code from the Electron app looping through Python objects.
Figure 10: Code from the Electron app looping through Python objects.

As there was no valid token, this process did not succeed. However, based on previous campaigns and reports from victims on social media, an information stealer targeting crypto wallets is executed at this stage. A common tactic in the observed campaigns is the use of stolen code signing certificates to evade detection and increase the appearance of legitimate software. The certificates of two legitimate companies Jiangyin Fengyuan Electronics Co., Ltd. and Paperbucketmdb ApS (revoked as of June 2025) were used during this campaign.

MacOS Version

For companies that have a macOS version of the malware, the user is directed to download a DMG. The DMG contains a bash script and a multiarch macOS binary. The bash script is obfuscated with junk, base64 and is XOR’d.

Obfuscated Bash script.
Figure 11: Obfuscated Bash script.

After decoding, the contents of the script are revealed showing that AppleScript is being used. The script looks for disk drives, specifically for the mounted DMG “SwoxApp” and moves the hidden .SwoxApp binary to /tmp/ and makes it executable. This type of AppleScript is commonly used in macOS malware, such as Atomic Stealer.

AppleScript used to mount the malware and make it executable.
Figure 12: AppleScript used to mount the malware and make it executable.

The SwoxApp binary is the prominent macOS information stealer Atomic Stealer. Once executed the malware performs anti-analysis checks for QEMU, VMWare and Docker-OSX, the script exits if these return true.  The main functionality of Atomic Stealer is to steal data from stores including browser data, crypto wallets, cookies and documents. This data is compressed into /tmp/out.zip and sent via POST request to 45[.]94[.]47[.]167/contact. An additional bash script is retrieved from 77[.]73[.]129[.]18:80/install.sh.

Additional Bash script ”install.sh”.
Figure 13: Additional Bash script ”install.sh”.

Install.sh, as shown in Figure 13, retrieves another script install_dynamic.sh from the server https://mrajhhosdoahjsd[.]com. Install_dynamic.sh downloads and extracts InstallerHelper.app, then sets up persistence via Launch Agent to run at login.

Persistence added via Plist configuration.
Figure 14: Persistence added via Plist configuration.

This plist configuration installs a macOS LaunchAgent that silently runs the app at user login. RunAtLoad and KeepAlive keys are used to ensure the app starts automatically and remains persistent.

The retrieved binary InstallerHelper is an Objective-C/Swift binary that logs active application usage, window information, and user interaction timestamps. This data is written to local log files and periodically transmits the contents to https://mrajhhoshoahjsd[.]com/collect-metrics using scheduled network requests.

List of known companies

Darktrace has identified a number of the fake companies used in this scam. These can be found in the list below:

Pollens AI
X: @pollensapp, @Pollens_app
Website: pollens.app, pollens.io, pollens.tech
Windows: 02a5b35be82c59c55322d2800b0b8ccc
Notes: Posing as an AI software company with a focus on “collaborative creation”.

Buzzu
X: @BuzzuApp, @AI_Buzzu, @AppBuzzu, @BuzzuApp
Website: Buzzu.app, Buzzu.us, buzzu.me, Buzzu.space
Windows: 7d70a7e5661f9593568c64938e06a11a
Mac: be0e3e1e9a3fda76a77e8c5743dd2ced
Notes: Same as Pollens including logo but with a different name.

Cloudsign
X: @cloudsignapp
Windows: 3a3b13de4406d1ac13861018d74bf4b2
Notes: Claims to be a document signing platform.

Swox
X: @SwoxApp, @Swox_AI, @swox_app, @App_Swox, @AppSwox, @SwoxProject, @ProjectSwox
Website: swox.io, swox.app, swox.cc, swoxAI.com, swox.us
Windows: d50393ba7d63e92d23ec7d15716c7be6
Mac: 81996a20cfa56077a3bb69487cc58405ced79629d0c09c94fb21ba7e5f1a24c9
Notes: Claims to be a “Next gen social network in the WEB3”. Same GitHub code as Pollens.

KlastAI
X: Links to Pollens X account
Website: Links to pollens.tech
Notes: Same as Pollens, still shows their branding on its GitHub readme page.

Wasper
X: @wasperAI, @WasperSpace
Website: wasper.pro, wasper.app, wasper.org, wasper.space
Notes: Same logo and GitHub code as Pollens.

Lunelior
Website: lunelior.net, Lunelior.app, lunelior.io, lunelior.us
Windows: 74654e6e5f57a028ee70f015ef3a44a4
Mac: d723162f9197f7a548ca94802df74101

BeeSync
X: @BeeSyncAI, @AIBeeSync
Website: beesync.ai, beesync.cc
Notes: Previous alias of Buzzu, Git repo renamed January 2025.

Slax
X: @SlaxApp, @Slax_app, @slaxproject
Website: slax.tech, slax.cc, slax.social, slaxai.app

Solune
X: @soluneapp
Website: solune.io, solune.me
Windows: 22b2ea96be9d65006148ecbb6979eccc

Eternal Decay
X: @metaversedecay
Website: eternal-decay.xyz
Windows: 558889183097d9a991cb2c71b7da3c51
Mac: a4786af0c4ffc84ff193ff2ecbb564b8

Dexis
X: @DexisApp
Website: dexis.app
Notes: Same branding as Swox.

NexVoo
X: @Nexvoospace
Website: nexvoo.app, Nexvoo.net, Nexvoo.us

NexLoop
X: @nexloopspace
Website: nexloop.me

NexoraCore
Notes: Rename of the Nexloop Git repo.

YondaAI
X: @yondaspace
Website: yonda.us

Traffer Groups

A “traffer” malware group is an organized cybercriminal operation that specializes in directing internet users to malicious content typically information-stealing malware through compromised or deceptive websites, ads, and links. They tend to operate in teams with hierarchical structures with administrators recruiting “traffers” (or affiliates) to generate traffic and malware installs via search engine optimization (SEO), YouTube ads, fake software downloads, or owned sites, then monetize the stolen credentials and data via dedicated marketplaces.

A prominent traffer group “CrazyEvil” was identified by Recorded Future in early 2025. The group, who have been active since at least 2021, specialize in social engineering attacks targeted towards cryptocurrency users, influencers, DeFi professionals, and gaming communities. As reported by Recorded Future, CrazyEvil are estimated to have made millions of dollars in revenue from their malicious activity. CrazyEvil and their sub teams create fake software companies, similar to the ones described in this blog, making use of Twitter and Medium to target victims. As seen in this campaign, CrazyEvil instructs users to download their software which is an info stealer targeting both macOS and Windows users.

While it is unclear if the campaigns described in this blog can be attributed to CrazyEvil or any sub teams, the techniques described are similar in nature. This campaign highlights the efforts that threat actors will go to make these fake companies look legitimate in order to steal cryptocurrency from victims, in addition to use of newer evasive versions of malware.

Indicators of Compromise (IoCs)

Manboon[.]com

https://gaetanorealty[.]com

Troveur[.]com

Bigpinellas[.]com

Dsandbox[.]com

Conceptwo[.]com

Aceartist[.]com

turismoelcasco[.]com

Ekodirect[.]com

https://mrajhhosdoahjsd[.]com

https://isnimitz.com/zxc/app[.]zip

http://45[.]94[.]47[.]112/contact

45[.]94[.]47[.]167/contact

77[.]73[.]129[.]18:80

Domain Keys associated with the C2s

YARA Rules

rule Suspicious_Electron_App_Installer

{

  meta:

      description = "Detects Electron apps collecting HWID, MAC, GPU info and executing remote EXEs/MSIs"

      date = "2025-06-18"

  strings:

      $electron_require = /require\(['"]electron['"]\)/

      $axios_require = /require\(['"]axios['"]\)/

      $exec_use = /exec\(.*?\)/

      $url_token = /app-launcher:\/\/.*token=/

      $getHWID = /(Get-CimInstance Win32_ComputerSystemProduct).UUID/

      $getMAC = /details\.mac && details\.mac !== '00:00:00:00:00:00'/

      $getGPU = /wmic path win32_VideoController get name/

      $getInstallDate = /InstallDate/

      $os_info = /os\.cpus\(\)\[0\]\.model/

      $downloadExe = /\.exe['"]/

      $runExe = /msiexec \/i.*\/quiet \/norestart/

      $zipExtraction = /AdmZip\(.*\.extractAllTo/

  condition:

      (all of ($electron_require, $axios_require, $exec_use) and

       3 of ($getHWID, $getMAC, $getGPU, $getInstallDate, $os_info) and

       2 of ($downloadExe, $runExe, $zipExtraction, $url_token))

}

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher

More in this series

No items found.

Blog

/

/

November 19, 2025

Securing Generative AI: Managing Risk in Amazon Bedrock with Darktrace / CLOUD

securing generative aiDefault blog imageDefault blog image

Security risks and challenges of generative AI in the enterprise

Generative AI and managed foundation model platforms like Amazon Bedrock are transforming how organizations build and deploy intelligent applications. From chatbots to summarization tools, Bedrock enables rapid agent development by connecting foundation models to enterprise data and services. But with this flexibility comes a new set of security challenges, especially around visibility, access control, and unintended data exposure.

As organizations move quickly to operationalize generative AI, traditional security controls are struggling to keep up. Bedrock’s multi-layered architecture, spanning agents, models, guardrails, and underlying AWS services, creates new blind spots that standard posture management tools weren’t designed to handle. Visibility gaps make it difficult to know which datasets agents can access, or how model outputs might expose sensitive information. Meanwhile, developers often move faster than security teams can review IAM permissions or validate guardrails, leading to misconfigurations that expand risk. In shared-responsibility environments like AWS, this complexity can blur the lines of ownership, making it critical for security teams to have continuous, automated insight into how AI systems interact with enterprise data.

Darktrace / CLOUD provides comprehensive visibility and posture management for Bedrock environments, automatically detecting and proactively scanning agents and knowledge bases, helping teams secure their AI infrastructure without slowing down expansion and innovation.

A real-world scenario: When access goes too far

Consider a scenario where an organization deploys a Bedrock agent to help internal staff quickly answer business questions using company knowledge. The agent was connected to a knowledge base pointing at documents stored in Amazon S3 and given access to internal services via APIs.

To get the system running quickly, developers assigned the agent a broad execution role. This role granted access to multiple S3 buckets, including one containing sensitive customer records. The over-permissioning wasn’t malicious; it stemmed from the complexity of IAM policy creation and the difficulty of identifying which buckets held sensitive data.

The team assumed the agent would only use the intended documents. However, they did not fully consider how employees might interact with the agent or how it might act on the data it processed.  

When an employee asked a routine question about quarterly customer activity, the agent surfaced insights that included regulated data, revealing it to someone without the appropriate access.

This wasn’t a case of prompt injection or model manipulation. The agent simply followed instructions and used the resources it was allowed to access. The exposure was valid under IAM policy, but entirely unintended.

How Darktrace / CLOUD prevents these risks

Darktrace / CLOUD helps organizations avoid scenarios like unintended data exposure by providing layered visibility and intelligent analysis across Bedrock and SageMaker environments. Here’s how each capability works in practice:

Configuration-level visibility

Bedrock deployments often involve multiple components: agents, guardrails, and foundation models, each with its own configuration. Darktrace / CLOUD indexes these configurations so teams can:

  1. Inspect deployed agents and confirm they are connected only to approved data sources.
  2. Track evaluation job setups and their links to Amazon S3 datasets, uncovering hidden data flows that could expose sensitive information.
  3. Maintain full awareness of all AI components, reducing the chance of overlooked assets introducing risk.

By unifying configuration data across Bedrock, SageMaker, and other AWS services, Darktrace / CLOUD provides a single source of truth for AI asset visibility. Teams can instantly see how each component is configured and whether it aligns with corporate security policies. This eliminates guesswork, accelerates audits, and helps prevent misaligned settings from creating data exposure risks.

 Agents for bedrock relationship views.
Figure 1: Agents for bedrock relationship views

Architectural awareness

Complex AI environments can make it difficult to understand how components interact. Darktrace / CLOUD generates real-time architectural diagrams that:

  1. Visualize relationships between agents, models, and datasets.
  1. Highlight unintended data access paths or risk propagation across interconnected services.

This clarity helps security teams spot vulnerabilities before they lead to exposure. By surfacing these relationships dynamically, Darktrace / CLOUD enables proactive risk management, helping teams identify architectural drift, redundant data connections, or unmonitored agents before attackers or accidental misuse can exploit them. This reduces investigation time and strengthens compliance confidence across AI workloads.

Figure 2: Full Bedrock agent architecture including lambda and IAM permission mapping
Figure 2: Full Bedrock agent architecture including lambda and IAM permission mapping

Access & privilege analysis

IAM permissions apply to every AWS service, including Bedrock. When Bedrock agents assume IAM roles that were broadly defined for other workloads, they often inherit excessive privileges. Without strict least-privilege controls, the agent may have access to far more data and services than required, creating avoidable security exposure. Darktrace / CLOUD:

  1. Reviews execution roles and user permissions to identify excessive privileges.
  2. Flags anomalies that could enable privilege escalation or unauthorized API actions.

This ensures agents operate within the principle of least privilege, reducing attack surface. Beyond flagging risky roles, Darktrace / CLOUD continuously learns normal patterns of access to identify when permissions are abused or expanded in real time. Security teams gain context into why an action is anomalous and how it could affect connected assets, allowing them to take targeted remediation steps that preserve productivity while minimizing exposure.

Misconfiguration detection

Misconfigurations are a leading cause of cloud security incidents. Darktrace / CLOUD automatically detects:

  1. Publicly accessible S3 buckets that may contain sensitive training data.
  2. Missing guardrails in Bedrock deployments, which can allow inappropriate or sensitive outputs.
  3. Other issues such as lack of encryption, direct internet access, and root access to models.  

By surfacing these risks early, teams can remediate before they become exploitable. Darktrace / CLOUD turns what would otherwise be manual reviews into automated, continuous checks, reducing time to discovery and preventing small oversights from escalating into full-scale incidents. This automated assurance allows organizations to innovate confidently while keeping their AI systems compliant and secure by design.

Configuration data for Anthropic foundation model
Figure 3: Configuration data for Anthropic foundation model

Behavioral anomaly detection

Even with correct configurations, behavior can signal emerging threats. Using AWS CloudTrail, Darktrace / CLOUD:

  1. Monitors for unusual data access patterns, such as agents querying unexpected datasets.
  2. Detects anomalous training job invocations that could indicate attempts to pollute models.

This real-time behavioral insight helps organizations respond quickly to suspicious activity. Because it learns the “normal” behavior of each Bedrock component over time, Darktrace / CLOUD can detect subtle shifts that indicate emerging risks, before formal indicators of compromise appear. The result is faster detection, reduced investigation effort, and continuous assurance that AI-driven workloads behave as intended.

Conclusion

Generative AI introduces transformative capabilities but also complex risks that evolve alongside innovation. The flexibility of services like Amazon Bedrock enables new efficiencies and insights, yet even legitimate use can inadvertently expose sensitive data or bypass security controls. As organizations embrace AI at scale, the ability to monitor and secure these environments holistically, without slowing development, is becoming essential.

By combining deep configuration visibility, architectural insight, privilege and behavior analysis, and real-time threat detection, Darktrace gives security teams continuous assurance across AI tools like Bedrock and SageMaker. Organizations can innovate with confidence, knowing their AI systems are governed by adaptive, intelligent protection.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

November 19, 2025

Unmasking Vo1d: Inside Darktrace’s Botnet Detection

Unmasking Vo1d: Inside Darktrace’s Botnet DetectionDefault blog imageDefault blog image

What is Vo1d APK malware?

Vo1d malware first appeared in the wild in September 2024 and has since evolved into one of the most widespread Android botnets ever observed. This large-scale Android malware primarily targets smart TVs and low-cost Android TV boxes. Initially, Vo1d was identified as a malicious backdoor capable of installing additional third-party software [1]. Its functionality soon expanded beyond the initial infection to include deploying further malicious payloads, running proxy services, and conducting ad fraud operations. By early 2025, it was estimated that Vo1d had infected 1.3 to 1.6 million devices worldwide [2].

From a technical perspective, Vo1d embeds components into system storage to enable itself to download and execute new modules at any time. External researchers further discovered that Vo1d uses Domain Generation Algorithms (DGAs) to create new command-and-control (C2) domains, ensuring that regardless of existing servers being taken down, the malware can quickly reconnect to new ones. Previous published analysis identified dozens of C2 domains and hundreds of DGA seeds, along with new downloader families. Over time, Vo1d has grown increasingly sophisticated with clear signs of stronger obfuscation and encryption methods designed to evade detection [2].

Darktrace’s coverage

Earlier this year, Darktrace observed a surge in Vo1d-related activity across customer environments, with the majority of affected customers based in South Africa. Devices that had been quietly operating as expected began exhibiting unusual network behavior, including excessive DNS lookups. Open-source intelligence (OSINT) has long highlighted South Africa as one of the countries most impacted by Vo1d infections [2].

What makes the recent activity particularly interesting is that the surge observed by Darktrace appears to be concentrated specifically in South African environments. This localized spike suggests that a significant number of devices may have been compromised, potentially due to vulnerable software, outdated firmware, or even preloaded malware. Regions with high prevalence of low-cost, often unpatched devices are especially susceptible, as these everyday consumer electronics can be quietly recruited into the botnet’s network. This specifically appears to be the case with South Africa, where public reporting has documented widespread use of low-cost boxes, such as non-Google-certified Android TV sticks, that frequently ship with outdated firmware [3].

The initial triage highlighted the core mechanism Vo1d uses to remain resilient: its use of DGA. A DGA deterministically creates a large list of pseudo-random domain names on a predictable schedule. This enables the malware to compute hundreds of candidate domains using the same algorithm, instead of using a hard-coded single C2 hostname that defenders could easily block or take down. To ensure reproducible from the infected device’s perspective, Vo1d utilizes DGA seeds. These seeds might be a static string, a numeric value, or a combination of underlying techniques that enable infected devices to generate the same list of candidate domains for a time window, provided the same DGA code, seed, and date are used.

Interestingly, Vo1d’s DGA seeds do not appear to be entirely unpredictable, and the generated domains lack fully random-looking endings. As observed in Figure 1, there is a clear pattern in the names generated. In this case, researchers identified that while the first five characters would change to create the desired list of domain names, the trailing portion remained consistent as part of the seed: 60b33d7929a, which OSINT sources have linked to the Vo1d botnet. [2]. Darktrace’s Threat Research team also identified a potential second DGA seed, with devices in some cases also engaging in activity involving hostnames matching the regular expression /[a-z]{5}fc975904fc9\.(com|top|net). This second seed has not been reported by any OSINT vendors at the time of writing.

Another recurring characteristic observed across multiple cases was the choice of top-level domains (TLDs), which included .com, .net, and .top.

Figure 1: Advanced Search results showing DNS lookups, providing a glimpse on the DGA seed utilized.

The activity was detected by multiple models in Darktrace / NETWORK™, which triggered on devices making an unusually large volume of DNS requests for domains uncommon across the network.

During the network investigation, Darktrace analysts traced Vo1d’s infrastructure and uncovered an interesting pattern related to responder ASNs. A significant number of connections pointed to AS16509 (AMAZON-02). By hosting redirectors or C2 nodes inside major cloud environments, Vo1d is able to gain access to highly available and geographically diverse infrastructure. When one node is taken down or reported, operators can quickly enable a new node under a different IP within the same ASN. Another feature of cloud infrastructure that hardens Vo1d’s resilience is the fact that many organizations allow outbound connections to cloud IP ranges by default, assuming they are legitimate. Despite this, Darktrace was able to identify the rarity of these endpoints, identifying the unusualness of the activity.

Analysts further observed that once a generated domain successfully resolved, infected devices consistently began establishing outbound connections to ephemeral port ranges like TCP ports 55520 and 55521. These destination ports are atypical for standard web or DNS traffic. Even though the choice of high-numbered ports appears random, it is likely far from not accidental. Commonly used ports such as port 80 (HTTP) or 443 (HTTPS) are often subject to more scrutiny and deeper inspection or content filtering, making them riskier for attackers. On the other hand, unregistered ports like 55520 and 55521 are less likely to be blocked, providing a more covert channel that blends with outbound TCP traffic. This tactic helps evade firewall rules that focus on common service ports. Regardless, Darktrace was able to identify external connections on uncommon ports to locations that the network does not normally visit.

The continuation of the described activity was identified by Darktrace’s Cyber AI Analyst, which correlated individual events into a broader interconnected incident. It began with the multiple DNS requests for the algorithmically generated domains, followed by repeated connections to rare endpoints later confirmed as attacker-controlled infrastructure. Cyber AI Analyst’s investigation further enabled it to categorize the events as part of the “established foothold” phase of the attack.

Figure 2: Cyber AI Analyst incident illustrating the transition from DNS requests for DGA domains to connections with resolved attacker-controlled infrastructure.

Conclusion

The observations highlighted in this blog highlight the precision and scale of Vo1d’s operations, ranging from its DGA-generated domains to its covert use of high-numbered ports. The surge in affected South African environments illustrate how regions with many low-cost, often unpatched devices can become major hubs for botnet activity. This serves as a reminder that even everyday consumer electronics can play a role in cybercrime, emphasizing the need for vigilance and proactive security measures.

Credit to Christina Kreza (Cyber Analyst & Team Lead) and Eugene Chua (Principal Cyber Analyst & Team Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Devices Beaconing to New Rare IP
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / DGA Beacon
  • Compromise / Domain Fluxing
  • Compromise / Fast Beaconing to DGA
  • Unusual Activity / Unusual External Activity

List of Indicators of Compromise (IoCs)

  • 3.132.75[.]97 – IP address – Likely Vo1d C2 infrastructure
  • g[.]sxim[.]me – Hostname – Likely Vo1d C2 infrastructure
  • snakeers[.]com – Hostname – Likely Vo1d C2 infrastructure

Selected DGA IoCs

  • semhz60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • ggqrb60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • eusji60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • uacfc60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • qilqxfc975904fc9[.]top – Hostname – Possible Vo1d C2 DGA endpoint

MITRE ATT&CK Mapping

  • T1071.004 – Command and Control – DNS
  • T1568.002 – Command and Control – Domain Generation Algorithms
  • T1568.001 – Command and Control – Fast Flux DNS
  • T1571 – Command and Control – Non-Standard Port

[1] https://news.drweb.com/show/?lng=en&i=14900

[2] https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/

[3] https://mybroadband.co.za/news/broadcasting/596007-warning-for-south-africans-using-specific-types-of-tv-sticks.html

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.

Continue reading
About the author
Christina Kreza
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI