Six Emerging Cyber-Threats You Didn't See in the News
Darktrace shines the spotlight on six emerging cyber-threats that are getting overlooked, including biometric footprint hacks, new malware strains, and more.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations
Share
23
Oct 2016
As an industry, the constant stream of cyber-attacks in the news can be overwhelming. It seems like every day we see front-page headlines announcing defaced websites or massive data breaches.
But what about the attacks that never make the news?
Here at Darktrace, our worldwide deployments find early-stage threats every day. While these developing threats never make the headlines, they often emerge in fascinating and unexpected ways.
Here’s a selection of what we’ve found for our customers:
An attacker hacked into a biometric fingerprint scanner used for physical access at a major manufacturing company. This company used network-connected fingerprint scanners, allowing the attacker to use Telnet connections and default credentials to gain access. There were strong indiciators that the attacker was able to use the device to breach other servers.
A cyber-criminal gained access to a video conferencing system of a multi-national corporation. Using a backdoor Trojan Horse, the attacker used six external computers to collect data from the camera, presumably in an attempt to steal video from confidential meetings.
A new strain of malware forced the computers of a security company to visit explicit websites. Using random, algorithmically-generated websites, the attackers tried to plant incriminating evidence on the network by generating illegal web activity.
A threat-actor hacked a ‘Lost and Found’ computer at a major European airport. To gain entry, the attacker used DNS servers, an essential capability for internet communication though rarely used for information transfer.
A hacker tried to compromise an industrial power network using default codes. After penetrating the SCADA energy network, the attacker tried to establish a remote control link by using access codes listed as factory defaults online.
A phishing email launched a ransomware attack on a non-profit charity. Using a fake email, the attacker claimed to have an invoice from a legitimate supplier. The attached pdf contacted a server in Ukraine and downloaded malware attempting to encrypt the non-profit’s network.
Our ‘immune system’ technology caught each attack at an extremely early stage, giving us a rare look at how modern threats are able to bypass legacy systems. Traditional security solutions can only detect attacks with pre-determined signatures. But in each case, threat-actors used signature-less attacks to blend into the noise of the network.
By harnessing the power of unsupervised machine learning, the Enterprise Immune System learned ‘normal’ for each of these networks, and detected the threats as anomalous behavior. Our threat analysts then determined the nature of the attack and counseled the organization to take appropriate action.
If you’re interested in learning the full story behind these emerging cyber-threats, check out our Threat Use Cases page.
We look forward to sharing more of our industry insights with you in the future.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Breaking Silos: Why Unified Security is Critical in Hybrid World
Hybrid environments demand end-to-end visibility to stop modern attacks
Hybrid environments are a dominant trend in enterprise technology, but they continue to present unique issues to the defenders tasked with securing them. By 2026, Gartner predicts that 75% of organizations will adopt hybrid cloud strategies [1]. At the same time, only 23% of organizations report full visibility across cloud environments [2].
That means a strong majority of organizations do not have comprehensive visibility across both their on-premises and cloud networks. As a result, organizations are facing major challenges in achieving visibility and security in hybrid environments. These silos and fragmented security postures become a major problem when considering how attacks can move between different domains, exploiting the gaps.
For example, an attack may start with a phishing email, leading to the compromise of a cloud-based application identity and then moving between the cloud and network to exfiltrate data. Some attack types inherently involve multiple domains, like lateral movement and supply chain attacks, which target both on-premises and cloud networks.
Given this, unified visibility is essential for security teams to reduce blind spots and detect threats across the entire attack surface.
Risks of fragmented visibility
Silos arise due to separate teams and tools managing on-premises and cloud environments. Many teams have a hand in cloud security, with some common ones including security, infrastructure, DevOps, compliance, and end users, and these teams can all use different tools. This fragmentation increases the likelihood of inconsistent policies, duplicate alerts, and missed threats. And that’s just within the cloud, not even considering the additional defenses involved with network security.
Without a unified security strategy, gaps between these infrastructures and the teams which manage them can leave organizations vulnerable to cyber-attacks. The lack of visibility between on-premises and cloud environments contributes to missed threats and delayed incident response. In fact, breaches involving stolen or compromised credentials take an average of 292 to identify and contain [3]. That’s almost ten months.
The risk of fragmented visibility runs especially high as companies undergo cloud migrations. As organizations transition to cloud environments, they still have much of their data in on-premises networks, meaning that maintaining visibility across both on-premises and cloud environments is essential for securing critical assets and ensuring seamless operations.
Unified visibility is the solution
Unified visibility is achieved by having a single-pane-of-glass view to monitor both on-premises and cloud environments. This type of view brings many benefits, including streamlined detection, faster response times, and reduced complexity.
This can only be accomplished through integrations or interactions between the teams and tools involved with both on-premises security and cloud security.
AI-driven platforms, like Darktrace, are especially well equipped to enable the real-time monitoring and insights needed to sustain unified visibility. This is because they can handle the large amounts of data and data types.
Darktrace accomplishes this by plugging into an organization’s infrastructure so the AI can ingest and analyze data and its interactions within the environment to form an understanding of the organization’s normal behavior, right down to the granular details of specific users and devices. The system continually revises its understanding about what is normal based on evolving evidence.
This dynamic understanding of normal means that the AI engine can identify, with a high degree of precision, events or behaviors that are both anomalous and unlikely to be benign. This helps reduce noise while surfacing real threats, across cloud and on-prem environments without manual tuning.
In this way, given its versatile AI-based, platform approach, Darktrace empowers security teams with real-time monitoring and insights across both the network and cloud.
Unified visibility in the modern threat landscape
As part of the Darktrace ActiveAI Security Platform™,Darktrace / CLOUD works continuously across public, private, hybrid, and multi-cloud deployments. With real-time Cloud Asset Enumeration and Dynamic Architecture Modeling, Darktrace / CLOUD generates up-to-date architecture diagrams, giving SecOps and DevOps teams a unified view of cloud infrastructures.
It is always on the lookout for changes, driven by user and service activity. For example, unusual user activity can significantly raise the asset’s score, prompting Darktrace’s AI to update its architectural view and keep a living record of the cloud’s ever-changing landscape, providing near real-time insights into what’s happening.
This continuous architectural awareness ensures that security teams have a real-time understanding of cloud behavior and not just a static snapshot.
Figure 1. Darktrace / CLOUD’s unified view of AWS and Azure cloud posture and compliance over time.
With this dynamic cloud visibility and monitoring, Darktrace / CLOUD can help unify and secure environments.
Real world example: Remote access supply chain attacks
Sectop Remote Access Trojan (RAT) malware, also known as ‘ArchClient2,’ is a .NET RAT that contains information stealing capabilities and allows threat actors to monitor and control targeted computers. It is commonly distributed through drive-by downloads of illegitimate software via malvertizing.
Darktrace has been able to detect and respond to Sectop RAT attacks using unified visibility and platform-wide coverage. In one such example, Darktrace observed one device making various suspicious connections to unusual endpoints, likely in an attempt to receive C2 information, perform beaconing activity, and exfiltrate data to the cloud.
This type of supply chain attack can jump from the network to the cloud, so a unified view of both environments helps shorten detection and response times, therefore mitigating potential impact. Darktrace’s ability to detect these cross-domain behaviors stems from its AI-driven, platform-native visibility.
Conclusion
Organizations need unified visibility to secure complex, hybrid environments effectively against threats and attacks. To achieve this type of comprehensive visibility, the gaps between legacy security tools across on-premises and cloud networks can be bridged with platform tools that use AI to boost data analysis for highly accurate behavioral prediction and anomaly detection.
Product Marketing Manager, OT Security & Compliance
Blog
/
OT
/
June 11, 2025
Proactive OT security: Lessons on supply chain risk management from a rogue Raspberry Pi
Understanding supply chain risk in manufacturing
For industries running Industrial Control Systems (ICS) such as manufacturing and fast-moving consumer goods (FMCG), complex supply chains mean that disruption to one weak node can have serious impacts to the entire ecosystem. However, supply chain risk does not always originate from outside an organization’s ICS network.
The implicit trust placed on software or shared services for maintenance within an ICS can be considered a type of insider threat [1], where defenders also need to look ‘from within’ to protect against supply chain risk. Attackers have frequently mobilised this form of insider threat:
Many ICS and SCADA systems were compromised during the 2014 Havex Watering Hole attack, where via operators’ implicit trust in the trojanized versions of legitimate applications, on legitimate but compromised websites [2].
In 2018, the world’s largest manufacturer of semiconductors and processers shut down production for three days after a supplier installed tainted software that spread to over 10,000 machines in the manufacturer’s network [3].
During the 2020 SolarWinds supply chain attack, attackers compromised a version of Orion software that was deployed from SolarWinds’ own servers during a software update to thousands of customers, including tech manufacturing companies such as Intel and Nvidia [4].
Traditional approaches to ICS security have focused on defending against everything from outside the castle walls, or outside of the ICS network. As ICS attacks become more sophisticated, defenders must not solely rely on static perimeter defenses and prevention.
A critical part of active defense is understanding the ICS environment and how it operates, including all possible attack paths to the ICS including network connections, remote access points, the movement of data across zones and conduits and access from mobile devices. For instance, original equipment manufacturers (OEMs) and vendors often install remote access software or third-party equipment in ICS networks to facilitate legitimate maintenance and support activities, which can unintentionally expand the ICS’ attack surface.
This blog describes an example of the convergence between supply chain risk and insider risk, when a vendor left a Raspberry Pi device in a manufacturing customer’s ICS network without the customer’s knowledge.
Case study: Using unsupervised machine learning to detect pre-existing security issues
Raspberry Pi devices are commonly used in SCADA environments as low-cost, remotely accessible data collectors [5][6][7]. They are often paired with Industrial Internet of Things (IIoT) for monitoring and tracking [8]. However, these devices also represent a security risk because their small physical size and time-consuming nature of physical inspection makes them easy to overlook. This poses a security risk, as these devices have previously been used to carry out USB-based attacks or to emulate Ethernet-over-USB connections to exfiltrate sensitive data [8][9].
In this incident,a Darktrace customer was unaware that their supplier had installed a Raspberry Pi device on their ICS network. Crucially, the installation occurred prior to Darktrace’s deployment on the customer’s network.
For other anomaly detection tools, this order of events meant that this third-party device would likely have been treated as part of the customer’s existing infrastructure. However, after Darktrace was deployed, it analyzed the metadata from the encrypted HTTPS and DNS connections that the Raspberry Pi made to ‘call home’ to the supplier and determined that these connections were unusual compared to the rest of the devices in the network, even in the absence of any malicious indicators of compromise (IoCs).
Darktrace triggered the following alerts for this unusual activity that consequently notified the customer to the pre-existing threat of an unmanaged device already present in their network:
Compromise / Sustained SSL or HTTP Increase
Compromise / Agent Beacon (Short Period)
Compromise / Agent Beacon (Medium Period)
Compromise / Agent Beacon (Long Period)
Tags / New Raspberry Pi Device
Device / DNS Requests to Unusual Server
Device / Anomaly Indicators / Spike in Connections to Rare Endpoint Indicator
Figure 1: Darktrace’s External Sites Summary showing the rarity of the external endpoint that the Raspberry Pi device ‘called home’ to and the model alerts triggered.
Darktrace’s Cyber AI Analyst launched an autonomous investigation into the activity, correlating related events into a broader incident and generating a report outlining the potential threat along with supporting technical details.
Darktrace’s anomaly-based detection meant that the Raspberry Pi device did not need to be observed performing clearly malicious behavior to alert the customer to the security risk, and neither can defenders afford to wait for such escalation.
Why is this significant?
In 2021 a similar attack took place. Aiming to poison a Florida water treatment facility, attackers leveraged a TeamViewer instance that had been dormant on the system for six months, effectively allowing the attacker to ‘live off the land’ [10].
The Raspberry Pi device in this incident also remained outside the purview of the customer’s security team at first. It could have been leveraged by a persistent attacker to pivot within the internal network and communicate externally.
A proactive approach to active defense that seeks to minimize and continuously monitor the attack surface and network is crucial.
The growing interest in manufacturing from attackers and policymakers
Significant motivations for targeting the manufacturing sector and increasing regulatory demands make the convergence of supply chain risk, insider risk, and the prevalence of stealthy living-off-the-land techniques particularly relevant to this sector.
Manufacturing is consistently targeted by cybercriminals [11], and the sector’s ‘just-in-time’ model grants attackers the opportunity for high levels of disruption. Furthermore, under NIS 2, manufacturing and some food and beverage processing entities are now designated as ‘important’ entities. This means stricter incident reporting requirements within 24 hours of detection, and enhanced security requirements such as the implementation of zero trust and network segmentation policies, as well as measures to improve supply chain resilience [12][13][14].
How can Darktrace help?
Ultimately, Darktrace successfully assisted a manufacturing organization in detecting a potentially disruptive 'near-miss' within their OT environment, even in the absence of traditional IoCs. Through passive asset identification techniques and continuous network monitoring, the customer improved their understanding of their network and supply chain risk.
While the swift detection of the rogue device allowed the threat to be identified before it could escalate, the customer could have reduced their time to respond by using Darktrace’s built-in response capabilities, had Darktrace’s Autonomous Response capability been enabled. Darktrace’s Autonomous Response can be configured to target specific connections on a rogue device either automatically upon detection or following manual approval from the security team, to stop it communicating with other devices in the network while allowing other approved devices to continue operating. Furthermore, the exportable report generated by Cyber AI Analyst helps security teams to meet NIS 2’s enhanced reporting requirements.
Sophisticated ICS attacks often leverage insider access to perform in-depth reconnaissance for the development of tailored malware capabilities. This case study and high-profile ICS attacks highlight the importance of mitigating supply chain risk in a similar way to insider risk. As ICS networks adapt to the introduction of IIoT, remote working and the increased convergence between IT and OT, it is important to ensure the approach to secure against these threats is compatible with the dynamic nature of the network.
Credit to Nicole Wong (Principal Cyber Analyst), Matthew Redrup (Senior Analyst and ANZ Team Lead)
[related-resource]
Appendices
MITRE ATT&CK Mapping
Infrastructure / New Raspberry Pi Device - INITIAL ACCESS - T1200 Hardware Additions
Device / DNS Requests to Unusual Server - CREDENTIAL ACCESS, COLLECTION - T1557 Man-in-the-Middle
Compromise / Agent Beacon - COMMAND AND CONTROL - T1071.001 Web Protocols