Blog
/
Cloud
/
January 18, 2024

Containerised Clicks: Malicious Use of 9hits on Vulnerable Docker Hosts

Cado Security Labs uncovered a new campaign targeting vulnerable Docker services. Attackers deploy XMRig miners and the 9hits viewer application to generate credits. This campaign highlights attackers' evolving monetization strategies and the ongoing vulnerability of exposed Docker hosts.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Jan 2024

Introduction: Malicious use of 9hits on vulnerable docker hosts

During routine monitoring of our honeypot infrastructure, Cado Security Labs researchers (now part of Darktrace) observed a novel campaign targeting vulnerable Docker services. The campaign deploys two containers to the vulnerable instance - a regular XMRig miner, as well as the 9hits viewer application. This was the first documented case of malware deploying the 9hits application as a payload, based on available open-source intelligence at the time.

9hits [1] describes itself as “A Unique Web Traffic Solution”. It is a platform where members can buy credits, which can then be exchanged for traffic being generated on their website of choice. Members can also run the 9hits viewer app, which runs a headless chrome instance in order to visit websites requested by other members, in exchange for a cut of the credits.

Screenshot from 9hits
Figure 1: Steps for using 9hits platform from viewer app

The viewer app responsible for generating hits and credits is now being deployed by malware, in order to generate credits for the attacker.

Initial access

The containers are deployed on the vulnerable Docker host over the Internet by an attacker-controlled server. Cado Security have been unable to obtain a copy of the spreader, however can speculate that the attacker discovered the honeypot via a service like Shodan. This is because the attacker’s IP does not have any entries in common abuse databases, suggesting it is not actively scanning. It is also possible the attacker is using a separate server for scanning.

After discovery, the spreader uses the Docker API to deploy two containers:

Jan 08 16:44:27 docker.novalocal dockerd[1014]: time="2024-01-08T16:44:27.619512372Z" level=debug msg="Calling POST /v1.43/images/create?fromImage=minerboy%2FXMRig&tag=latest" 
Jan 08 16:44:38 docker.novalocal dockerd[1014]: time="2024-01-08T16:44:38.725291585Z" level=debug msg="Calling POST /v1.43/images/create?fromImage=9hitste%2Fapp&tag=latest" 

This can also be seen reflected in the network capture of the honeypot, originating from IP 27[.]36.82.56 (An IP in Foshan, China). The IP 43[.]163.195.252 (Tencent hosting in Japan) has also been observed in the past.

Network capture
Figure 2: Network capture

Looking closer at the requests, we can observe a user agent of docker client:

User agent of docker client
Figure 3: User agent of docker client

Obviously, it is possible to clone a user agent and make it look like a Docker client. However, the order of API requests in the capture is identical to an actual instance of the Docker CLI. It is likely the attacker is using a script that sets the DOCKER_HOST variable and runs the regular CLI in order to compromise the server.  

The above API calls fetches off-the-shelf images from Dockerhub for the 9hits and XMRig software. This is a common attack vector for campaigns targeting Docker, where instead of fetching a bespoke image for their purposes they pull a generic image off Dockerhub (which will almost always be accessible) and leverage it for their needs.

In Cado’s investigations of campaigns targeting our honeypot, attackers often used a generic Alpine image and attach to it in order to break out of the container and run their malware on the host. In this case, the attacker makes no attempt to exit the container, and instead just runs the container with a predetermined argument.

Payload operation

As mentioned previously, the spreader invokes the Docker container with a custom command to kick start the infection. This command includes configuration and session identifiers.

Using memory forensics, the following processes being run by the 9hits container can be observed:

pid	  ppid	proc	cmd 
2379	2358	nh.sh	/bin/bash /nh.sh --token=c89f8b41d4972209ec497349cce7e840 --system-session --allow-crypto=no 
2406	2379	Xvfb	Xvfb :1 
2407	2379	9hits	/etc/9hitsv3-linux64/9hits --mode=exchange --current-hash=1704770235 --hide-browser=no --token=c89f8b41d4972209ec497349cce7e840 --allow-popups=yes --allow-adult=yes --allow-crypto=no --system-session --cache-del=200 --single-process --no-sandbox --no-zygote --auto-start 
2508	2455	9hbrowser	/etc/9hitsv3-linux64/browser/9hbrowser --nh-param=b2e931191f49d --ssid=<honeypot IP> 

In this case, the entry point for the container is the “ nh.sh ” script, which the attacker has added their session token to. This allows the 9hits app to authenticate with their servers and pull a list of sites to visit from them. Once the app has visited the site, the owner of the session token is awarded with a credit on the 9hits platform.

It appears that 9hits designed the session token system to work in untrusted contexts. It’s impossible to use the token for anything other than running the app to generate credits for the token owner, with the API and authentication tokens being a separate system. This allows the app to be run in illegitimate campaigns without the risk of the attacker's account being compromised.

9hits itself is based on headless Chrome, and as can be seen from the other processes, a browser instance is spawned to visit websites. The no sandbox, single process, and no zygote arguments are frequently passed to Chrome browsers running as root or in containers. There are a few other options that are set for this campaign, such as allowing it to visit adult sites, allowing it to visit sites that show popups, and configuring the cache duration. In addition, the actor behind this campaign has disabled the 9hits app’s ability to visit crypto related sites. The reason for this is unclear.

On the other container deployed by the attacker (XMRig), we can see it executes the following:

<code>1572	1552	XMRig	/app/XMRig -o byw.dscloud.me:3333 --randomx-1gb-pages --donate-level=0</code> 

The -o option specifies a mining pool to use. Most XMRig deployments will use a public pool and tell it the owner's wallet address, which can be frequently combined with the pool’s public data to see how many machines are mining for that address, along with the earnings of the owner. However, in this case it would appear that the mining pool is private, preventing access to statistics related to the campaign.

The dscloud domain is used by synology for dynamic DNS, where the synology server will keep the domain updated with the current IP of the attacker. Performing a lookup for this address at the time of writing, we can see it resolves to 27[.]36.82.56, the same IP that infected the honeypot in the first place.

Conclusion

The main impact of this campaign on compromised hosts is resource exhaustion, as the XMRig miner will use all available CPU resources it can while 9hits will use a large amount of bandwidth, memory, and what little CPU is left. The result of this is that legitimate workloads on infected servers will be unable to perform as expected. In addition, the campaign could be updated to leave a remote shell on the system, potentially causing a more serious breach. This has been seen before with mexals/diicot [2], a Romanian threat actor that maintained access to compromised servers using a malicious SSH key in addition to executing XMRig.

This campaign demonstrates that attackers are always looking for more strategies to make money from compromised hosts. It additionally shows that exposed Docker hosts are still a common entry vector for attackers. As Docker allows users to run arbitrary code, it is critical that it is kept secure to avoid your systems being used for malicious purposes.

IoCs

Docker container name Docker container image

faucet 9hitste/app

xmg minerboy/XMRig

Mining pool

byw.dscloud.me:3333

Session token

c89f8b41d4972209ec497349cce7e840

References:

[1] https://9hits.com/

[2] https://www.darktrace.com/blog/tracking-diicot-an-emerging-romanian-threat-actor

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher

More in this series

No items found.

Blog

/

AI

/

December 23, 2025

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI