Blog
/
Services
/
January 9, 2025

Detecting and Mitigating Adversary-in-the-Middle Phishing Attacks with Darktrace Services

Threat actors often use advanced phishing toolkits and Adversary-in-the-Middle (AitM) attacks in Business Email Compromise (BEC) campaigns, Discover how Darktrace detected and mitigated a sophisticated attack leveraging Dropbox, highlighting the importance of robust cybersecurity measures.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Jan 2025

What is an Adversary-in-the-Middle Attack?

Threat actors are increasingly utilizing advanced phishing toolkits and techniques to carry out Adversary-in-the-Middle (AitM) attacks. These attacks involve the use of a proxy to a legitimate service, where the attacker’s webpage mimics the expected site. While the victim believes they are visiting the legitimate site, they are actually interacting with the attacker’s device, allowing the malicious actor to monitor all interactions and control the authenticated session, ultimately gaining access to the user’s account [1][2].

This blog will explore how Darktrace detected AitM techniques being leveraged in a Business Email Compromise (BEC) attack that used the widely used and trusted cloud storage service, Dropbox, for delivery. Dropbox’s popularity has made it a prime target for attackers to exploit in recent years. Threat actors can exploit the service for various malicious activities, including distributing malware and exposing sensitive information.

Attack Overview

In these types of AitM BEC attacks, recipients are often targeted with Dropbox-related emails, featuring subject headings like ‘FirstLast shared "Filename" with you,’ which suggest an individual is sharing an invoice-related attachment. These email subjects are common in such attacks, as threat actors attempt to encourage victims to access Dropbox links by masquerading them as legitimate files.

While higher priority users are, of course, targeted, the scope of these attacks remains broad. For instance, if a lower priority user is targeted by a phishing attack or their token is stolen, an attacker can still attempt BEC for further malicious intent and financial gain.

In October 2024, a Darktrace customer received a phishing email from a seemingly legitimate Dropbox address. This email originated from the IP, 54.240.39[.]219 and contained multiple link payloads to Dropbox-related hostnames were observed, inviting the user to access a file. Based on anomaly indicators and detection by Darktrace / EMAIL, Darktrace recognized that one of the payloads was attempting to abuse a legitimate cloud platform to share files or other unwanted material with the recipient.

Overview of the malicious email in the Darktrace / EMAIL console, highlighting Dropbox associated content/link payloads.
Figure 1: Overview of the malicious email in the Darktrace / EMAIL console, highlighting Dropbox associated content/link payloads.

Following the recipient’s engagement with this email, Darktrace / IDENTITY identified a series of suspicious activities within the customer’s environment.

AitM attacks allow threat actors to bypass multi-factor authentication (MFA). Initially, when a user is phished, the malicious infrastructure captures both the user’s credentials and the token. This includes replaying a token issued to user that has already completed the MFA requirement, allowing the threat actor to satisfy the validity of the requirement and gain access to sensitive organizational resources. Darktrace is able to analyze user activity and authentication patterns to determine whether MFA requirements were met. This capability helps verify and indicate token theft via AitM.

Darktrace observed the associated user account making requests over Microsoft 365 from the IP 41.90.175[.]46. Given the unusual nature and rare geolocation based in Kenya, Africa, this activity did not appear indicative of legitimate business operations.

Geographical location of the SaaS user
Figure 2: Geographical location of the SaaS user in relation to the source IP 41.90.175[.]46.

Further analysis using open-source intelligence (OSINT) revealed that the endpoint was likely associated with a call-back proxy network [3]. This suggested the presence of a network device capable of re-routing traffic and harvesting information.

Darktrace also detected that the same SaaS user was logging in from two different locations around the same time. One login was from a common, expected location, while the other was from an unusual location. Additionally, the user was observed registering security information using the Microsoft Authenticator app, indicating an attempt by an attacker to maintain access to the account by establishing a new method of MFA. This new MFA method could be used to bypass future MFA requirements, allowing the attacker to access sensitive material or carry out further malicious activities.

External sites summary for the SaaS account in relation to the source IP 13.74.161[.]104, observed with Registering Security Information.
Figure 3: External sites summary for the SaaS account in relation to the source IP 13.74.161[.]104, observed with Registering Security Information.

Ultimately, this anomalous behavior was escalated to the Darktrace Security Operations Centre (SOC) via the Managed Detection & Response service for prompt triage and investigation by Darktrace’s SOC Analysts who notified the customer of strong evidence of compromise.

Fortunately, since this customer had Darktrace enabled in Autonomous Response mode, the compromised SaaS account had already been disabled, containing the attack. Darktrace’s SOC elected to extend this action to ensure the malicious activity remained halted until the customer could take further remedial action.

Attack timeline of observed activity, in chronological order; This highlighted anomalous SaaS events such as, MailItemsAccessed’, ‘Use of Unusual Credentials’, ‘User Registered Security Info’ events, and a ‘Disable User’ Autonomous Response action.
Figure 4: Attack timeline of observed activity, in chronological order; This highlighted anomalous SaaS events such as, MailItemsAccessed’, ‘Use of Unusual Credentials’, ‘User Registered Security Info’ events, and a ‘Disable User’ Autonomous Response action.

Conclusion

AitM attacks can play a crucial role in BEC campaigns. These attacks are often part of multi-staged operations, where an initial AitM attack is leveraged to launch a BEC by delivering a malicious URL through a trusted vendor or service. Attackers often attempt to lay low on their target network, sometimes persisting for extended periods, as they monitor user accounts or network segments to intercept sensitive communications.

In this instance, Darktrace successfully identified and acted against AitM techniques being leveraged in a BEC attack that used Dropbox for delivery. While Dropbox is widely used for legitimate purposes, its popularity has also made it a target for exploitation by threat actors, who have used it for a variety of malicious purposes, including delivering malware and revealing sensitive information.

Darktrace’s Security Operations Support service, combined with its Autonomous Response technology, provided timely and effective mitigation. Dedicated Security Operations Support analysts triaged the incident and implemented preventative measures, ensuring the customer was promptly notified. Meanwhile, Darktrace swiftly disabled the compromised SaaS account, allowing the customer to take further necessary actions, such as resetting the user’s password.

This case highlights the capabilities of Darktrace’s solutions, enabling the customer to resume normal business operations despite the malicious activity.

Credit to Justin Torres (Senior Cyber Analyst), Stefan Rowe (Technical Director, SOC) and Ryan Traill (Analyst Content Lead)

Appendices

References

1.    https://www.proofpoint.com/us/threat-reference/man-in-the-middle-attack-mitm

2.    https://thehackernews.com/2024/08/how-to-stop-aitm-phishing-attack.html

3.    https://spur.us/context/41.90.175.46

Darktrace Model Detections

Darktrace / NETWORK Model Alert(s):

SaaS / Compromise::SaaS Anomaly Following Anomalous Login

SaaS / Unusual Activity::Multiple Unusual SaaS Activities

SaaS / Compromise::Unusual Login and Account Update

SaaS / Compromise::Login From Rare Endpoint While User Is Active

SaaS / Access::Unusual External Source for SaaS Credential Use

SaaS / Email Nexus::Unusual Login Location Following Link to File Storage

SaaS / Access::MailItemsAccessed from Rare Endpoint

Darktrace/Autonomous Response Model Alert(s):

Antigena / SaaS::Antigena Suspicious SaaS Activity Block

List of Indicators of Compromise (IoCs)

(IoC - Type - Description)

41.90.175[.]46 – Source IP Observed with Suspicious Login Behavior

MITRE ATT&CK Mapping

(Technique Name - Tactic - ID - Sub-Technique of)

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Email Accounts - RESOURCE DEVELOPMENT - T1586.002 - T1586

Cloud Service Dashboard - DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst

More in this series

No items found.

Blog

/

AI

/

December 23, 2025

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI