Blog
/
Services
/
June 13, 2021

Neutralizing QakBot: Darktrace SOC's Success Story

Learn about the strategies used by Darktrace's SOC team to neutralize the QakBot banking trojan and safeguard financial data.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Jun 2021

While cutting-edge technology is essential for organizations to secure their digital assets, having on-hand human support to deal with threats can be invaluable for lean security teams and organizations without Autonomous Response in their digital enterprise.

Cyber AI technology recently detected the QakBot banking trojan in a customer environment, and with the help of Darktrace’s SOC team, the customer was able to shut down the attack in under two hours.

QakBot malware

QakBot has built a name for itself over the past twelve years as one of the most deadly trojans in the game. Used in fast-paced, automated attacks against individual businesses, it has the ability to drain company resources and steal vast amounts of financial data. It is often downloaded during Emotet campaigns to infect devices and harvest bank account information.

Like other banking trojans, QakBot uses a dropper to install itself on a corporate device. It then self-propagates through a system and collects credentials at machine speed. Cyber-criminals can use this information to extract private data or distribute ransomware and further malicious payloads.

QakBot is extremely difficult for traditional security tools to detect. Due to a combination of its automatic worm-like capabilities, its use of a virus dropper with delayed execution, and several other obfuscation methods, it is able to bypass the majority of legacy tools and can lead to extreme financial repercussions if not dealt with in its initial stages.

The Darktrace SOC team

Darktrace’s Security Operations Center (SOC) team, located in Cambridge, San Francisco, and Singapore, deal with a wide range of these quick-moving and stealthy threats which are identified by Cyber AI, including ransomware deployments, SaaS account takeovers, and data exfiltration.

Such attacks often use ‘Living off the Land’ techniques which make them difficult to differentiate from legitimate network traffic. Moreover, many threat actors carry out malicious activities outside of a target organization’s normal working hours, amplifying the potential impact of a breach before it is discovered.

The Darktrace SOC team provides around-the-clock coverage of customer environments through Proactive Threat Notification (PTN) and Ask the Expert (ATE) services. Alongside autonomous AI detection, these services provide additional human monitoring and support for customers undergoing significant security events.

Uncovering the QakBot banking trojan

Figure 1: Timeline of the QakBot banking trojan attack, including the response from Darktrace’s services.

At a company in the EMEA region with around 7,000 devices, Cyber AI detected the early signs of a trojan horse. The organization did not have Antigena Email analyzing its email traffic in order to respond to attacks in the inbox, so when a phishing email slipped through the gateway and was opened by a user, their device began connecting to a high volume of suspicious endpoints.

This resembled command and control (C2) communication, and, based on the unusual nature of this activity for the device and the environment, this behavior triggered multiple high scoring model breaches. One of these was a high fidelity model breach for ‘Suspicious SSL Activity’, which prompted an investigation through the Proactive Threat Notification service.

Figure 2: An example of the Cyber AI Analyst incident timeline for an infected device, showing command and control and reconnaissance activity.

An expert Darktrace analyst was alerted to the unusual connectivity by the Enterprise Immune System and began to investigate the anomalous behavior, determining that this device was exhibiting strong signs of a banking trojan infection. The analyst needed to move quickly: the trojan had immediately begun reconnaissance and was preparing to spread across the network.

Within an hour, the analyst had produced a brief report summarizing the activity and this was sent as a PTN alert to the customer. The report contained key technical information from the model breach and Cyber AI Analyst incident – including the timeframe, device hostname and IP address, suspicious external domains, and a reference for the customer to view this alert in the Darktrace UI.

Figure 3: Visual example of the Darktrace threat tray. In the QakBot attack, four Enhanced Monitoring model breaches were triggered, and these were investigated and alerted through the PTN service. They were all high scoring detections, clearly indicating a compromise.

Upon receiving the alert, the customer initiated further investigation and quickly shut down the affected device. The attack was contained in less than two hours.

Ask the Expert

After their initial remediation, the company reached out to the Darktrace team via Ask the Expert to confirm that this was a QakBot infection and to gain additional assistance in investigating the extent of the compromise.

The analyst team provided ongoing support to the investigation over the next six hours, concluding that this likely came from a phishing email and that no other devices in the environment were compromised. The analyst provided a list of observed Indicators of Compromise (IoCs) and worked with the customer to add these to the Darktrace Watched Domains List for further monitoring. The customer was also able to use this list to block the IoCs at the firewall.

The organization contained the infection, and no further suspicious behavior was observed from network devices.

Humans and AI

This case study is a perfect example of how Darktrace’s services provide constant assistance to customers every day of every week. On top of Darktrace’s advanced machine learning technology, the Darktrace SOC team serves as an additional layer of support for security teams of all sizes. Proactive Threat Notifications offer an extra set of eyes on emerging threats, while Ask The Expert provides a mechanism for customers to gain investigative support directly from Darktrace analysts.

The early detection of this banking trojan allowed the organization to deal with the threat before it could develop into a serious infection or a ransomware attack. QakBot is just one of many strains of swift self-spreading malware in today’s threat landscape. Such automated attacks consistently outpace the fastest of human defenders, exposing the desperate need for AI and autonomous systems to augment human teams and protect digital systems in real time.

If Antigena Network had been active in this environment, the suspicious external connectivity would have been blocked upon first detection, stopping the attack within seconds. In fact, the customer decided to deploy Antigena Network following this incident, and now benefits from 24/7 Autonomous Response against all emerging cyber-threats.

IoCs:

nerotimethod[.]com193[.]29[.]58[.]17345[.]32[.]211[.]20754[.]36[.]108[.]120144[.]139[.]166[.]1875[.]67[.]192[.]125 149[.]28[.]101[.]9037[.]211[.]90[.]17568[.]131[.]107[.]37162[.]222[.]226[.]194mywebscrap[.]com

Darktrace model detections:

  • Compromise / SSL or HTTP Beacon
  • Compromise / Suspicious SSL Activity
  • Device / Multiple C2 Model Breaches
  • Device / Lateral Movement and C2 Activity
  • Device / Multiple Lateral Movement Model Breaches
  • Device / Large Number of Model Breaches
  • Compromise / Suspicious Beaconing Behaviour
  • Compromise / SSL Beaconing to Rare Destination
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous Connection / Suspicious Self-Signed SSL
  • Anomalous Connection / Rare External SSL Self-Signed
  • Device / Reverse DNS Sweep
  • Unusual Activity / Possible RPC Recon Activity
  • Device / Active Directory Reconnaissance
  • Device / Network Scan - Low Anomaly Score
  • Anomalous Connection / SMB Enumeration

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Proactive Security

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI