Blog
/
/
June 13, 2021

Neutralizing QakBot: Darktrace SOC's Success Story

Learn about the strategies used by Darktrace's SOC team to neutralize the QakBot banking trojan and safeguard financial data.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Jun 2021

While cutting-edge technology is essential for organizations to secure their digital assets, having on-hand human support to deal with threats can be invaluable for lean security teams and organizations without Autonomous Response in their digital enterprise.

Cyber AI technology recently detected the QakBot banking trojan in a customer environment, and with the help of Darktrace’s SOC team, the customer was able to shut down the attack in under two hours.

QakBot malware

QakBot has built a name for itself over the past twelve years as one of the most deadly trojans in the game. Used in fast-paced, automated attacks against individual businesses, it has the ability to drain company resources and steal vast amounts of financial data. It is often downloaded during Emotet campaigns to infect devices and harvest bank account information.

Like other banking trojans, QakBot uses a dropper to install itself on a corporate device. It then self-propagates through a system and collects credentials at machine speed. Cyber-criminals can use this information to extract private data or distribute ransomware and further malicious payloads.

QakBot is extremely difficult for traditional security tools to detect. Due to a combination of its automatic worm-like capabilities, its use of a virus dropper with delayed execution, and several other obfuscation methods, it is able to bypass the majority of legacy tools and can lead to extreme financial repercussions if not dealt with in its initial stages.

The Darktrace SOC team

Darktrace’s Security Operations Center (SOC) team, located in Cambridge, San Francisco, and Singapore, deal with a wide range of these quick-moving and stealthy threats which are identified by Cyber AI, including ransomware deployments, SaaS account takeovers, and data exfiltration.

Such attacks often use ‘Living off the Land’ techniques which make them difficult to differentiate from legitimate network traffic. Moreover, many threat actors carry out malicious activities outside of a target organization’s normal working hours, amplifying the potential impact of a breach before it is discovered.

The Darktrace SOC team provides around-the-clock coverage of customer environments through Proactive Threat Notification (PTN) and Ask the Expert (ATE) services. Alongside autonomous AI detection, these services provide additional human monitoring and support for customers undergoing significant security events.

Uncovering the QakBot banking trojan

Figure 1: Timeline of the QakBot banking trojan attack, including the response from Darktrace’s services.

At a company in the EMEA region with around 7,000 devices, Cyber AI detected the early signs of a trojan horse. The organization did not have Antigena Email analyzing its email traffic in order to respond to attacks in the inbox, so when a phishing email slipped through the gateway and was opened by a user, their device began connecting to a high volume of suspicious endpoints.

This resembled command and control (C2) communication, and, based on the unusual nature of this activity for the device and the environment, this behavior triggered multiple high scoring model breaches. One of these was a high fidelity model breach for ‘Suspicious SSL Activity’, which prompted an investigation through the Proactive Threat Notification service.

Figure 2: An example of the Cyber AI Analyst incident timeline for an infected device, showing command and control and reconnaissance activity.

An expert Darktrace analyst was alerted to the unusual connectivity by the Enterprise Immune System and began to investigate the anomalous behavior, determining that this device was exhibiting strong signs of a banking trojan infection. The analyst needed to move quickly: the trojan had immediately begun reconnaissance and was preparing to spread across the network.

Within an hour, the analyst had produced a brief report summarizing the activity and this was sent as a PTN alert to the customer. The report contained key technical information from the model breach and Cyber AI Analyst incident – including the timeframe, device hostname and IP address, suspicious external domains, and a reference for the customer to view this alert in the Darktrace UI.

Figure 3: Visual example of the Darktrace threat tray. In the QakBot attack, four Enhanced Monitoring model breaches were triggered, and these were investigated and alerted through the PTN service. They were all high scoring detections, clearly indicating a compromise.

Upon receiving the alert, the customer initiated further investigation and quickly shut down the affected device. The attack was contained in less than two hours.

Ask the Expert

After their initial remediation, the company reached out to the Darktrace team via Ask the Expert to confirm that this was a QakBot infection and to gain additional assistance in investigating the extent of the compromise.

The analyst team provided ongoing support to the investigation over the next six hours, concluding that this likely came from a phishing email and that no other devices in the environment were compromised. The analyst provided a list of observed Indicators of Compromise (IoCs) and worked with the customer to add these to the Darktrace Watched Domains List for further monitoring. The customer was also able to use this list to block the IoCs at the firewall.

The organization contained the infection, and no further suspicious behavior was observed from network devices.

Humans and AI

This case study is a perfect example of how Darktrace’s services provide constant assistance to customers every day of every week. On top of Darktrace’s advanced machine learning technology, the Darktrace SOC team serves as an additional layer of support for security teams of all sizes. Proactive Threat Notifications offer an extra set of eyes on emerging threats, while Ask The Expert provides a mechanism for customers to gain investigative support directly from Darktrace analysts.

The early detection of this banking trojan allowed the organization to deal with the threat before it could develop into a serious infection or a ransomware attack. QakBot is just one of many strains of swift self-spreading malware in today’s threat landscape. Such automated attacks consistently outpace the fastest of human defenders, exposing the desperate need for AI and autonomous systems to augment human teams and protect digital systems in real time.

If Antigena Network had been active in this environment, the suspicious external connectivity would have been blocked upon first detection, stopping the attack within seconds. In fact, the customer decided to deploy Antigena Network following this incident, and now benefits from 24/7 Autonomous Response against all emerging cyber-threats.

IoCs:

nerotimethod[.]com193[.]29[.]58[.]17345[.]32[.]211[.]20754[.]36[.]108[.]120144[.]139[.]166[.]1875[.]67[.]192[.]125 149[.]28[.]101[.]9037[.]211[.]90[.]17568[.]131[.]107[.]37162[.]222[.]226[.]194mywebscrap[.]com

Darktrace model detections:

  • Compromise / SSL or HTTP Beacon
  • Compromise / Suspicious SSL Activity
  • Device / Multiple C2 Model Breaches
  • Device / Lateral Movement and C2 Activity
  • Device / Multiple Lateral Movement Model Breaches
  • Device / Large Number of Model Breaches
  • Compromise / Suspicious Beaconing Behaviour
  • Compromise / SSL Beaconing to Rare Destination
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / High Volume of Connections with Beacon Score
  • Anomalous Connection / Suspicious Self-Signed SSL
  • Anomalous Connection / Rare External SSL Self-Signed
  • Device / Reverse DNS Sweep
  • Unusual Activity / Possible RPC Recon Activity
  • Device / Active Directory Reconnaissance
  • Device / Network Scan - Low Anomaly Score
  • Anomalous Connection / SMB Enumeration

No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI