Blog
/
AI
/
April 30, 2024

Detecting Attacks Across Email, SaaS, and Network Environments with Darktrace’s ActiveAI Security Platform

This blog explores how Darktrace’s combined AI approach enabled it to identify and connect an attack that took place over three critical areas of a customer’s digital environment, namely email, SaaS and network.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
30
Apr 2024

The State of AI in Cybersecurity

In a recent survey outlined in Darktrace’s State of AI Cyber Security whitepaper, 95% of cyber security professionals agree that AI-powered security solutions will improve their organization’s detection of cyber-threats [1]. Crucially, a combination of multiple AI methods is the most effective to improve cybersecurity; improving threat detection, accelerating threat investigation and response, and providing visibility across an organization’s digital environment.

In March 2024, Darktrace’s AI-led security platform was able to detect suspicious activity affecting a customer’s email, Software-as-a-Service (SaaS), and network environments, whilst its applied supervised learning capability, Cyber AI Analyst, autonomously correlated and connected all of these events together in one single incident, explained concisely using natural language processing.

Attack Overview

Following an initial email attack vector, an attacker logged into a compromised SaaS user account from the Netherlands, changed inbox rules, and leveraged the account to send thousands of phishing emails to internal and external users. Internal users fell victim to the emails by clicking on contained suspicious links that redirected them to newly registered suspicious domains hosted on same IP address as the hijacked SaaS account login. This activity triggered multiple alerts in Darktrace DETECT™ on both the network and SaaS side, all of which were correlated into one Cyber AI Analyst incident.

In this instance, Darktrace RESPOND™ was not active on any of the customer’s environments, meaning the compromise was able to escalate until their security team acted on the alerts raised by DETECT. Had RESPOND been enabled at the time of the attack, it would have been able to apply swift actions to contain the attack by blocking connections to suspicious endpoints on the network side and disabling users deviating from their normal behavior on the customer’s SaaS environment.

Nevertheless, thanks to DETECT and Cyber AI Analyst, Darktrace was able to provide comprehensive visibility across the customer’s three digital estate environments, decreasing both investigation and response time which enabled them to quickly enact remediation during the attack. This highlights the crucial role that Darktrace’s combined AI approach can play in anomaly detection cyber defense

Attack Details & Darktrace Coverage

Attack timeline

1. Email: the initial attack vector  

The initial attack vector was likely email, as on March 18, 2024, Darktrace observed a user device making several connections to the email provider “zixmail[.]net”, shortly before it connected to the first suspicious domain. Darktrace/Email identified multiple unusual inbound emails from an unknown sender that contained a suspicious link. Darktrace recognized these emails as potentially malicious and locked the link, ensuring that recipients could not directly click it.

Figure 1: Suspected initial compromise email from an unknown sender, containing a suspicious link, which was locked by Darktrace/Email.

2. Escalation to Network

Later that day, despite Darktrace/Email having locked the link in the suspicious email, the user proceeded to click on it and was directed to a suspicious external location, namely “rz8js7sjbef[.]latovafineart[.]life”, which triggered the Darktrace/Network DETECT model “Suspicious Domain”. Darktrace/Email was able to identify that this domain had only been registered 4 days before this activity and was hosted on an IP address based in the Netherlands, 193.222.96[.]9.

3. SaaS Account Hijack

Just one minute later, Darktrace/Apps observed the user’s Microsoft 365 account logging into the network from the same IP address. Darktrace understood that this represented unusual SaaS activity for this user, who had only previously logged into the customer’s SaaS environment from the US, triggering the “Unusual External Source for SaaS Credential Use” model.

4. SaaS Account Updates

A day later, Darktrace identified an unusual administrative change on the user’s Microsoft 365 account. After logging into the account, the threat actor was observed setting up a new multi-factor authentication (MFA) method on Microsoft Authenticator, namely requiring a 6-digit code to authenticate. Darktrace understood that this authentication method was different to the methods previously used on this account; this, coupled with the unusual login location, triggered the “Unusual Login and Account Update” DETECT model.

5. Obfuscation Email Rule

On March 20, Darktrace detected the threat actor creating a new email rule, named “…”, on the affected account. Attackers are typically known to use ambiguous or obscure names when creating new email rules in order to evade the detection of security teams and endpoints users.

The parameters for the email rule were:

“AlwaysDeleteOutlookRulesBlob: False, Force: False, MoveToFolder: RSS Feeds, Name: ..., MarkAsRead: True, StopProcessingRules: True.”

This rule was seemingly created with the intention of obfuscating the sending of malicious emails, as the rule would move sent emails to the "RSS Feeds” folder, a commonly used tactic by attackers as the folder is often left unchecked by endpoint users. Interestingly, Darktrace identified that, despite the initial unusual login coming from the Netherlands, the email rule was created from a different destination IP, indicating that the attacker was using a Virtual Private Network (VPN) after gaining a foothold in the network.

Hijacked SaaS account making an anomalous login from the unusual Netherlands-based IP, before creating a new email rule.
Figure 2: Hijacked SaaS account making an anomalous login from the unusual Netherlands-based IP, before creating a new email rule.

6. Outbound Phishing Emails Sent

Later that day, the attacker was observed using the compromised customer account to send out numerous phishing emails to both internal and external recipients. Darktrace/Email detected a significant spike in inbound emails on the compromised account, with the account receiving bounce back emails or replies in response to the phishing emails. Darktrace further identified that the phishing emails contained a malicious DocSend link hidden behind the text “Click Here”, falsely claiming to be a link to the presentation platform Prezi.

Figure 3: Darktrace/Email detected that the DocSend link displayed via text “Click Here”, was embedded in a Prezi link.
Figure 3: Darktrace/Email detected that the DocSend link displayed via text “Click Here”, was embedded in a Prezi link.

7. Suspicious Domains and Redirects

After the phishing emails were sent, multiple other internal users accessed the DocSend link, which directed them to another suspicious domain, “thecalebgroup[.]top”, which had been registered on the same day and was hosted on the aforementioned Netherlands-based IP, 193.222.96[.]91. At the time of the attack, this domain had not been reported by any open-source intelligence (OSINT), but it has since been flagged as malicious by multiple vendors [2].

External Sites Summary showing the suspicious domain that had never previously been seen on the network. A total of 11 “Suspicious Domain” models were triggered in response to this activity.
Figure 4: External Sites Summary showing the suspicious domain that had never previously been seen on the network. A total of 11 “Suspicious Domain” models were triggered in response to this activity.  

8. Cyber AI Analyst’s Investigation

As this attack was unfolding, Darktrace’s Cyber AI Analyst was able to autonomously investigate the events, correlating them into one wider incident and continually adding a total of 14 new events to the incident as more users fell victim to the phishing links.

Cyber AI Analyst successfully weaved together the initial suspicious domain accessed in the initial email attack vector (Figure 5), the hijack of the SaaS account from the Netherlands IP (Figure 6), and the connection to the suspicious redirect link (Figure 7). Cyber AI Analyst was also able to uncover other related activity that took place at the time, including a potential attempt to exfiltrate data out of the customer’s network.

By autonomously analyzing the thousands of connections taking place on a network at any given time, Darktrace’s Cyber AI Analyst is able to detect seemingly separate anomalous events and link them together in one incident. This not only provides organizations with full visibility over potential compromises on their networks, but also saves their security teams precious time ensuring they can quickly scope out the ongoing incident and begin remediation.

Figure 5: Cyber AI Analyst correlated the attack’s sequence, starting with the initial suspicious domain accessed in the initial email attack vector.
Figure 5: Cyber AI Analyst correlated the attack’s sequence, starting with the initial suspicious domain accessed in the initial email attack vector.
Figure 6: As the attack progressed, Cyber AI Analyst correlated and appended additional events to the same incident, including the SaaS account hijack from the Netherlands-based IP.
Figure 6: As the attack progressed, Cyber AI Analyst correlated and appended additional events to the same incident, including the SaaS account hijack from the Netherlands-based IP.
Cyber AI Analyst correlated and appended additional events to the same incident, including additional users connecting to the suspicious redirect link following the outbound phishing emails being sent.
Figure 7: Cyber AI Analyst correlated and appended additional events to the same incident, including additional users connecting to the suspicious redirect link following the outbound phishing emails being sent.

Conclusion

In this scenario, Darktrace demonstrated its ability to detect and correlate suspicious activities across three critical areas of a customer’s digital environment: email, SaaS, and network.

It is essential that cyber defenders not only adopt AI but use a combination of AI technology capable of learning and understanding the context of an organization’s entire digital infrastructure. Darktrace’s anomaly-based approach to threat detection allows it to identify subtle deviations from the expected behavior in network devices and SaaS users, indicating potential compromise. Meanwhile, Cyber AI Analyst dynamically correlates related events during an ongoing attack, providing organizations and their security teams with the information needed to respond and remediate effectively.

Credit to Zoe Tilsiter, Analyst Consulting Lead (EMEA), Brianna Leddy, Director of Analysis

Appendices

References

[1] https://darktrace.com/state-of-ai-cyber-security

[2] https://www.virustotal.com/gui/domain/thecalebgroup.top

Darktrace DETECT Model Coverage

SaaS Models

- SaaS / Access / Unusual External Source for SaaS Credential Use

- SaaS / Compromise / Unusual Login and Account Update

- SaaS / Compliance / Anomalous New Email Rule

- SaaS / Compromise / Unusual Login and New Email Rule

Network Models

- Device / Suspicious Domain

- Multiple Device Correlations / Multiple Devices Breaching Same Model

Cyber AI Analyst Incidents

- Possible Hijack of Office365 Account

- Possible SSL Command and Control

Indicators of Compromise (IoCs)

IoC – Type – Description

193.222.96[.]91 – IP – Unusual Login Source

thecalebgroup[.]top – Domain – Possible C2 Endpoint

rz8js7sjbef[.]latovafineart[.]life – Domain – Possible C2 Endpoint

https://docsend[.]com/view/vcdmsmjcskw69jh9 - Domain - Phishing Link

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst

More in this series

No items found.

Blog

/

Compliance

/

November 25, 2025

UK Cyber Security & Resilience Bill: What Organizations Need to Know

Default blog imageDefault blog image

Why the Bill has been introduced

The UK’s cyber threat landscape has evolved dramatically since the 2018 NIS regime was introduced. Incidents such as the Synnovis attack against hospitals and the British Library ransomware attack show how quickly operational risk can become public harm. In this context, the UK Department for Science, Innovation and Technology estimates that cyber-attacks cost UK businesses around £14.7 billion each year.

At the same time, the widespread adoption of AI has expanded organisations’ attack surfaces and empowered threat actors to launch more effective and sophisticated activities, including crafting convincing phishing campaigns, exploiting vulnerabilities and initiating ransomware attacks at unprecedented speed and scale.  

The CSRB responds to these challenges by widening who is regulated, accelerating incident reporting and tightening supply chain accountability, while enabling rapid updates that keep pace with technology and emerging risks.

Key provisions of the Cyber Security and Resilience Bill

A wider set of organisations in scope

The Bill significantly broadens the range of organisations regulated under the NIS framework.

  • Managed service providers (MSPs) - medium and large MSPs, including MSSPs, managed SOCs, SIEM providers and similar services,will now fall under NIS obligations due to their systemic importance and privileged access to client systems. The Information Commissioner’s Office (ICO) will act as the regulator. Government analysis anticipates that a further 900 to 1,100 MSPs will be in scope.
  • Data infrastructure is now recognised as essential to the functioning of the economy and public services. Medium and large data centres, as well as enterprise facilities meeting specified thresholds, will be required to implement appropriate and proportionate measures to manage cyber risk. Oversight will be shared between DSIT and Ofcom, with Ofcom serving as the operational regulator.
  • Organisations that manage electrical loads for smart appliances, such as those supporting EV charging during peak times, are now within scope.

These additions sit alongside existing NIS-regulated sectors such as transport, energy, water, health, digital infrastructure, and certain digital services (including online marketplaces, search engines, and cloud computing).

Stronger supply chain requirements

Under the CSRB, regulators can now designate third-party suppliers as ‘designated critical suppliers’ (DCS) when certain threshold criteria are met and where disruption could have significant knock-on effects. Designated suppliers will be subject to the same security and incident-reporting obligations as Operators of Essential Services (OES) and Relevant Digital Service Providers (RDSPs).

Government will scope the supply chain duties for OES and RDSPs via secondary legislation, following consultation. infrastructure incidents where a single supplier’s compromise caused widespread disruption.

Faster incident reporting

Sector-specific regulators, 12 in total, will be responsible for implementing the CSRB, allowing for more effective and consistent reporting. In addition, the CSRB introduces a two-stage reporting process and expands incident reporting criteria. Regulated entities must submit an initial notification within 24 hours of becoming aware of a significant incident, followed by an incident report within 72 hours. Incident reporting criteria are also broadened to capture incidents beyond those which actually resulted in an interruption, ensuring earlier visibility for regulators and the National Cyber Security Centre (NCSC). The importance of information sharing across agencies, law enforcement and regulators is also facilitated by the CSRB.

The reforms also require data centres and managed service providers to notify affected customers where they are likely to have been impacted by a cyber incident.

An agile regulatory framework

To keep pace with technological change, the CSRB will enable the Secretary of State to update elements of the framework via secondary legislation. Supporting materials such as the NCSC Cyber Assessment Framework (CAF) are to be "put on a stronger footing” allowing for requirements to be more easily followed, managed and updated. Regulators will also now be able to recover full costs associated with NIS duties meaning they are better resourced to carry out their associated responsibilities.

Relevant Managed Service Providers must identify and take appropriate and proportionate measures to manage risks to the systems they rely on for providing services within the UK. Importantly, these measures must, having regard to the state of the art, ensure a level of security appropriate to the risk posed, and prevent or minimise the impact of incidents.

The Secretary of State will also be empowered to issue a Statement of Strategic Priorities, setting cross-regime outcomes to drive consistency across the 12 competent authorities responsible for implementation.

Penalties

The enforcement framework will be strengthened, with maximum fines aligned with comparable regimes such as the GDPR, which incorporate maximums tied to turnover. Under the CSRB, maximum penalties for more serious breaches could be up to £17 million or 4% of global turnover, whichever is higher.

Next steps

The Bill is expected to progress through Parliament over the course of 2025 and early 2026, with Royal Assent anticipated in 2026. Once enacted, most operational measures will not take immediate effect. Instead, Government will bring key components into force through secondary legislation following further consultation, providing regulators and industry with time to adjust practices and prepare for compliance.

Anticipated timeline

  • 2025-2026: Parliamentary scrutiny and passage;
  • 2026: Royal Assent;  
  • 2026 consultation: DSIT intends to consult on detailed implementation;
  • From 2026 onwards: Phased implementation via secondary legislation, following further consultation led by DSIT.

How Darktrace can help

The CSRB represents a step change in how the UK approaches digital risk, shifting the focus from compliance to resilience.

Darktrace can help organisations operationalise this shift by using AI to detect, investigate and respond to emerging threats at machine speed, before they escalate into incidents requiring regulatory notification. Proactive tools which can be included in the Darktrace platform allow security teams to stress-test defences, map supply chain exposure and rehearse recovery scenarios, directly supporting the CSRB’s focus on resilience, transparency and rapid response. If an incident does occur, Darktrace’s autonomous agent, Cyber AI Analyst, can accelerate investigations and provide a view of every stage of the attack chain, supporting timely reporting.  

Darktrace’s AI can provide organisations with a vital lens into both internal and external cyber risk. By continuously learning patterns of behaviour across interconnected systems, Darktrace can flag potential compromise or disruption to detect supply chain risk before it impacts your organisation.

In a landscape where compliance and resilience go hand in hand, Darktrace can equip organisations to stay ahead of both evolving threats and evolving regulatory requirements.

[related-resource]

Continue reading
About the author
The Darktrace Community

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI