Blog
/
/
May 18, 2021

The Dangers of Double Extortion Ransomware Attacks

Learn about the latest trend in ransomware attacks known as double extortion. Discover how Darktrace can help protect your organization from this threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
May 2021

A year and a half ago, ‘double extortion’ ransomware was being used by only one known threat actor. Now, over 16 ransomware groups actively utilize this tactic. So, what is it, and why has it become so popular?

What is double extortion ransomware?

The traditional story of ransomware was one of malicious code rapidly encrypting files with public-key RSA encryption, and then deleting those files if the victim did not pay the ransom.

However, after the infamous WannaCry and NotPetya ransomware campaigns over 2017, companies ramped up their cyber defense. More emphasis was placed on backups and restoration processes, so that even if files were destroyed, organizations had copies in place and could easily restore their data.

Yet in turn, cyber-criminals have also adapted their techniques. Now, rather than just encrypting files, double extortion ransomware exfiltrates the data first. This means that if the company refuses to pay up, information can be leaked online or sold to the highest bidder. Suddenly, all those backups and data recovery plans became worthless.

Maze ransomware and friends

In late 2019, Maze ransomware emerged as the first high-profile case of double extortion. Other strains soon followed, with the Sodinokibi attack — which crippled foreign exchange company Travelex — occurring on the final day of that year.

By mid-2020, hundreds of organizations were falling victim to double extortion attacks, various websites on the dark net were leaking company data, and the Ransomware-as-a-Service business was booming as developers sold and rented new types of malware.

Furthermore, cyber security regulations started being weaponized by cyber-criminals who could leverage the threat of having to pay a hefty compliance fine (CCPA, GDPR, NYSDFS regulations) to encourage their victims to keep quiet by offering them a ransom smaller than the penalty fee.

There were 1,200 double extortion ransomware incidents in 2020, across 63 countries, with over 60% of these aimed at the US and the UK.

Despite new legislation being written regularly to try and mitigate these attacks, they aren’t slowing down. According to a recent study by RUSI, there were 1,200 double extortion ransomware incidents in 2020 alone, across 63 different countries. 60% of these were aimed at organizations headquartered in the US, and the UK suffered the second highest number of breaches.

Last month, the cyber-criminal gang known as REvil released details about Apple’s new Macbook Pro on their site ‘Happy Blog’, threatening to release more blueprints and demanding a ransom of $50 million. And last week, Colonial Pipeline purportedly paid $5 million in bitcoin to recover from a devastating OT ransomware attack.

Anatomy of a double extortion ransomware attack

Darktrace has detected a huge upsurge in double extortion ransomware threats in the last year, most recently at an energy company based in Canada. The hackers had clearly done their homework, tailoring the attack to the company and moving quickly and stealthily once inside. Below is a timeline of this real-world incident, which was mostly carried out in the space of 24 hours.

Figure 1: A timeline of the attack

Darktrace detected every stage of the intrusion and notified the security team with high-priority alerts. If Darktrace Antigena had been active in the environment, the compromised server would have been isolated as soon as it began to behave anomalously, preventing the infection from spreading.

Encryption and exfiltration

The initial infection vector is not known, but the admin account was compromised most likely from a phishing link or a vulnerability exploit. This is indicative of a trend away from the widespread ‘spray and pray’ ransomware campaigns of the last decade, towards a more targeted approach.

Cyber AI identified an internal server engaging in unusual network scanning and attempted lateral movement using the Remote Desktop Protocol (RDP). Compromised admin credentials were used to spread rapidly from the server to another internal device, ‘serverps’.

The device ‘serverps’ initiated an outbound connection to TeamViewer, a legitimate file storage service, which was active for nearly 21 hours. This connection was used for remote control of the device and to facilitate the further stages of attack. Although TeamViewer was not in wide operation in the company’s digital environment, it was not blocked by any of the legacy defenses.

The device then connected to an internal file server and downloaded 1.95 TB of data, and uploaded the same volume of data to pcloud[.]com. This exfiltration took place during work hours to blend in with regular admin activity.

The device was also seen downloading Rclone software – an open source tool, which was likely applied to sync data automatically to the legitimate file storage service pCloud.

The compromised admin credential allowed the threat actor to move laterally during this time. Following the completion of the data exfiltration, the device ‘serverps’ finally began encrypting files on 12 devices with the extension *.06d79000.

As with the majority of ransomware incidents, the encryption happened outside of office hours – overnight in local time – to minimize the chance of the security team responding quickly.

AI-powered investigation

Cyber AI Analyst reported on four incidents related to the attack, highlighting the suspicious behavior to the security team and providing a report on the affected devices for immediate remediation. Such concise reporting allowed the security team to quickly identify the scope of the infection and respond accordingly.

Figure 2: Cyber AI Analyst incident tray for a week

Cyber AI Analyst investigates on demand

Following further analysis on March 13, the security team employed Cyber AI Analyst to conduct on-demand investigations into the compromised admin credential in Microsoft 365, as well as another device which was identified as a potential threat.

Cyber AI Analyst created an incident for this other device, which resulted in the identification of unusual port scanning during the time period of infection. The device was promptly removed from the network.

Figure 3: Cyber AI Analyst incident for a compromised device, detailing an unusual internal download

Double trouble

The use of legitimate tools and ‘Living off the Land’ techniques (using RDP and a compromised admin credential) allowed the threat actors to carry out the bulk of the attack in less than 24 hours. By exploiting TeamViewer as a legitimate file storage solution for the data exfiltration, as opposed to relying on a known ‘bad’ or recently registered domain, the hackers easily circumvented all the existing signature-based defenses.

If Darktrace had not detected this intrusion and immediately alerted the security team, the attack could have resulted not only in a ‘denial of business’ with employees locked out of their files, but also in sensitive data loss. The AI went a step further in saving the team vital time with automatic investigation and on-demand reporting.

There is so much more to lose from double extortion ransomware. Exfiltration provides another layer of risk, leading to compromised intellectual property, reputational damage, and compliance fines. Once a threat group has your data, they might easily ask for more payments down the line. It is important therefore to defend against these attacks before they happen, proactively implementing cyber security measures that can detect and autonomously respond to threats as soon as they emerge.

Learn more about double extortion ransomware.

Darktrace model detections:

  • Device / Suspicious Network Scan Activity
  • Device / RDP Scan
  • Device / Network Scan
  • Anomalous Connection / Unusual Admin SMB Session
  • Anomalous Connection / Unusual Admin RDP Session
  • Device / Multiple Lateral Movement Model Breaches
  • User / New Admin Credentials on Client
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Low and Slow Exfiltration
  • Device / Anomalous SMB Followed By Multiple Model
  • Anomalous Connection / Download and Upload
  • Anomalous Connection / Suspicious Activity On High Risk Device
  • Anomalous File / Internal::Additional Extension Appended to SMB File
  • Compromise / Ransomware::Suspicious SMB Activity
  • Anomalous Connection / Sustained MIME Type Conversion
  • Device / Anomalous RDP Followed By Multiple Model Breaches
  • Anomalous Connection / Suspicious Read Write Ratio
  • Device / Large Number of Model Breaches
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations

More in this series

No items found.

Blog

/

AI

/

July 17, 2025

Introducing the AI Maturity Model for Cybersecurity

AI maturity model for cybersecurityDefault blog imageDefault blog image

AI adoption in cybersecurity: Beyond the hype

Security operations today face a paradox. On one hand, artificial intelligence (AI) promises sweeping transformation from automating routine tasks to augmenting threat detection and response. On the other hand, security leaders are under immense pressure to separate meaningful innovation from vendor hype.

To help CISOs and security teams navigate this landscape, we’ve developed the most in-depth and actionable AI Maturity Model in the industry. Built in collaboration with AI and cybersecurity experts, this framework provides a structured path to understanding, measuring, and advancing AI adoption across the security lifecycle.

Overview of AI maturity levels in cybersecurity

Why a maturity model? And why now?

In our conversations and research with security leaders, a recurring theme has emerged:

There’s no shortage of AI solutions, but there is a shortage of clarity and understanding of AI uses cases.

In fact, Gartner estimates that “by 2027, over 40% of Agentic AI projects will be canceled due to escalating costs, unclear business value, or inadequate risk controls. Teams are experimenting, but many aren’t seeing meaningful outcomes. The need for a standardized way to evaluate progress and make informed investments has never been greater.

That’s why we created the AI Security Maturity Model, a strategic framework that:

  • Defines five clear levels of AI maturity, from manual processes (L0) to full AI Delegation (L4)
  • Delineating the outcomes derived between Agentic GenAI and Specialized AI Agent Systems
  • Applies across core functions such as risk management, threat detection, alert triage, and incident response
  • Links AI maturity to real-world outcomes like reduced risk, improved efficiency, and scalable operations

[related-resource]

How is maturity assessed in this model?

The AI Maturity Model for Cybersecurity is grounded in operational insights from nearly 10,000 global deployments of Darktrace's Self-Learning AI and Cyber AI Analyst. Rather than relying on abstract theory or vendor benchmarks, the model reflects what security teams are actually doing, where AI is being adopted, how it's being used, and what outcomes it’s delivering.

This real-world foundation allows the model to offer a practical, experience-based view of AI maturity. It helps teams assess their current state and identify realistic next steps based on how organizations like theirs are evolving.

Why Darktrace?

AI has been central to Darktrace’s mission since its inception in 2013, not just as a feature, but the foundation. With over a decade of experience building and deploying AI in real-world security environments, we’ve learned where it works, where it doesn’t, and how to get the most value from it. This model reflects that insight, helping security leaders find the right path forward for their people, processes, and tools

Security teams today are asking big, important questions:

  • What should we actually use AI for?
  • How are other teams using it — and what’s working?
  • What are vendors offering, and what’s just hype?
  • Will AI ever replace people in the SOC?

These questions are valid, and they’re not always easy to answer. That’s why we created this model: to help security leaders move past buzzwords and build a clear, realistic plan for applying AI across the SOC.

The structure: From experimentation to autonomy

The model outlines five levels of maturity :

L0 – Manual Operations: Processes are mostly manual with limited automation of some tasks.

L1 – Automation Rules: Manually maintained or externally-sourced automation rules and logic are used wherever possible.

L2 – AI Assistance: AI assists research but is not trusted to make good decisions. This includes GenAI agents requiring manual oversight for errors.

L3 – AI Collaboration: Specialized cybersecurity AI agent systems  with business technology context are trusted with specific tasks and decisions. GenAI has limited uses where errors are acceptable.

L4 – AI Delegation: Specialized AI agent systems with far wider business operations and impact context perform most cybersecurity tasks and decisions independently, with only high-level oversight needed.

Each level reflects a shift, not only in technology, but in people and processes. As AI matures, analysts evolve from executors to strategic overseers.

Strategic benefits for security leaders

The maturity model isn’t just about technology adoption it’s about aligning AI investments with measurable operational outcomes. Here’s what it enables:

SOC fatigue is real, and AI can help

Most teams still struggle with alert volume, investigation delays, and reactive processes. AI adoption is inconsistent and often siloed. When integrated well, AI can make a meaningful difference in making security teams more effective

GenAI is error prone, requiring strong human oversight

While there is a lot of hype around GenAI agentic systems, teams will need to account for inaccuracy and hallucination in Agentic GenAI systems.

AI’s real value lies in progression

The biggest gains don’t come from isolated use cases, but from integrating AI across the lifecycle, from preparation through detection to containment and recovery.

Trust and oversight are key initially but evolves in later levels

Early-stage adoption keeps humans fully in control. By L3 and L4, AI systems act independently within defined bounds, freeing humans for strategic oversight.

People’s roles shift meaningfully

As AI matures, analyst roles consolidate and elevate from labor intensive task execution to high-value decision-making, focusing on critical, high business impact activities, improving processes and AI governance.

Outcome, not hype, defines maturity

AI maturity isn’t about tech presence, it’s about measurable impact on risk reduction, response time, and operational resilience.

[related-resource]

Outcomes across the AI Security Maturity Model

The Security Organization experiences an evolution of cybersecurity outcomes as teams progress from manual operations to AI delegation. Each level represents a step-change in efficiency, accuracy, and strategic value.

L0 – Manual Operations

At this stage, analysts manually handle triage, investigation, patching, and reporting manually using basic, non-automated tools. The result is reactive, labor-intensive operations where most alerts go uninvestigated and risk management remains inconsistent.

L1 – Automation Rules

At this stage, analysts manage rule-based automation tools like SOAR and XDR, which offer some efficiency gains but still require constant tuning. Operations remain constrained by human bandwidth and predefined workflows.

L2 – AI Assistance

At this stage, AI assists with research, summarization, and triage, reducing analyst workload but requiring close oversight due to potential errors. Detection improves, but trust in autonomous decision-making remains limited.

L3 – AI Collaboration

At this stage, AI performs full investigations and recommends actions, while analysts focus on high-risk decisions and refining detection strategies. Purpose-built agentic AI systems with business context are trusted with specific tasks, improving precision and prioritization.

L4 – AI Delegation

At this stage, Specialized AI Agent Systems performs most security tasks independently at machine speed, while human teams provide high-level strategic oversight. This means the highest time and effort commitment activities by the human security team is focused on proactive activities while AI handles routine cybersecurity tasks

Specialized AI Agent Systems operate with deep business context including impact context to drive fast, effective decisions.

Join the webinar

Get a look at the minds shaping this model by joining our upcoming webinar using this link. We’ll walk through real use cases, share lessons learned from the field, and show how security teams are navigating the path to operational AI safely, strategically, and successfully.

Continue reading
About the author
Ashanka Iddya
Senior Director, Product Marketing

Blog

/

Cloud

/

July 17, 2025

Forensics or Fauxrensics: Five Core Capabilities for Cloud Forensics and Incident Response

people working and walking in officeDefault blog imageDefault blog image

The speed and scale at which new cloud resources can be spun up has resulted in uncontrolled deployments, misconfigurations, and security risks. It has had security teams racing to secure their business’ rapid migration from traditional on-premises environments to the cloud.

While many organizations have successfully extended their prevention and detection capabilities to the cloud, they are now experiencing another major gap: forensics and incident response.

Once something bad has been identified, understanding its true scope and impact is nearly impossible at times. The proliferation of cloud resources across a multitude of cloud providers, and the addition of container and serverless capabilities all add to the complexities. It’s clear that organizations need a better way to manage cloud incident response.

Security teams are looking to move past their homegrown solutions and open-source tools to incorporate real cloud forensics capabilities. However, with the increased buzz around cloud forensics, it can be challenging to decipher what is real cloud forensics, and what is “fauxrensics.”

This blog covers the five core capabilities that security teams should consider when evaluating a cloud forensics and incident response solution.

[related-resource]

1. Depth of data

There have been many conversations among the security community about whether cloud forensics is just log analysis. The reality, however, is that cloud forensics necessitates access to a robust dataset that extends far beyond traditional log data sources.

While logs provide valuable insights, a forensics investigation demands a deeper understanding derived from multiple data sources, including disk, network, and memory, within the cloud infrastructure. Full disk analysis complements log analysis, offering crucial context for identifying the root cause and scope of an incident.

For instance, when investigating an incident involving a Kubernetes cluster running on an EC2 instance, access to bash history can provide insights into the commands executed by attackers on the affected instance, which would not be available through cloud logs alone.

Having all of the evidence in one place is also a capability that can significantly streamline investigations, unifying your evidence be it disk images, memory captures or cloud logs, into a single timeline allowing security teams to reconstruct an attacks origin, path and impact far more easily. Multi–cloud environments also require platforms that can support aggregating data from many providers and services into one place. Doing this enables more holistic investigations and reduces security blind spots.

There is also the importance of collecting data from ephemeral resources in modern cloud and containerized environments. Critical evidence can be lost in seconds as resources are constantly spinning up and down, so having the ability to capture this data before its gone can be a huge advantage to security teams, rather than having to figure out what happened after the affected service is long gone.

darktrace / cloud, cado, cloud logs, ost, and memory information. value of cloud combined analysis

2. Chain of custody

Chain of custody is extremely critical in the context of legal proceedings and is an essential component of forensics and incident response. However, chain of custody in the cloud can be extremely complex with the number of people who have access and the rise of multi-cloud environments.

In the cloud, maintaining a reliable chain of custody becomes even more complex than it already is, due to having to account for multiple access points, service providers and third parties. Having automated evidence tracking is a must. It means that all actions are logged, from collection to storage to access. Automation also minimizes the chance of human error, reducing the risk of mistakes or gaps in evidence handling, especially in high pressure fast moving investigations.

The ability to preserve unaltered copies of forensic evidence in a secure manner is required to ensure integrity throughout an investigation. It is not just a technical concern, its a legal one, ensuring that your evidence handling is documented and time stamped allows it to stand up to court or regulatory review.

Real cloud forensics platforms should autonomously handle chain of custody in the background, recording and safeguarding evidence without human intervention.

3. Automated collection and isolation

When malicious activity is detected, the speed at which security teams can determine root cause and scope is essential to reducing Mean Time to Response (MTTR).

Automated forensic data collection and system isolation ensures that evidence is collected and compromised resources are isolated at the first sign of malicious activity. This can often be before an attacker has had the change to move latterly or cover their tracks. This enables security teams to prevent potential damage and spread while a deeper-dive forensics investigation takes place. This method also ensures critical incident evidence residing in ephemeral environments is preserved in the event it is needed for an investigation. This evidence may only exist for minutes, leaving no time for a human analyst to capture it.

Cloud forensics and incident response platforms should offer the ability to natively integrate with incident detection and alerting systems and/or built-in product automation rules to trigger evidence capture and resource isolation.

4. Ease of use

Security teams shouldn’t require deep cloud or incident response knowledge to perform forensic investigations of cloud resources. They already have enough on their plates.

While traditional forensics tools and approaches have made investigation and response extremely tedious and complex, modern forensics platforms prioritize usability at their core, and leverage automation to drastically simplify the end-to-end incident response process, even when an incident spans multiple Cloud Service Providers (CSPs).

Useability is a core requirement for any modern forensics platform. Security teams should not need to have indepth knowledge of every system and resource in a given estate. Workflows, automation and guidance should make it possible for an analyst to investigate whatever resource they need to.

Unifying the workflow across multiple clouds can also save security teams a huge amount of time and resources. Investigations can often span multiple CSP’s. A good security platform should provide a single place to search, correlate and analyze evidence across all environments.

Offering features such as cross cloud support, data enrichment, a single timeline view, saved search, and faceted search can help advanced analysts achieve greater efficiency, and novice analysts are able to participate in more complex investigations.

5. Incident preparedness

Incident response shouldn't just be reactive. Modern security teams need to regularly test their ability to acquire new evidence, triage assets and respond to threats across both new and existing resources, ensuring readiness even in the rapidly changing environments of the cloud.  Having the ability to continuously assess your incident response and forensics workflows enables you to rapidly improve your processes and identify and mitigate any gaps identified that could prevent the organization from being able to effectively respond to potential threats.

Real forensics platforms deliver features that enable security teams to prepare extensively and understand their shortcomings before they are in the heat of an incident. For example, cloud forensics platforms can provide the ability to:

  • Run readiness checks and see readiness trends over time
  • Identify and mitigate issues that could prevent rapid investigation and response
  • Ensure the correct logging, management agents, and other cloud-native tools are appropriately configured and operational
  • Ensure that data gathered during an investigation can be decrypted
  • Verify that permissions are aligned with best practices and are capable of supporting incident response efforts

Cloud forensics with Darktrace

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage. Darktrace / CLOUD is a real time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

[related-resource]

Continue reading
About the author
Calum Hall
Technical Content Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI