Blog
/
/
May 18, 2021

The Dangers of Double Extortion Ransomware Attacks

Learn about the latest trend in ransomware attacks known as double extortion. Discover how Darktrace can help protect your organization from this threat.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
May 2021

A year and a half ago, ‘double extortion’ ransomware was being used by only one known threat actor. Now, over 16 ransomware groups actively utilize this tactic. So, what is it, and why has it become so popular?

What is double extortion ransomware?

The traditional story of ransomware was one of malicious code rapidly encrypting files with public-key RSA encryption, and then deleting those files if the victim did not pay the ransom.

However, after the infamous WannaCry and NotPetya ransomware campaigns over 2017, companies ramped up their cyber defense. More emphasis was placed on backups and restoration processes, so that even if files were destroyed, organizations had copies in place and could easily restore their data.

Yet in turn, cyber-criminals have also adapted their techniques. Now, rather than just encrypting files, double extortion ransomware exfiltrates the data first. This means that if the company refuses to pay up, information can be leaked online or sold to the highest bidder. Suddenly, all those backups and data recovery plans became worthless.

Maze ransomware and friends

In late 2019, Maze ransomware emerged as the first high-profile case of double extortion. Other strains soon followed, with the Sodinokibi attack — which crippled foreign exchange company Travelex — occurring on the final day of that year.

By mid-2020, hundreds of organizations were falling victim to double extortion attacks, various websites on the dark net were leaking company data, and the Ransomware-as-a-Service business was booming as developers sold and rented new types of malware.

Furthermore, cyber security regulations started being weaponized by cyber-criminals who could leverage the threat of having to pay a hefty compliance fine (CCPA, GDPR, NYSDFS regulations) to encourage their victims to keep quiet by offering them a ransom smaller than the penalty fee.

There were 1,200 double extortion ransomware incidents in 2020, across 63 countries, with over 60% of these aimed at the US and the UK.

Despite new legislation being written regularly to try and mitigate these attacks, they aren’t slowing down. According to a recent study by RUSI, there were 1,200 double extortion ransomware incidents in 2020 alone, across 63 different countries. 60% of these were aimed at organizations headquartered in the US, and the UK suffered the second highest number of breaches.

Last month, the cyber-criminal gang known as REvil released details about Apple’s new Macbook Pro on their site ‘Happy Blog’, threatening to release more blueprints and demanding a ransom of $50 million. And last week, Colonial Pipeline purportedly paid $5 million in bitcoin to recover from a devastating OT ransomware attack.

Anatomy of a double extortion ransomware attack

Darktrace has detected a huge upsurge in double extortion ransomware threats in the last year, most recently at an energy company based in Canada. The hackers had clearly done their homework, tailoring the attack to the company and moving quickly and stealthily once inside. Below is a timeline of this real-world incident, which was mostly carried out in the space of 24 hours.

Figure 1: A timeline of the attack

Darktrace detected every stage of the intrusion and notified the security team with high-priority alerts. If Darktrace Antigena had been active in the environment, the compromised server would have been isolated as soon as it began to behave anomalously, preventing the infection from spreading.

Encryption and exfiltration

The initial infection vector is not known, but the admin account was compromised most likely from a phishing link or a vulnerability exploit. This is indicative of a trend away from the widespread ‘spray and pray’ ransomware campaigns of the last decade, towards a more targeted approach.

Cyber AI identified an internal server engaging in unusual network scanning and attempted lateral movement using the Remote Desktop Protocol (RDP). Compromised admin credentials were used to spread rapidly from the server to another internal device, ‘serverps’.

The device ‘serverps’ initiated an outbound connection to TeamViewer, a legitimate file storage service, which was active for nearly 21 hours. This connection was used for remote control of the device and to facilitate the further stages of attack. Although TeamViewer was not in wide operation in the company’s digital environment, it was not blocked by any of the legacy defenses.

The device then connected to an internal file server and downloaded 1.95 TB of data, and uploaded the same volume of data to pcloud[.]com. This exfiltration took place during work hours to blend in with regular admin activity.

The device was also seen downloading Rclone software – an open source tool, which was likely applied to sync data automatically to the legitimate file storage service pCloud.

The compromised admin credential allowed the threat actor to move laterally during this time. Following the completion of the data exfiltration, the device ‘serverps’ finally began encrypting files on 12 devices with the extension *.06d79000.

As with the majority of ransomware incidents, the encryption happened outside of office hours – overnight in local time – to minimize the chance of the security team responding quickly.

AI-powered investigation

Cyber AI Analyst reported on four incidents related to the attack, highlighting the suspicious behavior to the security team and providing a report on the affected devices for immediate remediation. Such concise reporting allowed the security team to quickly identify the scope of the infection and respond accordingly.

Figure 2: Cyber AI Analyst incident tray for a week

Cyber AI Analyst investigates on demand

Following further analysis on March 13, the security team employed Cyber AI Analyst to conduct on-demand investigations into the compromised admin credential in Microsoft 365, as well as another device which was identified as a potential threat.

Cyber AI Analyst created an incident for this other device, which resulted in the identification of unusual port scanning during the time period of infection. The device was promptly removed from the network.

Figure 3: Cyber AI Analyst incident for a compromised device, detailing an unusual internal download

Double trouble

The use of legitimate tools and ‘Living off the Land’ techniques (using RDP and a compromised admin credential) allowed the threat actors to carry out the bulk of the attack in less than 24 hours. By exploiting TeamViewer as a legitimate file storage solution for the data exfiltration, as opposed to relying on a known ‘bad’ or recently registered domain, the hackers easily circumvented all the existing signature-based defenses.

If Darktrace had not detected this intrusion and immediately alerted the security team, the attack could have resulted not only in a ‘denial of business’ with employees locked out of their files, but also in sensitive data loss. The AI went a step further in saving the team vital time with automatic investigation and on-demand reporting.

There is so much more to lose from double extortion ransomware. Exfiltration provides another layer of risk, leading to compromised intellectual property, reputational damage, and compliance fines. Once a threat group has your data, they might easily ask for more payments down the line. It is important therefore to defend against these attacks before they happen, proactively implementing cyber security measures that can detect and autonomously respond to threats as soon as they emerge.

Learn more about double extortion ransomware.

Darktrace model detections:

  • Device / Suspicious Network Scan Activity
  • Device / RDP Scan
  • Device / Network Scan
  • Anomalous Connection / Unusual Admin SMB Session
  • Anomalous Connection / Unusual Admin RDP Session
  • Device / Multiple Lateral Movement Model Breaches
  • User / New Admin Credentials on Client
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Low and Slow Exfiltration
  • Device / Anomalous SMB Followed By Multiple Model
  • Anomalous Connection / Download and Upload
  • Anomalous Connection / Suspicious Activity On High Risk Device
  • Anomalous File / Internal::Additional Extension Appended to SMB File
  • Compromise / Ransomware::Suspicious SMB Activity
  • Anomalous Connection / Sustained MIME Type Conversion
  • Device / Anomalous RDP Followed By Multiple Model Breaches
  • Anomalous Connection / Suspicious Read Write Ratio
  • Device / Large Number of Model Breaches
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI