Blog
/
/
May 18, 2021

The Dangers of Double Extortion Ransomware Attacks

Learn about the latest trend in ransomware attacks known as double extortion. Discover how Darktrace can help protect your organization from this threat.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
May 2021

A year and a half ago, ‘double extortion’ ransomware was being used by only one known threat actor. Now, over 16 ransomware groups actively utilize this tactic. So, what is it, and why has it become so popular?

What is double extortion ransomware?

The traditional story of ransomware was one of malicious code rapidly encrypting files with public-key RSA encryption, and then deleting those files if the victim did not pay the ransom.

However, after the infamous WannaCry and NotPetya ransomware campaigns over 2017, companies ramped up their cyber defense. More emphasis was placed on backups and restoration processes, so that even if files were destroyed, organizations had copies in place and could easily restore their data.

Yet in turn, cyber-criminals have also adapted their techniques. Now, rather than just encrypting files, double extortion ransomware exfiltrates the data first. This means that if the company refuses to pay up, information can be leaked online or sold to the highest bidder. Suddenly, all those backups and data recovery plans became worthless.

Maze ransomware and friends

In late 2019, Maze ransomware emerged as the first high-profile case of double extortion. Other strains soon followed, with the Sodinokibi attack — which crippled foreign exchange company Travelex — occurring on the final day of that year.

By mid-2020, hundreds of organizations were falling victim to double extortion attacks, various websites on the dark net were leaking company data, and the Ransomware-as-a-Service business was booming as developers sold and rented new types of malware.

Furthermore, cyber security regulations started being weaponized by cyber-criminals who could leverage the threat of having to pay a hefty compliance fine (CCPA, GDPR, NYSDFS regulations) to encourage their victims to keep quiet by offering them a ransom smaller than the penalty fee.

There were 1,200 double extortion ransomware incidents in 2020, across 63 countries, with over 60% of these aimed at the US and the UK.

Despite new legislation being written regularly to try and mitigate these attacks, they aren’t slowing down. According to a recent study by RUSI, there were 1,200 double extortion ransomware incidents in 2020 alone, across 63 different countries. 60% of these were aimed at organizations headquartered in the US, and the UK suffered the second highest number of breaches.

Last month, the cyber-criminal gang known as REvil released details about Apple’s new Macbook Pro on their site ‘Happy Blog’, threatening to release more blueprints and demanding a ransom of $50 million. And last week, Colonial Pipeline purportedly paid $5 million in bitcoin to recover from a devastating OT ransomware attack.

Anatomy of a double extortion ransomware attack

Darktrace has detected a huge upsurge in double extortion ransomware threats in the last year, most recently at an energy company based in Canada. The hackers had clearly done their homework, tailoring the attack to the company and moving quickly and stealthily once inside. Below is a timeline of this real-world incident, which was mostly carried out in the space of 24 hours.

Figure 1: A timeline of the attack

Darktrace detected every stage of the intrusion and notified the security team with high-priority alerts. If Darktrace Antigena had been active in the environment, the compromised server would have been isolated as soon as it began to behave anomalously, preventing the infection from spreading.

Encryption and exfiltration

The initial infection vector is not known, but the admin account was compromised most likely from a phishing link or a vulnerability exploit. This is indicative of a trend away from the widespread ‘spray and pray’ ransomware campaigns of the last decade, towards a more targeted approach.

Cyber AI identified an internal server engaging in unusual network scanning and attempted lateral movement using the Remote Desktop Protocol (RDP). Compromised admin credentials were used to spread rapidly from the server to another internal device, ‘serverps’.

The device ‘serverps’ initiated an outbound connection to TeamViewer, a legitimate file storage service, which was active for nearly 21 hours. This connection was used for remote control of the device and to facilitate the further stages of attack. Although TeamViewer was not in wide operation in the company’s digital environment, it was not blocked by any of the legacy defenses.

The device then connected to an internal file server and downloaded 1.95 TB of data, and uploaded the same volume of data to pcloud[.]com. This exfiltration took place during work hours to blend in with regular admin activity.

The device was also seen downloading Rclone software – an open source tool, which was likely applied to sync data automatically to the legitimate file storage service pCloud.

The compromised admin credential allowed the threat actor to move laterally during this time. Following the completion of the data exfiltration, the device ‘serverps’ finally began encrypting files on 12 devices with the extension *.06d79000.

As with the majority of ransomware incidents, the encryption happened outside of office hours – overnight in local time – to minimize the chance of the security team responding quickly.

AI-powered investigation

Cyber AI Analyst reported on four incidents related to the attack, highlighting the suspicious behavior to the security team and providing a report on the affected devices for immediate remediation. Such concise reporting allowed the security team to quickly identify the scope of the infection and respond accordingly.

Figure 2: Cyber AI Analyst incident tray for a week

Cyber AI Analyst investigates on demand

Following further analysis on March 13, the security team employed Cyber AI Analyst to conduct on-demand investigations into the compromised admin credential in Microsoft 365, as well as another device which was identified as a potential threat.

Cyber AI Analyst created an incident for this other device, which resulted in the identification of unusual port scanning during the time period of infection. The device was promptly removed from the network.

Figure 3: Cyber AI Analyst incident for a compromised device, detailing an unusual internal download

Double trouble

The use of legitimate tools and ‘Living off the Land’ techniques (using RDP and a compromised admin credential) allowed the threat actors to carry out the bulk of the attack in less than 24 hours. By exploiting TeamViewer as a legitimate file storage solution for the data exfiltration, as opposed to relying on a known ‘bad’ or recently registered domain, the hackers easily circumvented all the existing signature-based defenses.

If Darktrace had not detected this intrusion and immediately alerted the security team, the attack could have resulted not only in a ‘denial of business’ with employees locked out of their files, but also in sensitive data loss. The AI went a step further in saving the team vital time with automatic investigation and on-demand reporting.

There is so much more to lose from double extortion ransomware. Exfiltration provides another layer of risk, leading to compromised intellectual property, reputational damage, and compliance fines. Once a threat group has your data, they might easily ask for more payments down the line. It is important therefore to defend against these attacks before they happen, proactively implementing cyber security measures that can detect and autonomously respond to threats as soon as they emerge.

Learn more about double extortion ransomware.

Darktrace model detections:

  • Device / Suspicious Network Scan Activity
  • Device / RDP Scan
  • Device / Network Scan
  • Anomalous Connection / Unusual Admin SMB Session
  • Anomalous Connection / Unusual Admin RDP Session
  • Device / Multiple Lateral Movement Model Breaches
  • User / New Admin Credentials on Client
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Low and Slow Exfiltration
  • Device / Anomalous SMB Followed By Multiple Model
  • Anomalous Connection / Download and Upload
  • Anomalous Connection / Suspicious Activity On High Risk Device
  • Anomalous File / Internal::Additional Extension Appended to SMB File
  • Compromise / Ransomware::Suspicious SMB Activity
  • Anomalous Connection / Sustained MIME Type Conversion
  • Device / Anomalous RDP Followed By Multiple Model Breaches
  • Anomalous Connection / Suspicious Read Write Ratio
  • Device / Large Number of Model Breaches
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

Endpoint

/

January 30, 2026

ClearFake: From Fake CAPTCHAs to Blockchain-Driven Payload Retrieval

Default blog imageDefault blog image

What is ClearFake?

As threat actors evolve their techniques to exploit victims and breach target networks, the ClearFake campaign has emerged as a significant illustration of this continued adaptation. ClearFake is a campaign observed using a malicious JavaScript framework deployed on compromised websites, impacting sectors such as e‑commerce, travel, and automotive. First identified in mid‑2023, ClearFake is frequently leveraged to socially engineer victims into installing fake web browser updates.

In ClearFake compromises, victims are steered toward compromised WordPress sites, often positioned by attackers through search engine optimization (SEO) poisoning. Once on the site, users are presented with a fake CAPTCHA. This counterfeit challenge is designed to appear legitimate while enabling the execution of malicious code. When a victim interacts with the CAPTCHA, a PowerShell command containing a download string is retrieved and executed.

Attackers commonly abuse the legitimate Microsoft HTML Application Host (MSHTA) in these operations. Recent campaigns have also incorporated Smart Chain endpoints, such as “bsc-dataseed.binance[.]org,” to obtain configuration code. The primary payload delivered through ClearFake is typically an information stealer, such as Lumma Stealer, enabling credential theft, data exfiltration, and persistent access [1].

Darktrace’s Coverage of ClearFake

Darktrace / ENDPOINT first detected activity likely associated with ClearFake on a single device on over the course of one day on November 18, 2025. The system observed the execution of “mshta.exe,” the legitimate Microsoft HTML Application Host utility. It also noted a repeated process command referencing “weiss.neighb0rrol1[.]ru”, indicating suspicious external activity. Subsequent analysis of this endpoint using open‑source intelligence (OSINT) indicated that it was a malicious, domain generation algorithm (DGA) endpoint [2].

Figure 1: The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.

This activity indicates that mshta.exe was used to contact a remote server, “weiss.neighb0rrol1[.]ru/rpxacc64mshta,” and execute the associated HTA file to initiate the next stage of the attack. OSINT sources have since heavily flagged this server as potentially malicious [3].

The first argument in this process uses the MSHTA utility to execute the HTA file hosted on the remote server. If successful, MSHTA would then run JavaScript or VBScript to launch PowerShell commands used to retrieve malicious payloads, a technique observed in previous ClearFake campaigns. Darktrace also detected unusual activity involving additional Microsoft executables, including “winlogon.exe,” “userinit.exe,” and “explorer.exe.” Although these binaries are legitimate components of the Windows operating system, threat actors can abuse their normal behavior within the Windows login sequence to gain control over user sessions, similar to the misuse of mshta.exe.

EtherHiding cover

Darktrace also identified additional ClearFake‑related activity, specifically a connection to bsc-testnet.drpc[.]org, a legitimate BNB Smart Chain endpoint. This activity was triggered by injected JavaScript on the compromised site www.allstarsuae[.]com, where the script initiated an eth_call POST request to the Smart Chain endpoint.

Figure 2: Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.

EtherHiding is a technique in which threat actors leverage blockchain technology, specifically smart contracts, as part of their malicious infrastructure. Because blockchain is anonymous, decentralized, and highly persistent, it provides threat actors with advantages in evading defensive measures and traditional tracking [4].

In this case, when a user visits a compromised WordPress site, injected base64‑encoded JavaScript retrieved an ABI string, which was then used to load and execute a contract hosted on the BNB Smart Chain.

Figure 3: JavaScript hosted on the compromised site www.allstaruae[.]com.

Conducting malware analysis on this instance, the Base64 decoded into a JavaScript loader. A POST request to bsc-testnet.drpc[.]org was then used to retrieve a hex‑encoded ABI string that loads and executes the contract. The JavaScript also contained hex and Base64‑encoded functions that decoded into additional JavaScript, which attempted to retrieve a payload hosted on GitHub at “github[.]com/PrivateC0de/obf/main/payload.txt.” However, this payload was unavailable at the time of analysis.

Figure 4: Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.

Figure 5: Darktrace’s detection of the executable file and the malicious hostname.

Autonomous Response

As Darktrace’s Autonomous Response capability was enabled on this customer’s network, Darktrace was able to take swift mitigative action to contain the ClearFake‑related activity early, before it could lead to potential payload delivery. The affected device was blocked from making external connections to a number of suspicious endpoints, including 188.114.96[.]6, *.neighb0rrol1[.]ru, and neighb0rrol1[.]ru, ensuring that no further malicious connections could be made and no payloads could be retrieved.

Autonomous Response also acted to prevent the executable mshta.exe from initiating HTA file execution over HTTPS from this endpoint by blocking the attempted connections. Had these files executed successfully, the attack would likely have resulted in the retrieval of an information stealer, such as Lumma Stealer.

Figure 6: Autonomous Response’s intervention against the suspicious connectivity observed.

Conclusion

ClearFake continues to be observed across multiple sectors, but Darktrace remains well‑positioned to counter such threats. Because ClearFake’s end goal is often to deliver malware such as information stealers and malware loaders, early disruption is critical to preventing compromise. Users should remain aware of this activity and vigilant regarding fake CAPTCHA pop‑ups. They should also monitor unusual usage of MSHTA and outbound connections to domains that mimic formats such as “bsc-dataseed.binance[.]org” [1].

In this case, Darktrace was able to contain the attack before it could successfully escalate and execute. The attempted execution of HTA files was detected early, allowing Autonomous Response to intervene, stopping the activity from progressing. As soon as the device began communicating with weiss.neighb0rrol1[.]ru, an Autonomous Response inhibitor triggered and interrupted the connections.

As ClearFake continues to rise, users should stay alert to social engineering techniques, including ClickFix, that rely on deceptive security prompts.

Credit to Vivek Rajan (Senior Cyber Analyst) and Tara Gould (Malware Research Lead)


Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

Process / New Executable Launched

Endpoint / Anomalous Use of Scripting Process

Endpoint / New Suspicious Executable Launched

Endpoint / Process Connection::Unusual Connection from New Process

Autonomous Response Models

Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

List of Indicators of Compromise (IoCs)

  • weiss.neighb0rrol1[.]ru – URL - Malicious Domain
  • 188.114.96[.]6 – IP – Suspicious Domain
  • *.neighb0rrol1[.]ru – URL – Malicious Domain

MITRE Tactics

Initial Access, Drive-by Compromise, T1189

User Execution, Execution, T1204

Software Deployment Tools, Execution and Lateral Movement, T1072

Command and Scripting Interpreter, T1059

System Binary Proxy Execution: MSHTA, T1218.005

References

1.        https://www.kroll.com/en/publications/cyber/rapid-evolution-of-clearfake-delivery

2.        https://www.virustotal.com/gui/domain/weiss.neighb0rrol1.ru

3.        https://www.virustotal.com/gui/file/1f1aabe87e5e93a8fff769bf3614dd559c51c80fc045e11868f3843d9a004d1e/community

4.        https://www.packetlabs.net/posts/etherhiding-a-new-tactic-for-hiding-malware-on-the-blockchain/

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

Network

/

January 30, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

6. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI