Blog
/
/
March 11, 2020

How Darktrace Antigena Email Caught A Fearware Email Attack

Darktrace effectively detects and neutralizes fearware attacks evading gateway security tools. Learn more about how Antigena Email outsmarts cyber-criminals.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Mar 2020

The cyber-criminals behind email attacks are well-researched and highly responsive to human behaviors and emotions, often seeking to evoke a specific reaction by leveraging topical information and current news. It’s therefore no surprise that attackers have attempted to latch onto COVID-19 in their latest effort to convince users to open their emails and click on seemingly benign links.

The latest email trend involves attackers who claim to be from the Center for Disease Control and Prevention, purporting to have emergency information about COVID-19. This is typical of a recent trend we’re calling ‘fearware’: cyber-criminals exploit a collective sense of fear and urgency, and coax users into clicking a malicious attachment or link. While the tactic is common, the actual campaigns contain terms and content that’s unique. There are a few patterns in the emails we’ve seen, but none reliably predictable enough to create hard and fast rules that will stop emails with new wording without causing false positives.

For example, looking for the presence of “CDC” in the email sender would easily fail when the emails begin to use new wording, like “WHO”. We’ve also seen a mismatch of links and their display text – with display text that reads “https://cdc.gov/[random-path]” while the actual link is a completely arbitrary URL. Looking for a pattern match on this would likely lead to false positives and would serve as a weak indicator at best.

The majority of these emails, especially the early ones, passed most of our customers’ existing defenses including Mimecast, Proofpoint, and Microsoft’s ATP, and were approved to be delivered directly to the end user’s inbox. Fortunately, these emails were immediately identified and actioned by Antigena Email, Darktrace’s Autonomous Response technology for the inbox.

Gateways: The Current Approach

Most organizations employ Secure Email Gateways (SEGs), like Mimecast or Proofpoint, which serve as an inline middleman between the email sender and the recipient’s email provider. SEGs have largely just become spam-detection engines, as these emails are obvious to spot when seen at scale. They can identify low-hanging fruit (i.e. emails easily detectable as malicious), but they fail to detect and respond when attacks become personalized or deviate even slightly from previously-seen attacks.

Figure 1: A high-level diagram depicting an Email Secure Gateway’s inline position.

SEGs tend to use lists of ‘known-bad’ IPs, domains, and file hashes to determine an email’s threat level – inherently failing to stop novel attacks when they use IPs, domains, or files which are new and have not yet been triaged or reported as malicious.

When advanced detection methods are used in gateway technologies, such as anomaly detection or machine learning, these are performed after the emails have been delivered, and require significant volumes of near-identical emails to trigger. The end result is very often to take an element from one of these emails and simply deny-list it.

When a SEG can’t make the determination on these factors, they may resort to a technique known as sandboxing, which creates an isolated environment for testing links and attachments seen in emails. Alternatively, they may turn to basic levels of anomaly detection that are inadequate due to their lack of context of data outside of emails. For sandboxing, most advanced threats now typically employ evasion techniques like an activation time that waits until a certain date before executing. When deployed, the sandboxing attempts see a harmless file, not recognizing the sleeping attack waiting within.

Figure 2: This email was registered only 2 hours prior to an email we processed.

Taking a sample COVID-19 email seen in a Darktrace customer’s environment, we saw a mix of domains used in what appears to be an attempt to avoid pattern detection. It would be improbable to have the domains used on a list of ‘known-bad’ domains anywhere at the time of the first email, as it was received a mere two hours after the domain was registered.

Figure 3: While other defenses failed to block these emails, Antigena Email immediately marked them as 100% unusual and held them back from delivery.

Antigena Email sits behind all other defenses, meaning we only see emails when those defenses fail to block a malicious email or deem an email is safe for delivery. In the above COVID-19 case, the first 5 emails were marked by MS ATP with a spam confidence score of 1, indicating Microsoft scanned the email and it was determined to be clean – so Microsoft took no action whatsoever.

The Cat and Mouse Game

Cyber-criminals are permanently in flux, quickly moving to outsmart security teams and bypass current defenses. Recognizing email as the easiest entry point into an organization, they are capitalizing on the inadequate detection of existing tools by mass-producing personalized emails through factory-style systems that machine-research, draft, and send with minimal human interaction.

Domains are cheap, proxies are cheap, and morphing files slightly to change the entire fingerprint of a file is easy – rendering any list of ‘known-bads’ as outdated within seconds.

Cyber AI: The New Approach

A new approach is required that relies on business context and an inside-out understanding of a corporation, rather than analyzing emails in isolation.

An Immune System Approach

Darktrace’s core technology uses AI to detect unusual patterns of behavior in the enterprise. The AI is able to do this successfully by following the human immune system’s core principles: develop an innate sense of ‘self’, and use that understanding to detect abnormal activity indicative of a threat.

In order to identify threats across the entire enterprise, the AI is able to understand normal patterns of behavior beyond just the network. This is crucial when working towards a goal of full business understanding. There’s a clear connection between activity in, for example, a SaaS application and a corresponding network event, or an event in the cloud and a corresponding event elsewhere within the business.

There’s an explicit relationship between what people do on their computers and the emails they send and receive. Having the context that a user has just visited a website before they receive an email from the same domain lends credibility to that email: it’s very common to visit a website, subscribe to a mailing list, and then receive an email within a few minutes. On the contrary, receiving an email from a brand-new sender, containing a link that nobody in the organization has ever been to, lends support to the fact that the link is likely no good and that perhaps the email should be removed from the user’s inbox.

Enterprise-Wide Context

Darktrace’s Antigena Email extends this interplay of data sources to the inbox, providing unique detection capabilities by leveraging full business context to inform email decisions.

The design of Antigena Email provides a fundamental shift in email security – from where the tool sits to how it understands and processes data. Unlike SEGs, which sit inline and process emails only as they first pass through and never again, Antigena Email sits passively, ingesting data that is journaled to it. The technology doesn’t need to wait until a domain is fingerprinted or sandboxed, or until it is associated with a campaign that has a famous name and all the buzz.

Antigena Email extends its unique position of not sitting inline to email re-assessment, processing emails millions of times instead of just once, enabling actions to be taken well after delivery. A seemingly benign email with popular links may become more interesting over time if there’s an event within the enterprise that was determined to have originated via an email, perhaps when a trusted site becomes compromised. While Antigena Network will mitigate the new threat on the network, Antigena Email will neutralize the emails that contain links associated with those found in the original email.

Figure 4: Antigena Email sits passively off email providers, continuously re-assessing and issuing updated actions as new data is introduced.

When an email first arrives, Antigena Email extracts its raw metadata, processes it multiple times at machine speed, and then many millions of times subsequently as new evidence is introduced (typically based on events seen throughout the business). The system corroborates what it is seeing with what it has previously understood to be normal throughout the corporate environment. For example, when domains are extracted from envelope information or links in the email body, they’re compared against the popularity of the domain on the company’s network.

Figure 5: The link above was determined to be 100% rare for the enterprise.

Dissecting the above COVID-19 linked email, we can extract some of the data made available in the Antigena Email user interface to see why Darktrace thought the email was so unusual. The domain in the ‘From’ address is rare, which is supplemental contextual information derived from data across the customer’s entire digital environment, not limited to just email but including network data as well. The emails’ KCE, KCD, and RCE indicate that it was the first time the sender had been seen in any email: there had been no correspondence with the sender in any way, and the email address had never been seen in the body of any email.

Figure 6: KCE, KCD, and RCE scores indicate no sender history with the organization.

Correlating the above, Antigena Email deemed these emails 100% anomalous to the business and immediately removed them from the recipients’ inboxes. The platform did this for the very first email, and every email thereafter – not a single COVID-19-based email got by Antigena Email.

Conclusion

Cyber AI does not distinguish ‘good’ from ‘bad’; rather whether an event is likely to belong or not. The technology looks only to compare data with the learnt patterns of activity in the environment, incorporating the new email (alongside its own scoring of the email) into its understanding of day-to-day context for the organization.

By asking questions like “Does this email appear to belong?” or “Is there an existing relationship between the sender and recipient?”, the AI can accurately discern the threat posed by a given email, and incorporate these findings into future modelling. A model cannot be trained to think just because the corporation received a higher volume of emails from a specific sender, these emails are all of a sudden considered normal for the environment. By weighing human interaction with the emails or domains to make decisions on math-modeling reincorporation, Cyber AI avoids this assumption, unless there’s legitimate correspondence from within the corporation back out to the sender.

The inbox has traditionally been the easiest point of entry into an organization. But the fundamental differences in approach offered by Cyber AI drastically increase Antigena Email’s detection capability when compared with gateway tools. Customers with and without email gateways in place have therefore seen a noticeable curbing of their email problem. In the continuous cat-and-mouse game with their adversaries, security teams augmenting their defenses with Cyber AI are finally regaining the advantage.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

Network

/

July 24, 2025

Untangling the web: Darktrace’s investigation of Scattered Spider’s evolving tactics

man on computer doing work scattered spider cybersecurityDefault blog imageDefault blog image

What is Scattered Spider?

Scattered Spider is a native English-speaking group, also referred to, or closely associated with, aliases such as UNC3944, Octo Tempest and Storm-0875. They are primarily financially motivated with a clear emphasis on leveraging social engineering, SIM swapping attacks, exploiting legitimate tooling as well as using Living-Off-the-Land (LOTL) techniques [1][2].

In recent years, Scattered Spider has been observed employing a shift in tactics, leveraging Ransomware-as-a-Service (RaaS) platforms in their attacks. This adoption reflects a shift toward more scalable attacks with a lower barrier to entry, allowing the group to carry out sophisticated ransomware attacks without the need to develop it themselves.

While RaaS offerings have been available for purchase on the Dark Web for several years, they have continued to grow in popularity, providing threat actors a way to cause significant impact to critical infrastructure and organizations without requiring highly technical capabilities [12].

This blog focuses on the group’s recent changes in tactics, techniques, and procedures (TTPs) reported by open-source intelligence (OSINT) and how TTPs in a recent Scattered Spider attack observed by Darktrace compare.

How has Scattered Spider been reported to operate?

First observed in 2022, Scattered Spider is known to target various industries globally including telecommunications, technology, financial services, and commercial facilities.

Overview of key TTPs

Scattered Spider has been known to utilize the following methods which cover multiple stages of the Cyber Kill Chain including initial access, lateral movement, evasion, persistence, and action on objective:

Social engineering [1]:

Impersonating staff via phone calls, SMS and Telegram messages; obtaining employee credentials (MITRE techniques T1598,T1656), multi-factor authentication (MFA) codes such as one-time passwords, or convincing employees to run commercial remote access tools enabling initial access (MITRE techniques T1204,T1219,T1566)

  • Phishing using specially crafted domains containing the victim name e.g. victimname-sso[.]com
  • MFA fatigue: sending repeated requests for MFA approval with the intention that the victim will eventually accept (MITRE technique T1621)

SIM swapping [1][3]:

  • Includes hijacking phone numbers to intercept 2FA codes
  • This involves the actor migrating the victim's mobile number to a new SIM card without legitimate authorization

Reconnaissance, lateral movement & command-and-control (C2) communication via use of legitimate tools:

  • Examples include Mimikatz, Ngrok, TeamViewer, and Pulseway [1]. A more recently reported example is Teleport [3].

Financial theft through their access to victim networks: Extortion via ransomware, data theft (MITRE technique T1657) [1]

Bring Your Own Vulnerable Driver (BYOVD) techniques [4]:

  • Exploiting vulnerable drivers to evade detection from Endpoint Detection and Response (EDR) security products (MITRE technique T1068) frequently used against Windows devices.

LOTL techniques

LOTL techniques are also closely associated with Scattered Spider actors once they have gained initial access; historically this has allowed them to evade detection until impact starts to be felt. It also means that specific TTPs may vary from case-to-case, making it harder for security teams to prepare and harden defences against the group.

Prominent Scattered Spider attacks over the years

While attribution is sometimes unconfirmed, Scattered Spider have been linked with a number of highly publicized attacks since 2022.

Smishing attacks on Twilio: In August 2022 the group conducted multiple social engineering-based attacks. One example was an SMS phishing (smishing) attack against the cloud communication platform Twilio, which led to the compromise of employee accounts, allowing actors to access internal systems and ultimately target Twilio customers [5][6].

Phishing and social engineering against MailChimp: Another case involved a phishing and social engineering attack against MailChimp. After gaining access to internal systems through compromised employee accounts the group conducted further attacks specifically targeting MailChimp users within cryptocurrency and finance industries [5][7].

Social engineering against Riot Games: In January 2023, the group was linked with an attack on video game developer Riot Games where social engineering was once again used to access internal systems. This time, the attackers exfiltrated game source code before sending a ransom note [8][9].

Attack on Caesars & MGM: In September 2023, Scattered Spider was linked with attacked on Caesars Entertainment and MGM Resorts International, two of the largest casino and gambling companies in the United States. It was reported that the group gathered nearly six terabytes of stolen data from the hotels and casinos, including sensitive information of guests, and made use of the RaaS strain BlackCat [10].

Ransomware against Marks & Spencer: More recently, in April 2025, the group has also been linked to the alleged ransomware incident against the UK-based retailer Marks & Spencer (M&S) making use of the DragonForce RaaS [11].

How a recent attack observed by Darktrace compares

In May 2025, Darktrace observed a Scattered Spider attack affecting one of its customers. While initial access in this attack fell outside of Darktrace’s visibility, information from the affected customer suggests similar social engineering techniques involving abuse of the customer’s helpdesk and voice phishing (vishing) were used for reconnaissance.

Initial access

It is believed the threat actor took advantage of the customer’s third-party Software-as-a-Service (SaaS) applications, such as Salesforce during the attack.

Such applications are a prime target for data exfiltration due to the sensitive data they hold; customer, personnel, and business data can all prove useful in enabling further access into target networks.

Techniques used by Scattered Spider following initial access to a victim network tend to vary more widely and so details are sparser within OSINT. However, Darktrace is able to provide some additional insight into what techniques were used in this specific case, based on observed activity and subsequent investigation by its Threat Research team.

Lateral movement

Following initial access to the customer’s network, the threat actor was able to pivot into the customer’s Virtual Desktop Infrastructure (VDI) environment.

Darktrace observed the threat actor spinning up new virtual machines and activating cloud inventory management tools to enable discovery of targets for lateral movement.

In some cases, these virtual machines were not monitored or managed by the customer’s security tools, allowing the threat actor to make use of additional tooling such as AnyDesk which may otherwise have been blocked.

Tooling in further stages of the attack sometimes overlapped with previous OSINT reporting on Scattered Spider, with anomalous use of Ngrok and Teleport observed by Darktrace, likely representing C2 communication. Additional tooling was also seen being used on the virtual machines, such as Pastebin.

 Cyber AI Analyst’s detection of C2 beaconing to a teleport endpoint with hostname CUSTOMERNAME.teleport[.]sh, likely in an attempt to conceal the traffic.
Figure 1: Cyber AI Analyst’s detection of C2 beaconing to a teleport endpoint with hostname CUSTOMERNAME.teleport[.]sh, likely in an attempt to conceal the traffic.

Leveraging LOTL techniques

Alongside use of third-party tools that may have been unexpected on the network, various LOTL techniques were observed during the incident; this primarily involved the abuse of standard network protocols such as:

  • SAMR requests to alter Active Directory account details
  • Lateral movement over RDP and SSH
  • Data collection over LDAP and SSH

Coordinated exfiltration activity linked through AI-driven analysis

Multiple methods of exfiltration were observed following internal data collection. This included SSH transfers to IPs associated with Vultr, alongside significant uploads to an Amazon S3 bucket.

While connections to this endpoint were not deemed unusual for the network at this stage due to the volume of traffic seen, Darktrace’s Cyber AI Analyst was still able to identify the suspiciousness of this behavior and launched an investigation into the activity.

Cyber AI Analyst successfully correlated seemingly unrelated internal download and external upload activity across multiple devices into a single, broader incident for the customer’s security team to review.

Cyber AI Analyst Incident summary showing a clear outline of the observed activity, including affected devices and the anomalous behaviors detected.
Figure 2: Cyber AI Analyst Incident summary showing a clear outline of the observed activity, including affected devices and the anomalous behaviors detected.
Figure 3: Cyber AI Analyst’s detection of internal data downloads and subsequent external uploads to an Amazon S3 bucket.

Exfiltration and response

Unfortunately, as Darktrace was not configured in Autonomous Response mode at the time, the attack was able to proceed without interruption, ultimately escalating to the point of data exfiltration.

Despite this, Darktrace was still able to recommend several Autonomous Response actions, aimed at containing the attack by blocking the internal data-gathering activity and the subsequent data exfiltration connections.

These actions required manual approval by the customer’s security team and as shown in Figure 3, at least one of the recommended actions was subsequently approved.

Had Darktrace been enabled in Autonomous Response mode, these measures would have been applied immediately, effectively halting the data exfiltration attempts.

Further recommendations for Autonomous Response actions in Darktrace‘s Incident Interface, with surgical response targeting both the internal data collection and subsequent exfiltration.
Figure 4: Further recommendations for Autonomous Response actions in Darktrace‘s Incident Interface, with surgical response targeting both the internal data collection and subsequent exfiltration.

Scattered Spider’s use of RaaS

In this recent Scattered Spider incident observed by Darktrace, exfiltration appears to have been the primary impact. While no signs of ransomware deployment were observed here, it is possible that this was the threat actors’ original intent, consistent with other recent Scattered Spider attacks involving RaaS platforms like DragonForce.

DragonForce emerged towards the end of 2023, operating by offering their platform and capabilities on a wide scale. They also launched a program which offered their affiliates 80% of the eventual ransom, along with tools for further automation and attack management [13].

The rise of RaaS and attacker customization is fragmenting TTPs and indicators, making it harder for security teams to anticipate and defend against each unique intrusion.

While DragonForce appears to be the latest RaaS used by Scattered Spider, it is not the first, showcasing the ongoing evolution of tactics used the group.

In addition, the BlackCat RaaS strain was reportedly used by Scattered Spider for their attacks against Caesars Entertainment and MGM Resorts International [10].

In 2024 the group was also seen making use of additional RaaS strains; RansomHub and Qilin [15].

What security teams and CISOs can do to defend against Scattered Spider

The ongoing changes in tactics used by Scattered Spider, reliance on LOTL techniques, and continued adoption of evolving RaaS providers like DragonForce make it harder for organizations and their security teams to prepare their defenses against such attacks.

CISOs and security teams should implement best practices such as MFA, Single Sign-On (SSO), notifications for suspicious logins, forward logging, ethical phishing tests.

Also, given Scattered Spider’s heavy focus on social engineering, and at times using their native English fluency to their advantage, it is critical to IT and help desk teams are reminded they are possible targets.

Beyond social engineering, the threat actor is also adept at taking advantage of third-party SaaS applications in use by victims to harvest common SaaS data, such as PII and configuration data, that enable the threat actor to take on multiple identities across different domains.

With Darktrace’s Self-Learning AI, anomaly-based detection, and Autonomous Response inhibitors, businesses can halt malicious activities in real-time, whether attackers are using known TTPs or entirely new ones. Offerings such as Darktrace /Attack Surface Management enable security teams to proactively identify signs of malicious activity before it can cause an impact, while more generally Darktrace’s ActiveAI Security Platform can provide a comprehensive view of an organization’s digital estate across multiple domains.

Credit to Justin Torres (Senior Cyber Analyst), Emma Foulger (Global Threat Research Operations Lead), Zaki Al-Dhamari (Cyber Analyst), Nathaniel Jones (VP, Security & AI Strategy, FCISO), and Ryan Traill (Analyst Content Lead)

---------------------

The information provided in this blog post is for general informational purposes only and is provided "as is" without any representations or warranties, express or implied. While Darktrace makes reasonable efforts to ensure the accuracy and timeliness of the content related to cybersecurity threats such as Scattered Spider, we make no warranties or guarantees regarding the completeness, reliability, or suitability of the information for any purpose.

This blog post does not constitute professional cybersecurity advice, and should not be relied upon as such. Readers should seek guidance from qualified cybersecurity professionals or legal counsel before making any decisions or taking any actions based on the content herein.

No warranty of any kind, whether express or implied, including, but not limited to, warranties of performance, merchantability, fitness for a particular purpose, or non-infringement, is given with respect to the contents of this post.

Darktrace expressly disclaims any liability for any loss or damage arising from reliance on the information contained in this blog.

Appendices

References

[1] https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-320a

[2] https://attack.mitre.org/groups/G1015/

[3] https://www.rapid7.com/blog/post/scattered-spider-rapid7-insights-observations-and-recommendations/

[4] https://www.crowdstrike.com/en-us/blog/scattered-spider-attempts-to-avoid-detection-with-bring-your-own-vulnerable-driver-tactic/

[5] https://krebsonsecurity.com/2024/06/alleged-boss-of-scattered-spider-hacking-group-arrested/?web_view=true

[6] https://www.cxtoday.com/crm/uk-teenager-accused-of-hacking-twilio-lastpass-mailchimp-arrested/

[7] https://mailchimp.com/newsroom/august-2022-security-incident/

[8] https://techcrunch.com/2023/02/02/0ktapus-hackers-are-back-and-targeting-tech-and-gaming-companies-says-leaked-report/

[9] https://www.pcmag.com/news/hackers-behind-riot-games-breach-stole-league-of-legends-source-code

[10] https://www.bbrown.com/us/insight/a-look-back-at-the-mgm-and-caesars-incident/

[11] https://cyberresilience.com/threatonomics/scattered-spider-uk-retail-attacks/

[12] https://www.crowdstrike.com/en-us/cybersecurity-101/ransomware/ransomware-as-a-service-raas/

[13] https://www.group-ib.com/blog/dragonforce-ransomware/
[14] https://blackpointcyber.com/wp-content/uploads/2024/11/DragonForce.pdf
[15] https://x.com/MsftSecIntel/status/1812932749314978191?lang=en

Select MITRE tactics associated with Scattered Spider

Tactic – Technique – Technique Name

Reconnaissance - T1598 -   Phishing for Information

Initial Access - T1566 – Phishing

Execution - T1204 - User Execution

Privilege Escalation - T1068 - Exploitation for Privilege Escalation

Defense Evasion - T1656 - Impersonation

Credential Access - T1621 - Multi-Factor Authentication Request Generation

Lateral Movement - T1021 - Remote Services

Command and Control - T1102 - Web Service

Command and Control - T1219 - Remote Access Tools

Command and Control - T1572 - Protocol Tunneling

Exfiltration - T1567 - Exfiltration Over Web Service

Impact - T1657 - Financial Theft

Select MITRE tactics associated with DragonForce

Tactic – Technique – Technique Name

Initial Access, Defense Evasion, Persistence, Privilege Escalation - T1078 - Valid Accounts

Initial Access, Persistence - T1133 - External Remote Services

Initial Access - T1190 - Exploit Public-Facing Application

Initial Access - T1566 – Phishing

Execution - T1047 - Windows Management Instrumentation

Privilege Escalation - T1068 - Exploitation for Privilege Escalation

Lateral Movement - T1021 - Remote Services

Impact - T1486 - Data Encrypted for Impact

Impact - T1657 - Financial Theft

Select Darktrace models

Compliance / Internet Facing RDP Server

Compliance / Incoming Remote Access Tool

Compliance / Remote Management Tool on Server

Anomalous File / Internet Facing System File Download

Anomalous Server Activity/ New User Agent from Internet Facing System

Anomalous Connection / Callback on Web Facing Device

Device / Internet Facing System with High Priority Alert

Anomalous Connection / Unusual Admin RDP

Anomalous Connection / High Priority DRSGetNCChanges

Anomalous Connection / Unusual Internal SSH

Anomalous Connection / Active Remote Desktop Tunnel

Compliance / Pastebin

Anomalous Connection / Possible Tunnelling to Rare Endpoint

Compromise / Beaconing Activity to External Rare

Device / Long Agent Connection to New Endpoint

Compromise / SSH to Rare External AWS

Compliance / SSH to Rare External Destination

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Large Volume of LDAP Download

Unusual Activity / Internal Data Transfer on New Device

Anomalous Connection / Download and Upload

Unusual Activity / Enhanced Unusual External Data Transfer

Compromise / Ransomware/Suspicious SMB Activity

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

Cloud

/

July 24, 2025

Closing the Cloud Forensics and Incident Response Skills Gap

DFIR skills gap, man working on computer, SOC analyst, incident response, cloud incident responseDefault blog imageDefault blog image

Every alert that goes uninvestigated is a calculated risk — and teams are running out of room for error

Security operations today are stretched thin. SOCs face an overwhelming volume of alerts, and the shift to cloud has only made triage more complex.

Our research suggests that 23% of cloud alerts are never investigated, leaving risk on the table.

The rapid migration to cloud resources has security teams playing catch up. While they attempt to apply traditional on-prem tools to the cloud, it’s becoming increasingly clear that they are not fit for purpose. Especially in the context of forensics and incident response, the cloud presents unique complexities that demand cloud-specific solutions.

Organizations are increasingly adopting services from multiple cloud platforms (in fact, recent studies suggest 89% of organizations now operate multi-cloud environments), and container-based and serverless setups have become the norm. Security analysts already have enough on their plates; it’s unrealistic to expect them to be cloud experts too.

Why Digital Forensics and Incident Response (DFIR) roles are so hard to fill

Compounding these issues of alert fatigue and cloud complexity, there is a lack of DFIR talent. The cybersecurity skills gap is a well-known problem.

According to the 2024 ISC2 Cybersecurity Workforce Study, there is a global shortage of 4.8 million cybersecurity workers, up 19% from the previous year.

Why is this such an issue?

  • Highly specialized skill set: DFIR professionals need to have a deep understanding of various operating systems, network protocols, and security architectures, even more so when working in the cloud. They also need to be proficient in using a wide range of forensic tools and techniques. This level of expertise takes a lot of time and effort to develop.
  • Rapid technological changes: The cloud landscape is constantly changing and evolving with new services, monitoring tools, security mechanisms, and threats emerging regularly. Keeping up with these changes and staying current requires continuous learning and adaptation.
  • Lack of formal education and training: There are limited educational programs specifically dedicated for DFIR. Further, an industry for cloud DFIR has yet to be defined. While some universities and institutions offer courses or certifications in digital forensics, they may not cover the full spread of knowledge required in real-world incident response scenarios, especially for cloud-based environments.
  • High-stress nature of the job: DFIR professionals often work under tight deadlines in high-pressure situations, especially when handling security incidents. This can lead to burnout and high turnover rates in the profession.

Bridging the skills gap with usable cloud digital forensics and incident response tools  

To help organizations close the DFIR skills gap, it's critical that we modernize our approaches and implement a new way of doing things in DFIR that's fit for the cloud era. Modern cloud forensics and incident response platforms must prioritize usability in order to up-level security teams. A platform that is easy to use has the power to:

  • Enable more advanced analysts to be more efficient and have the ability to take on more cases
  • Uplevel more novel analysts to perform more advanced tasks than ever before
  • Eliminate cloud complexity– such as the complexities introduced by multi-cloud environments and container-based and serverless setups

What to look for in cloud forensics and incident response solutions

The following features greatly improve the impact of cloud forensics and incident response:

Data enrichment: Automated correlation of collected data with threat intelligence feeds, both external and proprietary, delivers immediate insight into suspicious or malicious activities. Data enrichment expedites investigations, enabling analysts to seamlessly pivot from key events and delve deeper into the raw data.

Single timeline view: A unified perspective across various cloud platforms and data sources is crucial. A single timeline view empowers security teams to seamlessly navigate evidence based on timestamps, events, users, and more, enhancing investigative efficiency. Pulling together a timeline has historically been a very time consuming task when using traditional approaches.

Saved search: Preserving queries during investigations allows analysts to re-execute complex searches or share them with colleagues, increasing efficiency and collaboration.

Faceted search: Facet search options provide analysts with quick insights into core data attributes, facilitating efficient dataset refinement.

Cross-cloud investigations: Analyzing evidence acquired from multiple cloud providers in a single platform is crucial for security teams. A unified view and timeline across cross cloud is critical in streamlining investigations.

How Darktrace can help

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

Not only does Darktrace offer centralized automation solutions for cloud forensics and investigation, but it also delivers a proactive approach Cloud Detection and Response (CDR). Darktrace / CLOUD is built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

[related-resource]

Continue reading
About the author
Calum Hall
Technical Content Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI