Blog
/
/
March 11, 2020

How Darktrace Antigena Email Caught A Fearware Email Attack

Darktrace effectively detects and neutralizes fearware attacks evading gateway security tools. Learn more about how Antigena Email outsmarts cyber-criminals.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Mar 2020

The cyber-criminals behind email attacks are well-researched and highly responsive to human behaviors and emotions, often seeking to evoke a specific reaction by leveraging topical information and current news. It’s therefore no surprise that attackers have attempted to latch onto COVID-19 in their latest effort to convince users to open their emails and click on seemingly benign links.

The latest email trend involves attackers who claim to be from the Center for Disease Control and Prevention, purporting to have emergency information about COVID-19. This is typical of a recent trend we’re calling ‘fearware’: cyber-criminals exploit a collective sense of fear and urgency, and coax users into clicking a malicious attachment or link. While the tactic is common, the actual campaigns contain terms and content that’s unique. There are a few patterns in the emails we’ve seen, but none reliably predictable enough to create hard and fast rules that will stop emails with new wording without causing false positives.

For example, looking for the presence of “CDC” in the email sender would easily fail when the emails begin to use new wording, like “WHO”. We’ve also seen a mismatch of links and their display text – with display text that reads “https://cdc.gov/[random-path]” while the actual link is a completely arbitrary URL. Looking for a pattern match on this would likely lead to false positives and would serve as a weak indicator at best.

The majority of these emails, especially the early ones, passed most of our customers’ existing defenses including Mimecast, Proofpoint, and Microsoft’s ATP, and were approved to be delivered directly to the end user’s inbox. Fortunately, these emails were immediately identified and actioned by Antigena Email, Darktrace’s Autonomous Response technology for the inbox.

Gateways: The Current Approach

Most organizations employ Secure Email Gateways (SEGs), like Mimecast or Proofpoint, which serve as an inline middleman between the email sender and the recipient’s email provider. SEGs have largely just become spam-detection engines, as these emails are obvious to spot when seen at scale. They can identify low-hanging fruit (i.e. emails easily detectable as malicious), but they fail to detect and respond when attacks become personalized or deviate even slightly from previously-seen attacks.

Figure 1: A high-level diagram depicting an Email Secure Gateway’s inline position.

SEGs tend to use lists of ‘known-bad’ IPs, domains, and file hashes to determine an email’s threat level – inherently failing to stop novel attacks when they use IPs, domains, or files which are new and have not yet been triaged or reported as malicious.

When advanced detection methods are used in gateway technologies, such as anomaly detection or machine learning, these are performed after the emails have been delivered, and require significant volumes of near-identical emails to trigger. The end result is very often to take an element from one of these emails and simply deny-list it.

When a SEG can’t make the determination on these factors, they may resort to a technique known as sandboxing, which creates an isolated environment for testing links and attachments seen in emails. Alternatively, they may turn to basic levels of anomaly detection that are inadequate due to their lack of context of data outside of emails. For sandboxing, most advanced threats now typically employ evasion techniques like an activation time that waits until a certain date before executing. When deployed, the sandboxing attempts see a harmless file, not recognizing the sleeping attack waiting within.

Figure 2: This email was registered only 2 hours prior to an email we processed.

Taking a sample COVID-19 email seen in a Darktrace customer’s environment, we saw a mix of domains used in what appears to be an attempt to avoid pattern detection. It would be improbable to have the domains used on a list of ‘known-bad’ domains anywhere at the time of the first email, as it was received a mere two hours after the domain was registered.

Figure 3: While other defenses failed to block these emails, Antigena Email immediately marked them as 100% unusual and held them back from delivery.

Antigena Email sits behind all other defenses, meaning we only see emails when those defenses fail to block a malicious email or deem an email is safe for delivery. In the above COVID-19 case, the first 5 emails were marked by MS ATP with a spam confidence score of 1, indicating Microsoft scanned the email and it was determined to be clean – so Microsoft took no action whatsoever.

The Cat and Mouse Game

Cyber-criminals are permanently in flux, quickly moving to outsmart security teams and bypass current defenses. Recognizing email as the easiest entry point into an organization, they are capitalizing on the inadequate detection of existing tools by mass-producing personalized emails through factory-style systems that machine-research, draft, and send with minimal human interaction.

Domains are cheap, proxies are cheap, and morphing files slightly to change the entire fingerprint of a file is easy – rendering any list of ‘known-bads’ as outdated within seconds.

Cyber AI: The New Approach

A new approach is required that relies on business context and an inside-out understanding of a corporation, rather than analyzing emails in isolation.

An Immune System Approach

Darktrace’s core technology uses AI to detect unusual patterns of behavior in the enterprise. The AI is able to do this successfully by following the human immune system’s core principles: develop an innate sense of ‘self’, and use that understanding to detect abnormal activity indicative of a threat.

In order to identify threats across the entire enterprise, the AI is able to understand normal patterns of behavior beyond just the network. This is crucial when working towards a goal of full business understanding. There’s a clear connection between activity in, for example, a SaaS application and a corresponding network event, or an event in the cloud and a corresponding event elsewhere within the business.

There’s an explicit relationship between what people do on their computers and the emails they send and receive. Having the context that a user has just visited a website before they receive an email from the same domain lends credibility to that email: it’s very common to visit a website, subscribe to a mailing list, and then receive an email within a few minutes. On the contrary, receiving an email from a brand-new sender, containing a link that nobody in the organization has ever been to, lends support to the fact that the link is likely no good and that perhaps the email should be removed from the user’s inbox.

Enterprise-Wide Context

Darktrace’s Antigena Email extends this interplay of data sources to the inbox, providing unique detection capabilities by leveraging full business context to inform email decisions.

The design of Antigena Email provides a fundamental shift in email security – from where the tool sits to how it understands and processes data. Unlike SEGs, which sit inline and process emails only as they first pass through and never again, Antigena Email sits passively, ingesting data that is journaled to it. The technology doesn’t need to wait until a domain is fingerprinted or sandboxed, or until it is associated with a campaign that has a famous name and all the buzz.

Antigena Email extends its unique position of not sitting inline to email re-assessment, processing emails millions of times instead of just once, enabling actions to be taken well after delivery. A seemingly benign email with popular links may become more interesting over time if there’s an event within the enterprise that was determined to have originated via an email, perhaps when a trusted site becomes compromised. While Antigena Network will mitigate the new threat on the network, Antigena Email will neutralize the emails that contain links associated with those found in the original email.

Figure 4: Antigena Email sits passively off email providers, continuously re-assessing and issuing updated actions as new data is introduced.

When an email first arrives, Antigena Email extracts its raw metadata, processes it multiple times at machine speed, and then many millions of times subsequently as new evidence is introduced (typically based on events seen throughout the business). The system corroborates what it is seeing with what it has previously understood to be normal throughout the corporate environment. For example, when domains are extracted from envelope information or links in the email body, they’re compared against the popularity of the domain on the company’s network.

Figure 5: The link above was determined to be 100% rare for the enterprise.

Dissecting the above COVID-19 linked email, we can extract some of the data made available in the Antigena Email user interface to see why Darktrace thought the email was so unusual. The domain in the ‘From’ address is rare, which is supplemental contextual information derived from data across the customer’s entire digital environment, not limited to just email but including network data as well. The emails’ KCE, KCD, and RCE indicate that it was the first time the sender had been seen in any email: there had been no correspondence with the sender in any way, and the email address had never been seen in the body of any email.

Figure 6: KCE, KCD, and RCE scores indicate no sender history with the organization.

Correlating the above, Antigena Email deemed these emails 100% anomalous to the business and immediately removed them from the recipients’ inboxes. The platform did this for the very first email, and every email thereafter – not a single COVID-19-based email got by Antigena Email.

Conclusion

Cyber AI does not distinguish ‘good’ from ‘bad’; rather whether an event is likely to belong or not. The technology looks only to compare data with the learnt patterns of activity in the environment, incorporating the new email (alongside its own scoring of the email) into its understanding of day-to-day context for the organization.

By asking questions like “Does this email appear to belong?” or “Is there an existing relationship between the sender and recipient?”, the AI can accurately discern the threat posed by a given email, and incorporate these findings into future modelling. A model cannot be trained to think just because the corporation received a higher volume of emails from a specific sender, these emails are all of a sudden considered normal for the environment. By weighing human interaction with the emails or domains to make decisions on math-modeling reincorporation, Cyber AI avoids this assumption, unless there’s legitimate correspondence from within the corporation back out to the sender.

The inbox has traditionally been the easiest point of entry into an organization. But the fundamental differences in approach offered by Cyber AI drastically increase Antigena Email’s detection capability when compared with gateway tools. Customers with and without email gateways in place have therefore seen a noticeable curbing of their email problem. In the continuous cat-and-mouse game with their adversaries, security teams augmenting their defenses with Cyber AI are finally regaining the advantage.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

Endpoint

/

January 30, 2026

ClearFake: From Fake CAPTCHAs to Blockchain-Driven Payload Retrieval

fake captcha to blockchain driven palyload retrievalDefault blog imageDefault blog image

What is ClearFake?

As threat actors evolve their techniques to exploit victims and breach target networks, the ClearFake campaign has emerged as a significant illustration of this continued adaptation. ClearFake is a campaign observed using a malicious JavaScript framework deployed on compromised websites, impacting sectors such as e‑commerce, travel, and automotive. First identified in mid‑2023, ClearFake is frequently leveraged to socially engineer victims into installing fake web browser updates.

In ClearFake compromises, victims are steered toward compromised WordPress sites, often positioned by attackers through search engine optimization (SEO) poisoning. Once on the site, users are presented with a fake CAPTCHA. This counterfeit challenge is designed to appear legitimate while enabling the execution of malicious code. When a victim interacts with the CAPTCHA, a PowerShell command containing a download string is retrieved and executed.

Attackers commonly abuse the legitimate Microsoft HTML Application Host (MSHTA) in these operations. Recent campaigns have also incorporated Smart Chain endpoints, such as “bsc-dataseed.binance[.]org,” to obtain configuration code. The primary payload delivered through ClearFake is typically an information stealer, such as Lumma Stealer, enabling credential theft, data exfiltration, and persistent access [1].

Darktrace’s Coverage of ClearFake

Darktrace / ENDPOINT first detected activity likely associated with ClearFake on a single device on over the course of one day on November 18, 2025. The system observed the execution of “mshta.exe,” the legitimate Microsoft HTML Application Host utility. It also noted a repeated process command referencing “weiss.neighb0rrol1[.]ru”, indicating suspicious external activity. Subsequent analysis of this endpoint using open‑source intelligence (OSINT) indicated that it was a malicious, domain generation algorithm (DGA) endpoint [2].

The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.
Figure 1: The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.

This activity indicates that mshta.exe was used to contact a remote server, “weiss.neighb0rrol1[.]ru/rpxacc64mshta,” and execute the associated HTA file to initiate the next stage of the attack. OSINT sources have since heavily flagged this server as potentially malicious [3].

The first argument in this process uses the MSHTA utility to execute the HTA file hosted on the remote server. If successful, MSHTA would then run JavaScript or VBScript to launch PowerShell commands used to retrieve malicious payloads, a technique observed in previous ClearFake campaigns. Darktrace also detected unusual activity involving additional Microsoft executables, including “winlogon.exe,” “userinit.exe,” and “explorer.exe.” Although these binaries are legitimate components of the Windows operating system, threat actors can abuse their normal behavior within the Windows login sequence to gain control over user sessions, similar to the misuse of mshta.exe.

EtherHiding cover

Darktrace also identified additional ClearFake‑related activity, specifically a connection to bsc-testnet.drpc[.]org, a legitimate BNB Smart Chain endpoint. This activity was triggered by injected JavaScript on the compromised site www.allstarsuae[.]com, where the script initiated an eth_call POST request to the Smart Chain endpoint.

Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.
Figure 2: Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.

EtherHiding is a technique in which threat actors leverage blockchain technology, specifically smart contracts, as part of their malicious infrastructure. Because blockchain is anonymous, decentralized, and highly persistent, it provides threat actors with advantages in evading defensive measures and traditional tracking [4].

In this case, when a user visits a compromised WordPress site, injected base64‑encoded JavaScript retrieved an ABI string, which was then used to load and execute a contract hosted on the BNB Smart Chain.

JavaScript hosted on the compromised site www.allstaruae[.]com.
Figure 3: JavaScript hosted on the compromised site www.allstaruae[.]com.

Conducting malware analysis on this instance, the Base64 decoded into a JavaScript loader. A POST request to bsc-testnet.drpc[.]org was then used to retrieve a hex‑encoded ABI string that loads and executes the contract. The JavaScript also contained hex and Base64‑encoded functions that decoded into additional JavaScript, which attempted to retrieve a payload hosted on GitHub at “github[.]com/PrivateC0de/obf/main/payload.txt.” However, this payload was unavailable at the time of analysis.

Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 4: Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 5: Darktrace’s detection of the executable file and the malicious hostname.

Autonomous Response

As Darktrace’s Autonomous Response capability was enabled on this customer’s network, Darktrace was able to take swift mitigative action to contain the ClearFake‑related activity early, before it could lead to potential payload delivery. The affected device was blocked from making external connections to a number of suspicious endpoints, including 188.114.96[.]6, *.neighb0rrol1[.]ru, and neighb0rrol1[.]ru, ensuring that no further malicious connections could be made and no payloads could be retrieved.

Autonomous Response also acted to prevent the executable mshta.exe from initiating HTA file execution over HTTPS from this endpoint by blocking the attempted connections. Had these files executed successfully, the attack would likely have resulted in the retrieval of an information stealer, such as Lumma Stealer.

Autonomous Response’s intervention against the suspicious connectivity observed.
Figure 6: Autonomous Response’s intervention against the suspicious connectivity observed.

Conclusion

ClearFake continues to be observed across multiple sectors, but Darktrace remains well‑positioned to counter such threats. Because ClearFake’s end goal is often to deliver malware such as information stealers and malware loaders, early disruption is critical to preventing compromise. Users should remain aware of this activity and vigilant regarding fake CAPTCHA pop‑ups. They should also monitor unusual usage of MSHTA and outbound connections to domains that mimic formats such as “bsc-dataseed.binance[.]org” [1].

In this case, Darktrace was able to contain the attack before it could successfully escalate and execute. The attempted execution of HTA files was detected early, allowing Autonomous Response to intervene, stopping the activity from progressing. As soon as the device began communicating with weiss.neighb0rrol1[.]ru, an Autonomous Response inhibitor triggered and interrupted the connections.

As ClearFake continues to rise, users should stay alert to social engineering techniques, including ClickFix, that rely on deceptive security prompts.

Credit to Vivek Rajan (Senior Cyber Analyst) and Tara Gould (Malware Research Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

Process / New Executable Launched

Endpoint / Anomalous Use of Scripting Process

Endpoint / New Suspicious Executable Launched

Endpoint / Process Connection::Unusual Connection from New Process

Autonomous Response Models

Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

List of Indicators of Compromise (IoCs)

  • weiss.neighb0rrol1[.]ru – URL - Malicious Domain
  • 188.114.96[.]6 – IP – Suspicious Domain
  • *.neighb0rrol1[.]ru – URL – Malicious Domain

MITRE Tactics

Initial Access, Drive-by Compromise, T1189

User Execution, Execution, T1204

Software Deployment Tools, Execution and Lateral Movement, T1072

Command and Scripting Interpreter, T1059

System Binary Proxy Execution: MSHTA, T1218.005

References

1.        https://www.kroll.com/en/publications/cyber/rapid-evolution-of-clearfake-delivery

2.        https://www.virustotal.com/gui/domain/weiss.neighb0rrol1.ru

3.        https://www.virustotal.com/gui/file/1f1aabe87e5e93a8fff769bf3614dd559c51c80fc045e11868f3843d9a004d1e/community

4.        https://www.packetlabs.net/posts/etherhiding-a-new-tactic-for-hiding-malware-on-the-blockchain/

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

Network

/

January 30, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

6. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI