Blog
/
Network
/
September 18, 2024

FortiClient EMS Exploited: Attack Chain & Post Exploitation Tactics

Read about the methods used to exploit FortiClient EMS and the critical post-exploitation tactics that affect cybersecurity defenses.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Sep 2024

Cyber attacks on internet-facing systems

In the first half of 2024, the Darktrace Threat Research team observed multiple campaigns of threat actors targeting vulnerabilities in internet-facing systems, including Ivanti CS/PS appliances, Palo Alto firewall devices, and TeamCity on-premises.

These systems, which are exposed to the internet, are often targeted by threat actors to gain initial access to a network. They are constantly being scanned for vulnerabilities, known or unknown, by opportunistic actors hoping to exploit gaps in security. Unfortunately, this exposure remains a significant blind spot for many security teams, as monitoring edge infrastructure can be particularly challenging due to its distributed nature and the sheer volume of external traffic it processes.

In this blog, we discuss a vulnerability that was exploited in Fortinet’s FortiClient Endpoint Management Server (EMS) and the post-exploitation activity that Darktrace observed across multiple customer environments.

What is FortiClient EMS?

FortiClient is typically used for endpoint security, providing features such as virtual private networks (VPN), malware protection, and web filtering. The FortiClient EMS is a centralized platform used by administrators to enforce security policies and manage endpoint compliance. As endpoints are remote and distributed across various locations, the EMS needs to be accessible over the internet.

However, being exposed to the internet presents significant security risks, and exploiting vulnerabilities in the system may give an attacker unauthorized access. From there, they could conduct further malicious activities such as reconnaissance, establishing command-and-control (C2), moving laterally across the network, and accessing sensitive data.

CVE-2023-48788

CVE-2023-48788 is a critical SQL injection vulnerability in FortiClient EMS that can allow an attacker to gain unauthorized access to the system. It stems from improper neutralization of special elements used in SQL commands, which allows attackers to exploit the system through specially crafted requests, potentially leading to Remote Code Execution (RCE) [1]. This critical vulnerability was given a CVSS score of 9.8 and can be exploited without authentication.

The affected versions of FortiClient EMS include:

  • FortiClient EMS 7.2.0 to 7.2.2 (fixed in 7.2.3)
  • FortiClient EMS 7.0.1 to 7.0.10 (fixed in 7.0.11)

The vulnerability was publicly disclosed on March 12, 2024, and an exploit proof of concept was released by Horizon3.ai on March 21 [2]. Starting from March 24, almost two weeks after the initial disclosure, Darktrace began to observe at least six instances where the FortiClient EMS vulnerability had likely been exploited on customer networks. Seemingly exploited devices in multiple customer environments were observed performing anomalous activities, including the installation of Remote Monitoring and Management (RMM) tools, which was also reported by other security vendors around the same time [3].

Darktrace’s Coverage

Initial Access

To understand how the vulnerability can be exploited to gain initial access, we first need to explain some components of the FortiClient EMS:

  • The service FmcDaemon.exe is used for communication between the EMS and enrolled endpoint clients. It listens on port 8013 for incoming client connections.
  • Incoming requests are then sent to FCTDas.exe, which translates requests from other server components into SQL requests. This service interacts with the Microsoft SQL database.
  • Endpoint clients communicate with the FmcDaemon on the server on port 8013 by default.

Therefore, an SQL injection attack can be performed by crafting a malicious payload and sending it over port 8013 to the server. To carry out RCE, an attacker may send further SQL statements to enable and use the xp_cmdshell functionality of the Microsoft SQL server [2].

Shortly before post-exploitation activity began, Darktrace had observed incoming connections to some of the FortiClient EMS devices over port 8013 from the external IPs 77.246.103[.]110, 88.130.150[.]101, and 45.155.141[.]219. This likely represented the threat actors sending an SQL injection payload over port 8013 to the EMS device to validate the exploit.

Establish C2

After exploiting the vulnerability and gaining access to an EMS device on one customer network, two additional devices were seen with HTTP POST requests to 77.246.103[.]110 and 212.113.106[.]100 with a new PowerShell user agent.

Interestingly, the IP 212.113.106[.]100 has been observed in various other campaigns where threat actors have also targeted internet-facing systems and exploited other vulnerabilities. Open-source intelligence (OSINT) suggests that this indicator of compromise (IoC) is related to the Sliver C2 framework and has been used by threat actors such as APT28 (Fancy Bear) and APT29 (Cozy Bear) [4].

Unusual file downloads were also observed on four devices, including:

  • “SETUP.MSI” from 212.32.243[.]25 and 89.149.200[.]91 with a cURL user agent
  • “setup.msi” from 212.113.106[.]100 with a Windows Installer user agent
  • “run.zip” from 95.181.173[.]172 with a PowerShell user agent

The .msi files would typically contain the RMM tools Atera or ScreenConnect [5]. By installing RMM tools for C2, attackers can leverage their wide range of functionalities to carry out various tasks, such as file transfers, without the need to install additional tools. As RMM tools are designed to maintain a stable connection to remote systems, they may also allow the attackers to ensure persistent access to the compromised systems.

A scan of the endpoint 95.181.173[.]172 shows various other files such as “RunSchedulerTask.ps1” and “anydesk.exe” being hosted.

Screenshot of the endpoint 95.181.173[.]172 hosting various files [6].
Figure 1: Screenshot of the endpoint 95.181.173[.]172 hosting various files [6].

Shortly after these unusual file downloads, many of the devices were also seen with usage of RMM tools such as Splashtop, Atera, and AnyDesk. The devices were seen connecting to the following endpoints:

  • *[.]relay.splashtop[.]com
  • agent-api[.]atera[.]com
  • api[.]playanext[.]com with user agent AnyDesk/8.0.9

RMM tools have a wide range of legitimate capabilities that allow IT administrators to remotely manage endpoints. However, they can also be repurposed for malicious activities, allowing threat actors to maintain persistent access to systems, execute commands remotely, and even exfiltrate data. As the use of RMM tools can be legitimate, they offer threat actors a way to perform malicious activities while blending into normal business operations, which could evade detection by human analysts or traditional security tools.

One device was also seen making repeated SSL connections to a self-signed endpoint “azure-documents[.]com” (104.168.140[.]84) and further HTTP POSTs to “serv1[.]api[.]9hits[.]com/we/session” (128.199.207[.]131). Although the contents of these connections were encrypted, they were likely additional infrastructure used for C2 in addition to the RMM tools that were used. Self-signed certificates may also be used by an attacker to encrypt C2 communications.

Internal Reconnaissance

Following the exploit, two of the compromised devices then started to conduct internal reconnaissance activity. The following figure shows a spike in the number of internal connections made by one of the compromised devices on the customer’s environment, which typically indicates a network scan.

Advanced Search results of internal connections made an affected device.
Figure 2: Advanced Search results of internal connections made an affected device.

Reconnaissance tools such as Advanced Port Scanner (“www[.]advanced-port-scanner[.]com”) and Nmap were also seen being used by one of the devices to conduct scanning activities. Nmap is a network scanning tool commonly used by security teams for legitimate purposes like network diagnostics and vulnerability scanning. However, it can also be abused by threat actors to perform network reconnaissance, a technique known as Living off the Land (LotL). This not only reduces the need for custom or external tools but also reduces the risk of exposure, as the use of a legitimate tool in the network is unlikely to raise suspicion.

Privilege Escalation

In another affected customer network, the threat actor’s attempt to escalate their privileges was also observed, as a FortiClient EMS device was seen with an unusually large number of SMB/NTLM login failures, indicative of brute force activity. This attempt was successful, and the device was later seen authenticating with the credential “administrator”.

Figure 3: Advanced Search results of NTLM (top) and SMB (bottom) login failures.

Lateral Movement

After escalating privileges, attempts to move laterally throughout the same network were seen. One device was seen transferring the file “PSEXESVC.exe” to another device over SMB. This file is associated with PsExec, a command-line tool that allows for remote execution on other systems.

The threat actor was also observed leveraging the DCE-RPC protocol to move laterally within the network. Devices were seen with activity such as an increase in new RPC services, unusual requests to the SVCCTL endpoint, and the execution of WMI commands. The DCE-RPC protocol is typically used to facilitate communication between services on different systems and can allow one system to request services or execute commands on another.

These are further examples of LotL techniques used by threat actors exploiting CVE-2023-48788, as PsExec and the DCE-RPC protocol are often also used for legitimate administrative operations.

Accomplish Mission

In most cases, the threat actor’s end goal was not clearly observed. However, Darktrace did detect one instance where an unusually large volume of data had been uploaded to “put[.]io”, a cloud storage service, indicating that the end goal of the threat actor had been to steal potentially sensitive data.

In a recent investigation of a Medusa ransomware incident that took place in July 2024, Darktrace’s Threat Research team found that initial access to the environment had likely been gained through a FortiClient EMS device. An incoming connection from 209.15.71[.]121 over port 8013 was seen, suggesting that CVE-2023-48788 had been exploited. The device had been compromised almost three weeks before the ransomware was actually deployed, eventually resulting in the encryption of files.

Mitigating risk with proactive exposure management and real-time detection

Threat actors have continued to exploit unpatched vulnerabilities in internet-facing systems to gain initial access to a network. This highlights the importance of addressing and patching vulnerabilities as soon as they are disclosed and a fix is released. However, due to the rapid nature of exploitation, this may not always be enough. Furthermore, threat actors may even be exploiting vulnerabilities that are not yet publicly known.

As the end goals for a threat actor can differ – from data exfiltration to deploying ransomware – the post-exploitation behavior can also vary from actor to actor. However, AI security tools such as Darktrace / NETWORK can help identify and alert for post-exploitation behavior based on abnormal activity seen in the network environment.

Despite CVE-2023-48788 having been publicly disclosed and fixed in March, it appears that multiple threat actors, such as the Medusa ransomware group, have continued to exploit the vulnerability on unpatched systems. With new vulnerabilities being disclosed almost every other day, security teams may find it challenging continuously patch their systems.

As such, Darktrace / Proactive Exposure Management could also alleviate the workload of security teams by helping them identify and prioritize the most critical vulnerabilities in their network.

Insights from Darktrace’s First 6: Half-year threat report for 2024

First 6: half year threat report darktrace screenshot

Darktrace’s First 6: Half-Year Threat Report 2024 highlights the latest attack trends and key threats observed by the Darktrace Threat Research team in the first six months of 2024.

  • Focuses on anomaly detection and behavioral analysis to identify threats
  • Maps mitigated cases to known, publicly attributed threats for deeper context
  • Offers guidance on improving security posture to defend against persistent threats

Appendices

Credit to Emily Megan Lim (Cyber Security Analyst) and Ryan Traill (Threat Content Lead)

References

[1] https://nvd.nist.gov/vuln/detail/CVE-2023-48788

[2] https://www.horizon3.ai/attack-research/attack-blogs/cve-2023-48788-fortinet-forticlientems-sql-injection-deep-dive/

[3] https://redcanary.com/blog/threat-intelligence/cve-2023-48788/

[4] https://www.fortinet.com/blog/threat-research/teamcity-intrusion-saga-apt29-suspected-exploiting-cve-2023-42793

[5] https://redcanary.com/blog/threat-intelligence/cve-2023-48788/

[6] https://urlscan.io/result/3678b9e2-ad61-4719-bcef-b19cadcdd929/

List of IoCs

IoC - Type - Description + Confidence

  • 212.32.243[.]25/SETUP.MSI - URL - Payload
  • 89.149.200[.]9/SETUP.MSI - URL - Payload
  • 212.113.106[.]100/setup.msi - URL - Payload
  • 95.181.173[.]172/run.zip - URL - Payload
  • serv1[.]api[.]9hits[.]com - Domain - Likely C2 endpoint
  • 128.199.207[.]131 - IP - Likely C2 endpoint
  • azure-documents[.]com - Domain - C2 endpoint
  • 104.168.140[.]84 - IP - C2 endpoint
  • 77.246.103[.]110 - IP - Likely C2 endpoint
  • 212.113.106[.]100 - IP - C2 endpoint

Darktrace Model Detections

Anomalous Connection / Callback on Web Facing Device

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Posting HTTP to IP Without Hostname

Anomalous Connection / Powershell to Rare External

Anomalous Connection / Rare External SSL Self-Signed

Anomalous Connection / Suspicious Self-Signed SSL

Anomalous Server Activity / Rare External from Server

Anomalous Server Activity / New User Agent from Internet Facing System

Anomalous Server Activity / Server Activity on New Non-Standard Port - External

Compliance / Remote Management Tool On Server

Device / New User Agent

Device / New PowerShell User Agent

Device / Attack and Recon Tools

Device / ICMP Address Scan

Device / Network Range Scan

Device / Network Scan

Device / RDP Scan

Device / Suspicious SMB Scanning Activity

Anomalous Connection / Multiple SMB Admin Session

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Unusual Admin SMB Session

Device / Increase in New RPC Services

Device / Multiple Lateral Movement Breaches

Device / New or Uncommon WMI Activity

Device / New or Unusual Remote Command Execution

Device / SMB Lateral Movement

Device / Possible SMB/NTLM Brute Force

Unusual Activity / Successful Admin Brute-Force Activity

User / New Admin Credentials on Server

Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Unusual Activity / Unusual External Data to New Endpoint

Device / Large Number of Model Breaches

Device / Large Number of Model Breaches from Critical Network Device

MITRE ATT&CK Mapping

Tactic – ID: Technique

Initial Access – T1190: Exploit Public-Facing Application

Resource Development – T1587.003: Develop Capabilities: Digital Certificates

Resource Development – T1608.003: Stage Capabilities: Install Digital Certificate

Command and Control – T1071.001: Application Layer Protocol: Web Protocols

Command and Control – T1219: Remote Access Software

Execution – T1059.001: Command and Scripting Interpreter: PowerShell

Reconnaissance – T1595: Active Scanning

Reconnaissance – T1590.005: Gather Victim Network Information: IP Addresses

Discovery – T1046: Network Service Discovery

Credential Access – T1110: Brute Force

Defense Evasion,Initial Access,Persistence,Privilege Escalation – T1078: Valid Accounts

Lateral Movement – T1021.002: Remote Services: SMB/Windows Admin Shares

Lateral Movement – T1021.003: Remote Services: Distributed Component Object Model

Execution – T1569.002: System Services: Service Execution

Execution – T1047: Windows Management Instrumentation

Exfiltration – T1041: Exfiltration Over C2 Channel

Exfiltration – T1567.002: Exfiltration Over Web Service: Exfiltration to Cloud Storage

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst

More in this series

No items found.

Blog

/

/

April 24, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats using signatures and threat intelligence, Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI