Blog
/
Network
/
September 18, 2024

FortiClient EMS Exploited: Attack Chain & Post Exploitation Tactics

Read about the methods used to exploit FortiClient EMS and the critical post-exploitation tactics that affect cybersecurity defenses.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Sep 2024

Cyber attacks on internet-facing systems

In the first half of 2024, the Darktrace Threat Research team observed multiple campaigns of threat actors targeting vulnerabilities in internet-facing systems, including Ivanti CS/PS appliances, Palo Alto firewall devices, and TeamCity on-premises.

These systems, which are exposed to the internet, are often targeted by threat actors to gain initial access to a network. They are constantly being scanned for vulnerabilities, known or unknown, by opportunistic actors hoping to exploit gaps in security. Unfortunately, this exposure remains a significant blind spot for many security teams, as monitoring edge infrastructure can be particularly challenging due to its distributed nature and the sheer volume of external traffic it processes.

In this blog, we discuss a vulnerability that was exploited in Fortinet’s FortiClient Endpoint Management Server (EMS) and the post-exploitation activity that Darktrace observed across multiple customer environments.

What is FortiClient EMS?

FortiClient is typically used for endpoint security, providing features such as virtual private networks (VPN), malware protection, and web filtering. The FortiClient EMS is a centralized platform used by administrators to enforce security policies and manage endpoint compliance. As endpoints are remote and distributed across various locations, the EMS needs to be accessible over the internet.

However, being exposed to the internet presents significant security risks, and exploiting vulnerabilities in the system may give an attacker unauthorized access. From there, they could conduct further malicious activities such as reconnaissance, establishing command-and-control (C2), moving laterally across the network, and accessing sensitive data.

CVE-2023-48788

CVE-2023-48788 is a critical SQL injection vulnerability in FortiClient EMS that can allow an attacker to gain unauthorized access to the system. It stems from improper neutralization of special elements used in SQL commands, which allows attackers to exploit the system through specially crafted requests, potentially leading to Remote Code Execution (RCE) [1]. This critical vulnerability was given a CVSS score of 9.8 and can be exploited without authentication.

The affected versions of FortiClient EMS include:

  • FortiClient EMS 7.2.0 to 7.2.2 (fixed in 7.2.3)
  • FortiClient EMS 7.0.1 to 7.0.10 (fixed in 7.0.11)

The vulnerability was publicly disclosed on March 12, 2024, and an exploit proof of concept was released by Horizon3.ai on March 21 [2]. Starting from March 24, almost two weeks after the initial disclosure, Darktrace began to observe at least six instances where the FortiClient EMS vulnerability had likely been exploited on customer networks. Seemingly exploited devices in multiple customer environments were observed performing anomalous activities, including the installation of Remote Monitoring and Management (RMM) tools, which was also reported by other security vendors around the same time [3].

Darktrace’s Coverage

Initial Access

To understand how the vulnerability can be exploited to gain initial access, we first need to explain some components of the FortiClient EMS:

  • The service FmcDaemon.exe is used for communication between the EMS and enrolled endpoint clients. It listens on port 8013 for incoming client connections.
  • Incoming requests are then sent to FCTDas.exe, which translates requests from other server components into SQL requests. This service interacts with the Microsoft SQL database.
  • Endpoint clients communicate with the FmcDaemon on the server on port 8013 by default.

Therefore, an SQL injection attack can be performed by crafting a malicious payload and sending it over port 8013 to the server. To carry out RCE, an attacker may send further SQL statements to enable and use the xp_cmdshell functionality of the Microsoft SQL server [2].

Shortly before post-exploitation activity began, Darktrace had observed incoming connections to some of the FortiClient EMS devices over port 8013 from the external IPs 77.246.103[.]110, 88.130.150[.]101, and 45.155.141[.]219. This likely represented the threat actors sending an SQL injection payload over port 8013 to the EMS device to validate the exploit.

Establish C2

After exploiting the vulnerability and gaining access to an EMS device on one customer network, two additional devices were seen with HTTP POST requests to 77.246.103[.]110 and 212.113.106[.]100 with a new PowerShell user agent.

Interestingly, the IP 212.113.106[.]100 has been observed in various other campaigns where threat actors have also targeted internet-facing systems and exploited other vulnerabilities. Open-source intelligence (OSINT) suggests that this indicator of compromise (IoC) is related to the Sliver C2 framework and has been used by threat actors such as APT28 (Fancy Bear) and APT29 (Cozy Bear) [4].

Unusual file downloads were also observed on four devices, including:

  • “SETUP.MSI” from 212.32.243[.]25 and 89.149.200[.]91 with a cURL user agent
  • “setup.msi” from 212.113.106[.]100 with a Windows Installer user agent
  • “run.zip” from 95.181.173[.]172 with a PowerShell user agent

The .msi files would typically contain the RMM tools Atera or ScreenConnect [5]. By installing RMM tools for C2, attackers can leverage their wide range of functionalities to carry out various tasks, such as file transfers, without the need to install additional tools. As RMM tools are designed to maintain a stable connection to remote systems, they may also allow the attackers to ensure persistent access to the compromised systems.

A scan of the endpoint 95.181.173[.]172 shows various other files such as “RunSchedulerTask.ps1” and “anydesk.exe” being hosted.

Screenshot of the endpoint 95.181.173[.]172 hosting various files [6].
Figure 1: Screenshot of the endpoint 95.181.173[.]172 hosting various files [6].

Shortly after these unusual file downloads, many of the devices were also seen with usage of RMM tools such as Splashtop, Atera, and AnyDesk. The devices were seen connecting to the following endpoints:

  • *[.]relay.splashtop[.]com
  • agent-api[.]atera[.]com
  • api[.]playanext[.]com with user agent AnyDesk/8.0.9

RMM tools have a wide range of legitimate capabilities that allow IT administrators to remotely manage endpoints. However, they can also be repurposed for malicious activities, allowing threat actors to maintain persistent access to systems, execute commands remotely, and even exfiltrate data. As the use of RMM tools can be legitimate, they offer threat actors a way to perform malicious activities while blending into normal business operations, which could evade detection by human analysts or traditional security tools.

One device was also seen making repeated SSL connections to a self-signed endpoint “azure-documents[.]com” (104.168.140[.]84) and further HTTP POSTs to “serv1[.]api[.]9hits[.]com/we/session” (128.199.207[.]131). Although the contents of these connections were encrypted, they were likely additional infrastructure used for C2 in addition to the RMM tools that were used. Self-signed certificates may also be used by an attacker to encrypt C2 communications.

Internal Reconnaissance

Following the exploit, two of the compromised devices then started to conduct internal reconnaissance activity. The following figure shows a spike in the number of internal connections made by one of the compromised devices on the customer’s environment, which typically indicates a network scan.

Advanced Search results of internal connections made an affected device.
Figure 2: Advanced Search results of internal connections made an affected device.

Reconnaissance tools such as Advanced Port Scanner (“www[.]advanced-port-scanner[.]com”) and Nmap were also seen being used by one of the devices to conduct scanning activities. Nmap is a network scanning tool commonly used by security teams for legitimate purposes like network diagnostics and vulnerability scanning. However, it can also be abused by threat actors to perform network reconnaissance, a technique known as Living off the Land (LotL). This not only reduces the need for custom or external tools but also reduces the risk of exposure, as the use of a legitimate tool in the network is unlikely to raise suspicion.

Privilege Escalation

In another affected customer network, the threat actor’s attempt to escalate their privileges was also observed, as a FortiClient EMS device was seen with an unusually large number of SMB/NTLM login failures, indicative of brute force activity. This attempt was successful, and the device was later seen authenticating with the credential “administrator”.

Figure 3: Advanced Search results of NTLM (top) and SMB (bottom) login failures.

Lateral Movement

After escalating privileges, attempts to move laterally throughout the same network were seen. One device was seen transferring the file “PSEXESVC.exe” to another device over SMB. This file is associated with PsExec, a command-line tool that allows for remote execution on other systems.

The threat actor was also observed leveraging the DCE-RPC protocol to move laterally within the network. Devices were seen with activity such as an increase in new RPC services, unusual requests to the SVCCTL endpoint, and the execution of WMI commands. The DCE-RPC protocol is typically used to facilitate communication between services on different systems and can allow one system to request services or execute commands on another.

These are further examples of LotL techniques used by threat actors exploiting CVE-2023-48788, as PsExec and the DCE-RPC protocol are often also used for legitimate administrative operations.

Accomplish Mission

In most cases, the threat actor’s end goal was not clearly observed. However, Darktrace did detect one instance where an unusually large volume of data had been uploaded to “put[.]io”, a cloud storage service, indicating that the end goal of the threat actor had been to steal potentially sensitive data.

In a recent investigation of a Medusa ransomware incident that took place in July 2024, Darktrace’s Threat Research team found that initial access to the environment had likely been gained through a FortiClient EMS device. An incoming connection from 209.15.71[.]121 over port 8013 was seen, suggesting that CVE-2023-48788 had been exploited. The device had been compromised almost three weeks before the ransomware was actually deployed, eventually resulting in the encryption of files.

Mitigating risk with proactive exposure management and real-time detection

Threat actors have continued to exploit unpatched vulnerabilities in internet-facing systems to gain initial access to a network. This highlights the importance of addressing and patching vulnerabilities as soon as they are disclosed and a fix is released. However, due to the rapid nature of exploitation, this may not always be enough. Furthermore, threat actors may even be exploiting vulnerabilities that are not yet publicly known.

As the end goals for a threat actor can differ – from data exfiltration to deploying ransomware – the post-exploitation behavior can also vary from actor to actor. However, AI security tools such as Darktrace / NETWORK can help identify and alert for post-exploitation behavior based on abnormal activity seen in the network environment.

Despite CVE-2023-48788 having been publicly disclosed and fixed in March, it appears that multiple threat actors, such as the Medusa ransomware group, have continued to exploit the vulnerability on unpatched systems. With new vulnerabilities being disclosed almost every other day, security teams may find it challenging continuously patch their systems.

As such, Darktrace / Proactive Exposure Management could also alleviate the workload of security teams by helping them identify and prioritize the most critical vulnerabilities in their network.

Insights from Darktrace’s First 6: Half-year threat report for 2024

First 6: half year threat report darktrace screenshot

Darktrace’s First 6: Half-Year Threat Report 2024 highlights the latest attack trends and key threats observed by the Darktrace Threat Research team in the first six months of 2024.

  • Focuses on anomaly detection and behavioral analysis to identify threats
  • Maps mitigated cases to known, publicly attributed threats for deeper context
  • Offers guidance on improving security posture to defend against persistent threats

Appendices

Credit to Emily Megan Lim (Cyber Security Analyst) and Ryan Traill (Threat Content Lead)

References

[1] https://nvd.nist.gov/vuln/detail/CVE-2023-48788

[2] https://www.horizon3.ai/attack-research/attack-blogs/cve-2023-48788-fortinet-forticlientems-sql-injection-deep-dive/

[3] https://redcanary.com/blog/threat-intelligence/cve-2023-48788/

[4] https://www.fortinet.com/blog/threat-research/teamcity-intrusion-saga-apt29-suspected-exploiting-cve-2023-42793

[5] https://redcanary.com/blog/threat-intelligence/cve-2023-48788/

[6] https://urlscan.io/result/3678b9e2-ad61-4719-bcef-b19cadcdd929/

List of IoCs

IoC - Type - Description + Confidence

  • 212.32.243[.]25/SETUP.MSI - URL - Payload
  • 89.149.200[.]9/SETUP.MSI - URL - Payload
  • 212.113.106[.]100/setup.msi - URL - Payload
  • 95.181.173[.]172/run.zip - URL - Payload
  • serv1[.]api[.]9hits[.]com - Domain - Likely C2 endpoint
  • 128.199.207[.]131 - IP - Likely C2 endpoint
  • azure-documents[.]com - Domain - C2 endpoint
  • 104.168.140[.]84 - IP - C2 endpoint
  • 77.246.103[.]110 - IP - Likely C2 endpoint
  • 212.113.106[.]100 - IP - C2 endpoint

Darktrace Model Detections

Anomalous Connection / Callback on Web Facing Device

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Posting HTTP to IP Without Hostname

Anomalous Connection / Powershell to Rare External

Anomalous Connection / Rare External SSL Self-Signed

Anomalous Connection / Suspicious Self-Signed SSL

Anomalous Server Activity / Rare External from Server

Anomalous Server Activity / New User Agent from Internet Facing System

Anomalous Server Activity / Server Activity on New Non-Standard Port - External

Compliance / Remote Management Tool On Server

Device / New User Agent

Device / New PowerShell User Agent

Device / Attack and Recon Tools

Device / ICMP Address Scan

Device / Network Range Scan

Device / Network Scan

Device / RDP Scan

Device / Suspicious SMB Scanning Activity

Anomalous Connection / Multiple SMB Admin Session

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Unusual Admin SMB Session

Device / Increase in New RPC Services

Device / Multiple Lateral Movement Breaches

Device / New or Uncommon WMI Activity

Device / New or Unusual Remote Command Execution

Device / SMB Lateral Movement

Device / Possible SMB/NTLM Brute Force

Unusual Activity / Successful Admin Brute-Force Activity

User / New Admin Credentials on Server

Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Unusual Activity / Unusual External Data to New Endpoint

Device / Large Number of Model Breaches

Device / Large Number of Model Breaches from Critical Network Device

MITRE ATT&CK Mapping

Tactic – ID: Technique

Initial Access – T1190: Exploit Public-Facing Application

Resource Development – T1587.003: Develop Capabilities: Digital Certificates

Resource Development – T1608.003: Stage Capabilities: Install Digital Certificate

Command and Control – T1071.001: Application Layer Protocol: Web Protocols

Command and Control – T1219: Remote Access Software

Execution – T1059.001: Command and Scripting Interpreter: PowerShell

Reconnaissance – T1595: Active Scanning

Reconnaissance – T1590.005: Gather Victim Network Information: IP Addresses

Discovery – T1046: Network Service Discovery

Credential Access – T1110: Brute Force

Defense Evasion,Initial Access,Persistence,Privilege Escalation – T1078: Valid Accounts

Lateral Movement – T1021.002: Remote Services: SMB/Windows Admin Shares

Lateral Movement – T1021.003: Remote Services: Distributed Component Object Model

Execution – T1569.002: System Services: Service Execution

Execution – T1047: Windows Management Instrumentation

Exfiltration – T1041: Exfiltration Over C2 Channel

Exfiltration – T1567.002: Exfiltration Over Web Service: Exfiltration to Cloud Storage

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI