Blog
/
Network
/
September 18, 2024

FortiClient EMS Exploited: Attack Chain & Post Exploitation Tactics

Read about the methods used to exploit FortiClient EMS and the critical post-exploitation tactics that affect cybersecurity defenses.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Sep 2024

Cyber attacks on internet-facing systems

In the first half of 2024, the Darktrace Threat Research team observed multiple campaigns of threat actors targeting vulnerabilities in internet-facing systems, including Ivanti CS/PS appliances, Palo Alto firewall devices, and TeamCity on-premises.

These systems, which are exposed to the internet, are often targeted by threat actors to gain initial access to a network. They are constantly being scanned for vulnerabilities, known or unknown, by opportunistic actors hoping to exploit gaps in security. Unfortunately, this exposure remains a significant blind spot for many security teams, as monitoring edge infrastructure can be particularly challenging due to its distributed nature and the sheer volume of external traffic it processes.

In this blog, we discuss a vulnerability that was exploited in Fortinet’s FortiClient Endpoint Management Server (EMS) and the post-exploitation activity that Darktrace observed across multiple customer environments.

What is FortiClient EMS?

FortiClient is typically used for endpoint security, providing features such as virtual private networks (VPN), malware protection, and web filtering. The FortiClient EMS is a centralized platform used by administrators to enforce security policies and manage endpoint compliance. As endpoints are remote and distributed across various locations, the EMS needs to be accessible over the internet.

However, being exposed to the internet presents significant security risks, and exploiting vulnerabilities in the system may give an attacker unauthorized access. From there, they could conduct further malicious activities such as reconnaissance, establishing command-and-control (C2), moving laterally across the network, and accessing sensitive data.

CVE-2023-48788

CVE-2023-48788 is a critical SQL injection vulnerability in FortiClient EMS that can allow an attacker to gain unauthorized access to the system. It stems from improper neutralization of special elements used in SQL commands, which allows attackers to exploit the system through specially crafted requests, potentially leading to Remote Code Execution (RCE) [1]. This critical vulnerability was given a CVSS score of 9.8 and can be exploited without authentication.

The affected versions of FortiClient EMS include:

  • FortiClient EMS 7.2.0 to 7.2.2 (fixed in 7.2.3)
  • FortiClient EMS 7.0.1 to 7.0.10 (fixed in 7.0.11)

The vulnerability was publicly disclosed on March 12, 2024, and an exploit proof of concept was released by Horizon3.ai on March 21 [2]. Starting from March 24, almost two weeks after the initial disclosure, Darktrace began to observe at least six instances where the FortiClient EMS vulnerability had likely been exploited on customer networks. Seemingly exploited devices in multiple customer environments were observed performing anomalous activities, including the installation of Remote Monitoring and Management (RMM) tools, which was also reported by other security vendors around the same time [3].

Darktrace’s Coverage

Initial Access

To understand how the vulnerability can be exploited to gain initial access, we first need to explain some components of the FortiClient EMS:

  • The service FmcDaemon.exe is used for communication between the EMS and enrolled endpoint clients. It listens on port 8013 for incoming client connections.
  • Incoming requests are then sent to FCTDas.exe, which translates requests from other server components into SQL requests. This service interacts with the Microsoft SQL database.
  • Endpoint clients communicate with the FmcDaemon on the server on port 8013 by default.

Therefore, an SQL injection attack can be performed by crafting a malicious payload and sending it over port 8013 to the server. To carry out RCE, an attacker may send further SQL statements to enable and use the xp_cmdshell functionality of the Microsoft SQL server [2].

Shortly before post-exploitation activity began, Darktrace had observed incoming connections to some of the FortiClient EMS devices over port 8013 from the external IPs 77.246.103[.]110, 88.130.150[.]101, and 45.155.141[.]219. This likely represented the threat actors sending an SQL injection payload over port 8013 to the EMS device to validate the exploit.

Establish C2

After exploiting the vulnerability and gaining access to an EMS device on one customer network, two additional devices were seen with HTTP POST requests to 77.246.103[.]110 and 212.113.106[.]100 with a new PowerShell user agent.

Interestingly, the IP 212.113.106[.]100 has been observed in various other campaigns where threat actors have also targeted internet-facing systems and exploited other vulnerabilities. Open-source intelligence (OSINT) suggests that this indicator of compromise (IoC) is related to the Sliver C2 framework and has been used by threat actors such as APT28 (Fancy Bear) and APT29 (Cozy Bear) [4].

Unusual file downloads were also observed on four devices, including:

  • “SETUP.MSI” from 212.32.243[.]25 and 89.149.200[.]91 with a cURL user agent
  • “setup.msi” from 212.113.106[.]100 with a Windows Installer user agent
  • “run.zip” from 95.181.173[.]172 with a PowerShell user agent

The .msi files would typically contain the RMM tools Atera or ScreenConnect [5]. By installing RMM tools for C2, attackers can leverage their wide range of functionalities to carry out various tasks, such as file transfers, without the need to install additional tools. As RMM tools are designed to maintain a stable connection to remote systems, they may also allow the attackers to ensure persistent access to the compromised systems.

A scan of the endpoint 95.181.173[.]172 shows various other files such as “RunSchedulerTask.ps1” and “anydesk.exe” being hosted.

Screenshot of the endpoint 95.181.173[.]172 hosting various files [6].
Figure 1: Screenshot of the endpoint 95.181.173[.]172 hosting various files [6].

Shortly after these unusual file downloads, many of the devices were also seen with usage of RMM tools such as Splashtop, Atera, and AnyDesk. The devices were seen connecting to the following endpoints:

  • *[.]relay.splashtop[.]com
  • agent-api[.]atera[.]com
  • api[.]playanext[.]com with user agent AnyDesk/8.0.9

RMM tools have a wide range of legitimate capabilities that allow IT administrators to remotely manage endpoints. However, they can also be repurposed for malicious activities, allowing threat actors to maintain persistent access to systems, execute commands remotely, and even exfiltrate data. As the use of RMM tools can be legitimate, they offer threat actors a way to perform malicious activities while blending into normal business operations, which could evade detection by human analysts or traditional security tools.

One device was also seen making repeated SSL connections to a self-signed endpoint “azure-documents[.]com” (104.168.140[.]84) and further HTTP POSTs to “serv1[.]api[.]9hits[.]com/we/session” (128.199.207[.]131). Although the contents of these connections were encrypted, they were likely additional infrastructure used for C2 in addition to the RMM tools that were used. Self-signed certificates may also be used by an attacker to encrypt C2 communications.

Internal Reconnaissance

Following the exploit, two of the compromised devices then started to conduct internal reconnaissance activity. The following figure shows a spike in the number of internal connections made by one of the compromised devices on the customer’s environment, which typically indicates a network scan.

Advanced Search results of internal connections made an affected device.
Figure 2: Advanced Search results of internal connections made an affected device.

Reconnaissance tools such as Advanced Port Scanner (“www[.]advanced-port-scanner[.]com”) and Nmap were also seen being used by one of the devices to conduct scanning activities. Nmap is a network scanning tool commonly used by security teams for legitimate purposes like network diagnostics and vulnerability scanning. However, it can also be abused by threat actors to perform network reconnaissance, a technique known as Living off the Land (LotL). This not only reduces the need for custom or external tools but also reduces the risk of exposure, as the use of a legitimate tool in the network is unlikely to raise suspicion.

Privilege Escalation

In another affected customer network, the threat actor’s attempt to escalate their privileges was also observed, as a FortiClient EMS device was seen with an unusually large number of SMB/NTLM login failures, indicative of brute force activity. This attempt was successful, and the device was later seen authenticating with the credential “administrator”.

Figure 3: Advanced Search results of NTLM (top) and SMB (bottom) login failures.

Lateral Movement

After escalating privileges, attempts to move laterally throughout the same network were seen. One device was seen transferring the file “PSEXESVC.exe” to another device over SMB. This file is associated with PsExec, a command-line tool that allows for remote execution on other systems.

The threat actor was also observed leveraging the DCE-RPC protocol to move laterally within the network. Devices were seen with activity such as an increase in new RPC services, unusual requests to the SVCCTL endpoint, and the execution of WMI commands. The DCE-RPC protocol is typically used to facilitate communication between services on different systems and can allow one system to request services or execute commands on another.

These are further examples of LotL techniques used by threat actors exploiting CVE-2023-48788, as PsExec and the DCE-RPC protocol are often also used for legitimate administrative operations.

Accomplish Mission

In most cases, the threat actor’s end goal was not clearly observed. However, Darktrace did detect one instance where an unusually large volume of data had been uploaded to “put[.]io”, a cloud storage service, indicating that the end goal of the threat actor had been to steal potentially sensitive data.

In a recent investigation of a Medusa ransomware incident that took place in July 2024, Darktrace’s Threat Research team found that initial access to the environment had likely been gained through a FortiClient EMS device. An incoming connection from 209.15.71[.]121 over port 8013 was seen, suggesting that CVE-2023-48788 had been exploited. The device had been compromised almost three weeks before the ransomware was actually deployed, eventually resulting in the encryption of files.

Mitigating risk with proactive exposure management and real-time detection

Threat actors have continued to exploit unpatched vulnerabilities in internet-facing systems to gain initial access to a network. This highlights the importance of addressing and patching vulnerabilities as soon as they are disclosed and a fix is released. However, due to the rapid nature of exploitation, this may not always be enough. Furthermore, threat actors may even be exploiting vulnerabilities that are not yet publicly known.

As the end goals for a threat actor can differ – from data exfiltration to deploying ransomware – the post-exploitation behavior can also vary from actor to actor. However, AI security tools such as Darktrace / NETWORK can help identify and alert for post-exploitation behavior based on abnormal activity seen in the network environment.

Despite CVE-2023-48788 having been publicly disclosed and fixed in March, it appears that multiple threat actors, such as the Medusa ransomware group, have continued to exploit the vulnerability on unpatched systems. With new vulnerabilities being disclosed almost every other day, security teams may find it challenging continuously patch their systems.

As such, Darktrace / Proactive Exposure Management could also alleviate the workload of security teams by helping them identify and prioritize the most critical vulnerabilities in their network.

Insights from Darktrace’s First 6: Half-year threat report for 2024

First 6: half year threat report darktrace screenshot

Darktrace’s First 6: Half-Year Threat Report 2024 highlights the latest attack trends and key threats observed by the Darktrace Threat Research team in the first six months of 2024.

  • Focuses on anomaly detection and behavioral analysis to identify threats
  • Maps mitigated cases to known, publicly attributed threats for deeper context
  • Offers guidance on improving security posture to defend against persistent threats

Appendices

Credit to Emily Megan Lim (Cyber Security Analyst) and Ryan Traill (Threat Content Lead)

References

[1] https://nvd.nist.gov/vuln/detail/CVE-2023-48788

[2] https://www.horizon3.ai/attack-research/attack-blogs/cve-2023-48788-fortinet-forticlientems-sql-injection-deep-dive/

[3] https://redcanary.com/blog/threat-intelligence/cve-2023-48788/

[4] https://www.fortinet.com/blog/threat-research/teamcity-intrusion-saga-apt29-suspected-exploiting-cve-2023-42793

[5] https://redcanary.com/blog/threat-intelligence/cve-2023-48788/

[6] https://urlscan.io/result/3678b9e2-ad61-4719-bcef-b19cadcdd929/

List of IoCs

IoC - Type - Description + Confidence

  • 212.32.243[.]25/SETUP.MSI - URL - Payload
  • 89.149.200[.]9/SETUP.MSI - URL - Payload
  • 212.113.106[.]100/setup.msi - URL - Payload
  • 95.181.173[.]172/run.zip - URL - Payload
  • serv1[.]api[.]9hits[.]com - Domain - Likely C2 endpoint
  • 128.199.207[.]131 - IP - Likely C2 endpoint
  • azure-documents[.]com - Domain - C2 endpoint
  • 104.168.140[.]84 - IP - C2 endpoint
  • 77.246.103[.]110 - IP - Likely C2 endpoint
  • 212.113.106[.]100 - IP - C2 endpoint

Darktrace Model Detections

Anomalous Connection / Callback on Web Facing Device

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Connection / New User Agent to IP Without Hostname

Anomalous Connection / Posting HTTP to IP Without Hostname

Anomalous Connection / Powershell to Rare External

Anomalous Connection / Rare External SSL Self-Signed

Anomalous Connection / Suspicious Self-Signed SSL

Anomalous Server Activity / Rare External from Server

Anomalous Server Activity / New User Agent from Internet Facing System

Anomalous Server Activity / Server Activity on New Non-Standard Port - External

Compliance / Remote Management Tool On Server

Device / New User Agent

Device / New PowerShell User Agent

Device / Attack and Recon Tools

Device / ICMP Address Scan

Device / Network Range Scan

Device / Network Scan

Device / RDP Scan

Device / Suspicious SMB Scanning Activity

Anomalous Connection / Multiple SMB Admin Session

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Unusual Admin SMB Session

Device / Increase in New RPC Services

Device / Multiple Lateral Movement Breaches

Device / New or Uncommon WMI Activity

Device / New or Unusual Remote Command Execution

Device / SMB Lateral Movement

Device / Possible SMB/NTLM Brute Force

Unusual Activity / Successful Admin Brute-Force Activity

User / New Admin Credentials on Server

Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Unusual Activity / Unusual External Data to New Endpoint

Device / Large Number of Model Breaches

Device / Large Number of Model Breaches from Critical Network Device

MITRE ATT&CK Mapping

Tactic – ID: Technique

Initial Access – T1190: Exploit Public-Facing Application

Resource Development – T1587.003: Develop Capabilities: Digital Certificates

Resource Development – T1608.003: Stage Capabilities: Install Digital Certificate

Command and Control – T1071.001: Application Layer Protocol: Web Protocols

Command and Control – T1219: Remote Access Software

Execution – T1059.001: Command and Scripting Interpreter: PowerShell

Reconnaissance – T1595: Active Scanning

Reconnaissance – T1590.005: Gather Victim Network Information: IP Addresses

Discovery – T1046: Network Service Discovery

Credential Access – T1110: Brute Force

Defense Evasion,Initial Access,Persistence,Privilege Escalation – T1078: Valid Accounts

Lateral Movement – T1021.002: Remote Services: SMB/Windows Admin Shares

Lateral Movement – T1021.003: Remote Services: Distributed Component Object Model

Execution – T1569.002: System Services: Service Execution

Execution – T1047: Windows Management Instrumentation

Exfiltration – T1041: Exfiltration Over C2 Channel

Exfiltration – T1567.002: Exfiltration Over Web Service: Exfiltration to Cloud Storage

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst

More in this series

No items found.

Blog

/

/

September 8, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

solesloft incident Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

/

September 8, 2025

Cyber Assessment Framework v4.0 Raises the Bar: 6 Questions every security team should ask about their security posture

CAF v4.0 cyber assessment frameworkDefault blog imageDefault blog image

What is the Cyber Assessment Framework?

The Cyber Assessment Framework (CAF) acts as guide for organizations, specifically across essential services, critical national infrastructure and regulated sectors, across the UK for assessing, managing and improving their cybersecurity, cyber resilience and cyber risk profile.

The guidance in the Cyber Assessment Framework aligns with regulations such as The Network and Information Systems Regulations (NIS), The Network and Information Security Directive (NIS2) and the Cyber Security and Resilience Bill.

What’s new with the Cyber Assessment Framework 4.0?

On 6 August 2025, the UK’s National Cyber Security Centre (NCSC) released Cyber Assessment Framework 4.0 (CAF v4.0) a pivotal update that reflects the increasingly complex threat landscape and the regulatory need for organisations to respond in smarter, more adaptive ways.

The Cyber Assessment Framework v4.0 introduces significant shifts in expectations, including, but not limited to:

  • Understanding threats in terms of the capabilities, methods and techniques of threat actors and the importance of maintaining a proactive security posture (A2.b)
  • The use of secure software development principles and practices (A4.b)
  • Ensuring threat intelligence is understood and utilised - with a focus on anomaly-based detection (C1.f)
  • Performance of proactive threat hunting with automation where appropriate (C2.a)

This blog post will focus on these components of the framework. However, we encourage readers to get the full scope of the framework by visiting the NCSC website where they can access the full framework here.

In summary, the changes to the framework send a clear signal: the UK’s technical authority now expects organisations to move beyond static rule-based systems and embrace more dynamic, automated defences. For those responsible for securing critical national infrastructure and essential services, these updates are not simply technical preferences, but operational mandates.

At Darktrace, this evolution comes as no surprise. In fact, it reflects the approach we've championed since our inception.

Why Darktrace? Leading the way since 2013

Darktrace was built on the principle that detecting cyber threats in real time requires more than signatures, thresholds, or retrospective analysis. Instead, we pioneered a self-learning approach powered by artificial intelligence, that understands the unique “normal” for every environment and uses this baseline to spot subtle deviations indicative of emerging threats.

From the beginning, Darktrace has understood that rules and lists will never keep pace with adversaries. That’s why we’ve spent over a decade developing AI that doesn't just alert, it learns, reasons, explains, and acts.

With Cyber Assessment Framework v4.0, the bar has been raised to meet this new reality. For technical practitioners tasked with evaluating their organisation’s readiness, there are five essential questions that should guide the selection or validation of anomaly detection capabilities.

6 Questions you should ask about your security posture to align with CAF v4

1. Can your tools detect threats by identifying anomalies?

Cyber Assessment Framework v4.0 principle C1.f has been added in this version and requires that, “Threats to the operation of network and information systems, and corresponding user and system behaviour, are sufficiently understood. These are used to detect cyber security incidents.”

This marks a significant shift from traditional signature-based approaches, which rely on known Indicators of Compromise (IOCs) or predefined rules to an expectation that normal user and system behaviour is understood to an extent enabling abnormality detection.

Why this shift?

An overemphasis on threat intelligence alone leaves defenders exposed to novel threats or new variations of existing threats. By including reference to “understanding user and system behaviour” the framework is broadening the methods of threat detection beyond the use of threat intelligence and historical attack data.

While CAF v4.0 places emphasis on understanding normal user and system behaviour and using that understanding to detect abnormalities and as a result, adverse activity. There is a further expectation that threats are understood in terms of industry specific issues and that monitoring is continually updated  

Darktrace uses an anomaly-based approach to threat detection which involves establishing a dynamic baseline of “normal” for your environment, then flagging deviations from that baseline — even when there’s no known IoCs to match against. This allows security teams to surface previously unseen tactics, techniques, and procedures in real time, whether it’s:

  • An unexpected outbound connection pattern (e.g., DNS tunnelling);
  • A first-time API call between critical services;
  • Unusual calls between services; or  
  • Sensitive data moving outside normal channels or timeframes.

The requirement that organisations must be equipped to monitor their environment, create an understanding of normal and detect anomalous behaviour aligns closely with Darktrace’s capabilities.

2. Is threat hunting structured, repeatable, and improving over time?

CAF v4.0 introduces a new focus on structured threat hunting to detect adverse activity that may evade standard security controls or when such controls are not deployable.  

Principle C2.a outlines the need for documented, repeatable threat hunting processes and stresses the importance of recording and reviewing hunts to improve future effectiveness. This inclusion acknowledges that reactive threat hunting is not sufficient. Instead, the framework calls for:

  • Pre-determined and documented methods to ensure threat hunts can be deployed at the requisite frequency;
  • Threat hunts to be converted  into automated detection and alerting, where appropriate;  
  • Maintenance of threat hunt  records and post-hunt analysis to drive improvements in the process and overall security posture;
  • Regular review of the threat hunting process to align with updated risks;
  • Leveraging automation for improvement, where appropriate;
  • Focus on threat tactics, techniques and procedures, rather than one-off indicators of compromise.

Traditionally, playbook creation has been a manual process — static, slow to amend, and limited by human foresight. Even automated SOAR playbooks tend to be stock templates that can’t cover the full spectrum of threats or reflect the specific context of your organisation.

CAF v4.0 sets the expectation that organisations should maintain documented, structured approaches to incident response. But Darktrace / Incident Readiness & Recovery goes further. Its AI-generated playbooks are bespoke to your environment and updated dynamically in real time as incidents unfold. This continuous refresh of “New Events” means responders always have the latest view of what’s happening, along with an updated understanding of the AI's interpretation based on real-time contextual awareness, and recommended next steps tailored to the current stage of the attack.

The result is far beyond checkbox compliance: a living, adaptive response capability that reduces investigation time, speeds containment, and ensures actions are always proportionate to the evolving threat.

3. Do you have a proactive security posture?

Cyber Assessment Framework v4.0 does not want organisations to detect threats, it expects them to anticipate and reduce cyber risk before an incident ever occurs. That is s why principle A2.b calls for a security posture that moves from reactive detection to predictive, preventative action.

A proactive security posture focuses on reducing the ease of the most likely attack paths in advance and reducing the number of opportunities an adversary has to succeed in an attack.

To meet this requirement, organisations could benefit in looking for solutions that can:

  • Continuously map the assets and users most critical to operations;
  • Identify vulnerabilities and misconfigurations in real time;
  • Model likely adversary behaviours and attack paths using frameworks like MITRE ATT&CK; and  
  • Prioritise remediation actions that will have the highest impact on reducing overall risk.

When done well, this approach creates a real-time picture of your security posture, one that reflects the dynamic nature and ongoing evolution of both your internal environment and the evolving external threat landscape. This enables security teams to focus their time in other areas such as  validating resilience through exercises such as red teaming or forecasting.

4. Can your team/tools customize detection rules and enable autonomous responses?

CAF v4.0 places greater emphasis on reducing false positives and acting decisively when genuine threats are detected.  

The framework highlights the need for customisable detection rules and, where appropriate, autonomous response actions that can contain threats before they escalate:

The following new requirements are included:  

  • C1.c.: Alerts and detection rules should be adjustable to reduce false positives and optimise responses. Custom tooling and rules are used in conjunction with off the shelf tooling and rules;
  • C1.d: You investigate and triage alerts from all security tools and take action – allowing for improvement and prioritization of activities;
  • C1.e: Monitoring and detection personnel have sufficient understanding of operational context and deal with workload effectively as well as identifying areas for improvement (alert or triage fatigue is not present);
  • C2.a: Threat hunts should be turned into automated detections and alerting where appropriate and automation should be leveraged to improve threat hunting.

Tailored detection rules improve accuracy, while automation accelerates response, both of which help satisfy regulatory expectations. Cyber AI Analyst allows for AI investigation of alerts and can dramatically reduce the time a security team spends on alerts, reducing alert fatigue, allowing more time for strategic initiatives and identifying improvements.

5. Is your software secure and supported?  

CAF v4.0 introduced a new principle which requires software suppliers to leverage an established secure software development framework. Software suppliers must be able to demonstrate:  

  • A thorough understanding of the composition and provenance of software provided;  
  • That the software development lifecycle is informed by a detailed and up to date understanding of threat; and  
  • They can attest to the authenticity and integrity of the software, including updates and patches.  

Darktrace is committed to secure software development and all Darktrace products and internally developed systems are developed with secure engineering principles and security by design methodologies in place. Darktrace commits to the inclusion of security requirements at all stages of the software development lifecycle. Darktrace is ISO 27001, ISO 27018 and ISO 42001 Certified – demonstrating an ongoing commitment to information security, data privacy and artificial intelligence management and compliance, throughout the organisation.  

6. Is your incident response plan built on a true understanding of your environment and does it adapt to changes over time?

CAF v4.0 raises the bar for incident response by making it clear that a plan is only as strong as the context behind it. Your response plan must be shaped by a detailed, up-to-date understanding of your organisation’s specific network, systems, and operational priorities.

The framework’s updates emphasise that:

  • Plans must explicitly cover the network and information systems that underpin your essential functions because every environment has different dependencies, choke points, and critical assets.
  • They must be readily accessible even when IT systems are disrupted ensuring critical steps and contact paths aren’t lost during an incident.
  • They should be reviewed regularly to keep pace with evolving risks, infrastructure changes, and lessons learned from testing.

From government expectation to strategic advantage

Cyber Assessment Framework v4.0 signals a powerful shift in cybersecurity best practice. The newest version sets a higher standard for detection performance, risk management, threat hunting software development and proactive security posture.

For Darktrace, this is validation of the approach we have taken since the beginning: to go beyond rules and signatures to deliver proactive cyber resilience in real-time.

-----

Disclaimer:

This document has been prepared on behalf of Darktrace Holdings Limited. It is provided for information purposes only to provide prospective readers with general information about the Cyber Assessment Framework (CAF) in a cyber security context. It does not constitute legal, regulatory, financial or any other kind of professional advice and it has not been prepared with the reader and/or its specific organisation’s requirements in mind. Darktrace offers no warranties, guarantees, undertakings or other assurances (whether express or implied)  that: (i) this document or its content are  accurate or complete; (ii) the steps outlined herein will guarantee compliance with CAF; (iii) any purchase of Darktrace’s products or services will guarantee compliance with CAF; (iv) the steps outlined herein are appropriate for all customers. Neither the reader nor any third party is entitled to rely on the contents of this document when making/taking any decisions or actions to achieve compliance with CAF. To the fullest extent permitted by applicable law or regulation, Darktrace has no liability for any actions or decisions taken or not taken by the reader to implement any suggestions contained herein, or for any third party products, links or materials referenced. Nothing in this document negates the responsibility of the reader to seek independent legal or other advice should it wish to rely on any of the statements, suggestions, or content set out herein.  

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI