Blog
/
AI
/
November 3, 2021

Defending Against Living Off the Land Cyber Attacks

Find out how hackers utilize living off the land techniques to navigate environments without detection and how to safeguard against these threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
Nov 2021

What is Living off the Land attack?

While the term was first coined in 2013, Living off the Land tools, techniques, and procedures (TTPs) have boomed in popularity in recent years. In part, this is because the traditional approach of defensive security — blocklisting file hashes, domains, and other traces of threats encountered in previous attacks — is ill-equipped to identify these attacks. So these stealthy, often fileless attacks, have pushed their way into the mainstream.

Definition and overview

Living off the Land is a strategy which involves threat actors leveraging the utilities readily available within the target organization’s digital environment to move through the cyber kill chain. This is a popular method because It is often cheaper, easier, and more effective to make use of an organization’s own infrastructure in an attempt to attack rather than writing bespoke malware for every heist.

How does Living off the Land attack work?

Living off the Land attacks have a particular history in highly organized, targeted hacking. Advanced Persistent Threat (APT) groups have long favored Living off the Land TTPs, since evasion is a top priority. And trends show that ransomware groups are opting for human-operated ransomware that relies heavily on Living off the Land techniques, instead of commodity malware.

Among some of the most commonly used tools exploited for nefarious purposes are Powershell, Windows Management Interface (WMI), and PsExec. These tools are regularly used by network administrators as part of their daily routines, and traditional security tools reliant on static rules and signatures often have a hard time distinguishing between legitimate and malicious use.

Living off the Land attack techniques

Before a threat actor turns your infrastructure against you in a Living off the Land attack, they must be able to execute commands on a targeted system. Therefore, Living off the Land attacks are a post-infection framework for network reconnaissance, lateral movement, and persistence.

Once a device is infected, there are hundreds of system tools at the attacker’s disposal – these may be pre-installed on the system or downloaded via Microsoft-signed binaries. And, in the wrong hands, other trusted third-party administration tools on the network can also turn from friend to foe.

As Living off the Land techniques evolve, a single typical attack is hard to determine. However, we can group these TTPs in broader categories.

Microsoft-signed Living off the Land TTPs

Microsoft is ubiquitous in the business world and across industries. The Living off the Land Binaries and Scripts (LOLBAS) project aims to document all Microsoft-signed binaries and scripts that include functionality for APT groups in Living off the Land attacks. To date, there are 135 system tools on this list that are vulnerable to misuse, each aiding a different objective. These could be the creation of new user accounts, data compression and exfiltration, system information gathering, launching processes on a target destination or even the disablement of security services. Both Microsoft’s documentation of vulnerable pre-installed tools and the LOLBAS project are growing, non-exhaustive lists.

Command line exploitation

When it comes to delivering a malicious payload to the target, WMI (WMIC.exe), the command line tool (cmd.exe), and PowerShell (powershell.exe) were used most frequently by attackers, according to a recent study. These commonly exploited command line utilities are used during the configuration of security settings and system properties, provide sensitive network or device status updates, and facilitate the transfer and execution of files between devices.

Specifically, the command line group shares three key traits:

  1. They are readily available on Windows systems.
  2. They are frequently used by most administrators or internal processes to perform everyday tasks.
  3. They can perform their core functionalities without writing data to a disk.

Mimikatz

Mimikatz differs from other tools in that it is not pre-installed on most systems. It is an open-source utility used for the dumping of passwords, hashes, PINs and Kerberos tickets. While some network administrators may use Mimikatz to perform internal vulnerability assessments, it is not readily available on Windows systems.

Traditional security approaches used to detect the download, installation, and use of Mimikatz are often insufficient. There exists a wide range of verified and well documented techniques for obfuscating tooling like Mimikatz, meaning even an unsophisticated attacker can subvert basic string or hash-based detections.

Tips for stopping Living off the Land attacks

Living off the Land techniques have proven incredibly effective at enabling attackers to blend into organizations’ digital environments. It is normal for millions of credentials, network tools, and processes to be logged each day across a single digital ecosystem. So how can defenders spot malicious use of legitimate tools amidst this digital noise?

Network hygiene: As with most threats, basic network hygiene is the first step. This includes implementing the principle of least privilege, de-activating all unnecessary programs, setting up software whitelisting, and performing asset and application inventory checks. However, while these measures are a step in the right direction, with enough time a sophisticated attacker will always manage to work their way around them.

Self-Learning AI technology: This technology, exclusive to Darktrace, has become fundamental in shining a light on attackers using an organization’s own infrastructure against them. It learns any given unique digital environment from the ground up, understanding the ‘pattern of life’ for every device and user. Living off the Land attacks are therefore identified in real time from a series of subtle deviations. This might include a new credential or unusual SMB / DCE-RPC usage.

Its deep understanding of the business enables it to spot attacks that fly under the radar of other tools. With a Living off the Land attack, the AI will recognize that although usage of particular tool might be normal for an organization, the way in which that tool is used allows the AI to reveal seemingly benign behavior as unmistakably malicious.

Example of Self-Learning AI

Self-Learning AI might observe the frequent usage of Powershell user-agents across multiple devices, but will only report an incident if the user agent is observed on a device at an unusual time.

Similarly, Darktrace might observe WMI commands being sent between thousands of combinations of devices each day, but will only alert on such activity if the commands are uncommon for both the source and the destination.

And even the subtle indicators of Mimikatz exploitation, like new credential usage or uncommon SMB traffic, will not be buried among the normal operations of the infrastructure.

Final thoughts on Living off the Land techniques

Living off the Land techniques aren’t going away any time soon. Recognizing this, security teams are beginning to move away from ‘legacy’-based defenses that rely on historical attack data to catch the next attack, and towards AI that uses a bespoke and evolving understanding of its surroundings to detect subtle deviations indicative of a threat – even if that threat makes use of legitimate tools.

Thanks to Darktrace analysts Isabel Finn and Paul Jennings for their insights on the above threat find and supporting MITRE ATT&CK mapping.

Learn more about Self-Learning AI

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product

More in this series

No items found.

Blog

/

/

April 24, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats using signatures and threat intelligence, Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI