Blog
/
/
October 21, 2020

Protecting Healthcare Organizations from Maze Ransomware

Discover how Darktrace detected and protected a healthcare organization from a Maze ransomware attack. Stay informed and protect your data today.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
21
Oct 2020

Ransomware, with more severe consequences and against increasingly high-stakes targets, continues to cause chaos and disruption to organizations globally. Earlier this year saw a surge in a strain of ransomware known as ‘Maze’, which shut down operations at leading optical products provider Canon and wreaked havoc in Fortune 500 companies like Cognizant.

Ransomware targeting healthcare

Just last month, news of a woman in Germany dying after a ransomware attack on the Dusseldorf University Hospital hit the headlines, confirming that the threat to people is no longer theoretical.

Ransomware affects all industries but 2020 has seen cyber-criminals increasingly hit essential services like healthcare, local government and critical infrastructure – intentionally or as collateral damage. As the stakes rise, so too does the need to understand how to prevent these devastating and pervasive attacks.

Once deployed, ransomware can spread laterally through an organization’s digital infrastructure in seconds, taking entire systems offline in minutes. Attackers often strike at night or at weekends, when they know security teams’ response time will be slower. Machine-speed attacks require machine-speed defenses that can detect and respond to this threat without human guidance, and autonomously block the threat.

This blog explains how AI detects and stops ransomware by learning ‘normal’ across the digital estate – from email and SaaS applications to the network, cloud, IoT and industrial control systems – by looking at an example of a Maze ransomware attack caught by Darktrace in a customer’s environment.

Darktrace’s Immune System detected the threat as soon as it emerged, but as the Autonomous Response capability was configured in passive mode, neutralizing the threat still required human action. This means that attackers were able to move laterally across the organization at speed and began to encrypt files before the security team stepped in. In active mode, Antigena Network would have contained the activity in its earliest stages.

How does Darktrace detect ransomware like Maze?

As soon as Darktrace is deployed – whether virtually or on-premise – the AI begins to learn the ‘pattern of life’ for every user and device across the organization. This enables the technology to detect anomalous activity indicative of a cyber-threat. It does this without relying on hard-coded rules and signatures; an approach that requires a ‘Patient Zero’ before updating these lists and containing subsequent identical threats. When it comes to a novel instance of ransomware spreading across an organization and infecting hundreds of devices in seconds, such an approach becomes useless.

With an understanding of the organization’s ‘pattern of life’, Darktrace’s AI recognizes unusual activity in real time. Such activity might include:

ActivityDarktrace detectionsUnusual downloads from C2 serversEXE from Rare Destination / Masqueraded File TransferBrute forcing publicly accessible RDP serversIncoming RDP brute force modelsBrute forcing access to web portal user accounts with weak passwords or lacking MFAVarious brute force modelsC2 via Cobalt Strike / Empire PowershellSSL Beaconing to Rare Endpoint / Empire Powershell and Cobalt Strike modelsNetwork scanning for reconnaissance & EternalBlue exploitSuspicious Network Scan model known to download Advanced IP Scanner after successful exploitMimikatz usage for privilege escalationUnusual Admin SMB Session / Unusual RDP Admin Session (Procdump, PingCastle, and Bloodhound)Psexec / ‘Living off the Land’ for lateral movementUnusual Remote Command Execution / Unusual PSexec / Unusual DCE RPCData exfiltration to C2 serversData Sent to Rare Domain / Unusual Internal Download / Unusual External UploadEncryptionSuspicious SMB Activity / Additional File Extensions AppendedExfiltration of passwords through various cloud storage servicesData Sent to New External DomainRDP tunnels using NgrokOutbound RDP / Various beaconing models

In addition, Darktrace is able to identify attempts to brute force access on Internet-facing servers. It can also detect specific searches for passwords stored in plain text as well as various password manager databases.

Maze ransomware analysis

Figure 1: A timeline of the attack

Most recently, Darktrace’s AI detected a case of Maze ransomware targeting a healthcare organization. Darktrace’s Immune System spotted every stage of the attack lifecycle within seconds, and the Cyber AI Analyst immediately launched an automated investigation of the full incident, surfacing a natural-language, actionable summary for the security team.

The initial infection vector was spear phishing. Maze is frequently delivered to healthcare organizations using pandemic-themed phishing emails. Darktrace also offers AI-powered email security that understands normal behavior for every Microsoft 365 user and spots anomalies that are indicative of phishing, but in the absence of this protection, the emails were waved through by traditional gateways.

The attacker began engaging in network scanning activity and enumeration to escalate access within the Research and Development subnet. Darktrace’s AI detected a successful compromise of admin level credentials, unusual RDP activities and multiple Kerberos authentication attempts.

Darktrace detected the attacker uploading a domain controller, before batch files were written to multiple file shares, which were used for the encryption process.

An infected device then connected to a suspicious domain that is associated to Maze mazedecrypt[.]top and the TOR browser bundle was downloaded, likely for C2 purposes. A large volume of sensitive data from the R&D subnet was then uploaded to a rare domain. This is typical of Maze ransomware, which is seen as a ‘double threat’ in that it not only seeks to encrypt critical files but also sends a copy of them back to the attacker.

This form of attack, also known as doxware, then provides the attacker with leverage in the possible event that the organization refused to pay the ransom – they can sell the data on the Dark Web, or threaten to leak intellectual property to competitors, for instance.

Real-time automated investigations with Cyber AI Analyst

Throughout the attack lifecycle, multiple high-fidelity alerts were generated by Darktrace AI and this prompted the Cyber AI Analyst to automatically launch an investigation in the background, stitching together the different events into a single, comprehensive security incident, which it then displayed for human review in a single screen.

Figure 2: The data exfiltration to a rare external domain

Figure 3: Darktrace’s user interface highlighting the unusual activity and model breaches on a domain controller directly linked with the ransomware attack

Targeted, double-threat attacks like Maze ransomware are on the rise and extremely dangerous – and they are increasingly targeting high-stakes environments. Thousands of organizations are turning to AI, not only to detect and investigate on ransomware intrusions as demonstrated above, but to autonomously respond to events as they occur. Ransomware attacks like these show organizations why autonomous response in active mode is not just a nice to have – but necessary – as fast-moving threats demand machine-speed responses.

In a previous blog, we looked at a novel zero-day ransomware attack that slipped through legacy security tools – but Antigena Network was configured in active mode, autonomously stopping the threat in its tracks. This unique capability is becoming crucial for organizations in every industry who find themselves targeted by increasingly sophisticated attack methods.

Thanks to Darktrace analyst Adam Stevens for his insights on the above threat find.

Learn more about Autonomous Response

Darktrace model detections

  • Device / Suspicious Network Scan Activity
  • Device / Network Scan
  • Device / ICMP Address Scan
  • Unusual Activity / Unusual Internal Connections
  • Device / Multiple Lateral Movement Model Breaches
  • Experimental / Executable Uploaded to DC
  • Compromise / Ransomware::Suspicious SMB Activity
  • Compromise / Ransomware::Ransom or Offensive Words Written to SMB
  • Compliance / SMB Drive Write
  • Compliance / High Priority Compliance Model Breach
  • Anomalous Connection / SMB Enumeration
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Device / New or Unusual Remote Command Execution
  • Anomalous Connection / New or Uncommon Service Control
  • Anomalous Connection / SMB Enumeration
  • Experimental / Possible RPC Execution
  • Anomalous Connection / High Volume of New or Uncommon Service Control
  • Experimental / Possible Ransom Note
  • Anomalous File / Internal::Additional Extension Appended to SMB File
  • Compliance / Tor Package Download
  • Device / Suspicious Domain
  • Device / Long Agent Connection to New Endpoint
  • Anomalous Connection / Data Sent to Rare Domain

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Proactive Security

/

October 24, 2025

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents Default blog imageDefault blog image

Most risk management programs remain anchored in enumeration: scanning every asset, cataloging every CVE, and drowning in lists that rarely translate into action. Despite expensive scanners, annual pen tests, and countless spreadsheets, prioritization still falters at two critical points.

Context gaps at the device level: It’s hard to know which vulnerabilities actually matter to your business given existing privileges, what software it runs, and what controls already reduce risk.

Business translation: Even when the technical priority is clear, justifying effort and spend in financial terms—especially across many affected devices—can delay action. Especially if it means halting other areas of the business that directly generate revenue.

The result is familiar: alert fatigue, “too many highs,” and remediation that trails behind the threat landscape. Darktrace / Proactive Exposure Management addresses this by pairing precise, endpoint‑level context with clear, financial insight so teams can prioritize confidently and mobilize faster.

A powerful combination: No-Telemetry Endpoint Agent + Cost-Benefit Analysis

Darktrace / Proactive Exposure Management now uniquely combines technical precision with business clarity in a single workflow.  With this release, Darktrace / Proactive Exposure Management delivers a more holistic approach, uniting technical context and financial insight to drive proactive risk reduction. The result is a single solution that helps security teams stay ahead of threats while reducing noise, delays, and complexity.

  • No-Telemetry Endpoint: Collects installed software data and maps it to known CVEs—without network traffic—providing device-level vulnerability context and operational relevance.
  • Cost-Benefit Analysis for Patching: Calculates ROI by comparing patching effort with potential exploit impact, factoring in headcount time, device count, patch difficulty, and automation availability.

Introducing the No-Telemetry Endpoint Agent

Darktrace’s new endpoint agent inventories installed software on devices and maps it to known CVEs without collecting network data so you can prioritize using real device context and available security controls.

By grounding vulnerability findings in the reality of each endpoint, including its software footprint and existing controls, teams can cut through generic severity scores and focus on what matters most. The agent is ideal for remote devices, BYOD-adjacent fleets, or environments standardizing on Darktrace, and is available without additional licensing cost.

Darktrace / Proactive Exposure Management user interface
Figure 1: Darktrace / Proactive Exposure Management user interface

Built-In Cost-Benefit Analysis for Patching

Security teams often know what needs fixing but stakeholders need to understand why now. Darktrace’s new cost-benefit calculator compares the total cost to patch against the potential cost of exploit, producing an ROI for the patch action that expresses security action in clear financial terms.

Inputs like engineer time, number of affected devices, patch difficulty, and automation availability are factored in automatically. The result is a business-aligned justification for every patching decision—helping teams secure buy-in, accelerate approvals, and move work forward with one-click ticketing, CSV export, or risk acceptance.

Darktrace / Proactive Exposure Management Cost Benefit Analysis
Figure 2: Darktrace / Proactive Exposure Management Cost Benefit Analysis

A Smarter, Faster Approach to Exposure Management

Together, the no-telemetry endpoint and Cost–Benefit Analysis advance the CTEM motion from theory to practice. You gain higher‑fidelity discovery and validation signals at the device level, paired with business‑ready justification that accelerates mobilization. The result is fewer distractions, clearer priorities, and faster measurable risk reduction. This is not from chasing every alert, but by focusing on what moves the needle now.

  • Smarter Prioritization: Device‑level context trims noise and spotlights the exposures that matter for your business.
  • Faster Decisions: Built‑in ROI turns technical urgency into executive clarity—speeding approvals and action.
  • Practical Execution: Privacy‑conscious endpoint collection and ticketing/export options fit neatly into existing workflows.
  • Better Outcomes: Close the loop faster—discover, prioritize, validate, and mobilize—on the same operating surface.

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist

Blog

/

Proactive Security

/

October 24, 2025

Darktrace Announces Extended Visibility Between Confirmed Assets and Leaked Credentials from the Deep and Dark Web

Darktrace Announces Extended Visibility Between Confirmed Assets and Leaked Credentials from the Deep and Dark Web Default blog imageDefault blog image

Why exposure management needs to evolve beyond scans and checklists

The modern attack surface changes faster than most security programs can keep up. New assets appear, environments change, and adversaries are increasingly aided by automation and AI. Traditional approaches like periodic scans, static inventories, or annual pen tests are no longer enough. Without a formal exposure program, many businesses are flying blind, unaware of where the next threat may emerge.

This is where Continuous Threat Exposure Management (CTEM) becomes essential. Introduced by Gartner, CTEM helps organizations continuously assess, validate, and improve their exposure to real-world threats. It reframes the problem: scope your true attack surface, prioritize based on business impact and exploitability, and validate what attackers can actually do today, not once a year.

With two powerful new capabilities, Darktrace / Attack Surface Management helps organizations evolve their CTEM programs to meet the demands of today’s threat landscape. These updates make CTEM a reality, not just a strategy.

Too much data, not enough direction

Modern Attack Surface Management tools excel at discovering assets such as cloud workloads, exposed APIs, and forgotten domains. But they often fall short when it comes to prioritization. They rely on static severity scores or generic CVSS ratings, which do not reflect real-world risk or business impact.

This leaves security teams with:

  • Alert fatigue from hundreds of “critical” findings
  • Patch paralysis due to unclear prioritization
  • Blind spots around attacker intent and external targeting

CISOs need more than visibility. They need confidence in what to fix first and context to justify those decisions to stakeholders.

Evolving Attack Surface Management

Attack Surface Management (ASM) must evolve from static lists and generic severity scores to actionable intelligence that helps teams make the right decision now.

Joining the recent addition of Exploit Prediction Assessment, which debuted in late June 2025, today we’re introducing two capabilities that push ASM into that next era:

  • Exploit Prediction Assessment: Continuously validates whether top-priority exposures are actually exploitable in your environment without waiting for patch cycles or formal pen tests.  
  • Deep & Dark Web Monitoring: Extends visibility across millions of sources in the deep and dark web to detect leaked credentials linked to your confirmed domains.
  • Confidence Score: our newly developed AI classification platform will compare newly discovered assets to assets that are known to belong to your organization. The more these newly discovered assets look similar to assets that belong to your organization, the higher the score will be.

Together, these features compress the window from discovery to decision, so your team can act with precision, not panic. The result is a single solution that helps teams stay ahead of attackers without introducing new complexities.

Exploit Prediction Assessment

Traditional penetration tests are invaluable, but they’re often a snapshot of that point-in-time, are potentially disruptive, and compliance frameworks still expect them. Not to mention, when vulnerabilities are present, teams can act immediately rather than relying solely on information from CVSS scores or waiting for patch cycles.  

Unlike full pen tests which can be obtrusive and are usually done only a couple times per year, Exploit Prediction Assessment is surgical, continuous, and focused only on top issues Instead of waiting for vendor patches or the next pen‑test window. It helps confirm whether a top‑priority exposure is actually exploitable in your environment right now.  

For more information on this visit our blog: Beyond Discovery: Adding Intelligent Vulnerability Validation to Darktrace / Attack Surface Management

Deep and Dark Web Monitoring: Extending the scope

Customers have been asking for this for years, and it is finally here. Defense against the dark web. Darktrace / Attack Surface Management’s reach now spans millions of sources across the deep and dark web including forums, marketplaces, breach repositories, paste sites, and other hard‑to‑reach communities to detect leaked credentials linked to your confirmed domains.  

Monitoring is continuous, so you’re alerted as soon as evidence of compromise appears. The surface web is only a fraction of the internet, and a sizable share of risk hides beyond it. Estimates suggest the surface web represents roughly ~10% of all online content, with the rest gated or unindexed—and the TOR-accessible dark web hosts a high proportion of illicit material (a King’s College London study found ~57% of surveyed onion sites contained illicit content), underscoring why credential leakage and brand abuse often appear in places traditional monitoring doesn’t reach. Making these spaces high‑value for early warning signals when credentials or brand assets appear. Most notably, this includes your company’s reputation, assets like servers and systems, and top executives and employees at risk.

What changes for your team

Before:

  • Hundreds of findings, unclear what to start with
  • Reactive investigations triggered by incidents

After:

  • A prioritized backlog based on confidence score or exploit prediction assessment verification
  • Proactive verification of exposure with real-world risk without manual efforts

Confidence Score: Prioritize based on the use-case you care most about

What is it?

Confidence Score is a metric that expresses similarity of newly discover assets compared to the confirmed asset inventory. Several self-learning algorithms compare features of assets to be able to calculate a score.

Why it matters

Traditional Attack Surface Management tools treat all new discovery equally, making it unclear to your team how to identify the most important newly discovered assets, potentially causing you to miss a spoofing domain or shadow IT that could impact your business.

How it helps your team

We’re dividing newly discovered assets into separate insight buckets that each cover a slightly different business case.

  • Low scoring assets: to cover phishing & spoofing domains (like domain variants) that are just being registered and don't have content yet.
  • Medium scoring assets: have more similarities to your digital estate, but have better matching to HTML, brand names, keywords. Can still be phishing but probably with content.
  • High scoring assets: These look most like the rest of your confirmed digital estate, either it's phishing that needs the highest attention, or the asset belongs to your attack surface and requires asset state confirmation to enable the platform to monitor it for risks.

Smarter Exposure Management for CTEM Programs

Recent updates to Darktrace / Attack Surface Management directly advance the core phases of Continuous Threat Exposure Management (CTEM): scope, discover, prioritize, validate, and mobilize. The new Exploit Prediction Assessment helps teams validate and prioritize vulnerabilities based on real-world exploitability, while Deep & Dark Web Monitoring extends discovery into hard-to-reach areas where stolen data and credentials often surface. Together, these capabilities reduce noise, accelerate remediation, and help organizations maintain continuous visibility over their expanding attack surface.

Building on these innovations, Darktrace / Attack Surface Management empowers security teams to focus on what truly matters. By validating exploitability, it cuts through the noise of endless vulnerability lists—helping defenders concentrate on exposures that represent genuine business risk. Continuous monitoring for leaked credentials across the deep and dark web further extends visibility beyond traditional asset discovery, closing critical blind spots where attackers often operate. Crucially, these capabilities complement, not replace, existing security controls such as annual penetration tests, providing continuous, low-friction validation between formal assessments. The result is a more adaptive, resilient security posture that keeps pace with an ever-evolving threat landscape.

If you’re building or maturing a CTEM program—and want fewer open exposures, faster remediation, and better outcomes, Darktrace / Attack Surface Management’s new Exploit Prediction Assessment and Deep & Dark Web Monitoring are ready to help.

  • Want a more in-depth look at how Exploit Prediction Assessment functions? Read more here

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist
Your data. Our AI.
Elevate your network security with Darktrace AI