Blog
/
Cloud
/
September 20, 2022

Modern Extortion: Detecting Data Theft From the Cloud

Darktrace highlights a handful of data theft incidents on shared cloud platforms, showing that cloud computing can be a vulnerable place for modern extortion.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adrianne Marques
Senior Research Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Sep 2022

Ransomware Industry

The ransomware industry has benefitted from a number of factors in recent years: inadequate cyber defenses, poorly regulated cryptocurrency markets, and geopolitical tensions have allowed gangs to extort increasingly large ransoms while remaining sheltered from western law enforcement [1]. However, one of the biggest success stories of the ransomware industry has been the adaptability and evolution of attacker TTPs (tactics, techniques and procedures). The WannaCry and NotPetya attacks of 2017 popularized a form of ransomware which used encryption algorithms to hold data to ransom in exchange for a decryption key. Last year in 2021, almost all ransomware strains evolved to use double extortion tactics: holding stolen data to ransom as well as encrypted data [2]. Now, some ransomware gangs have dropped encryption entirely, and are using data theft as their sole means of extortion. 

Using data theft for extortion is not new. In 2020 the Finnish psychotherapy center Vastaamo had over 40,000 patient records stolen. Impacted patients were told that their psychiatric transcripts would be published online if they failed to pay a Bitcoin ransom. [3]. A later report by BlackFog in May 2021 predicted data theft extortion would become one of the key emerging cybersecurity trends that year [4]. Adoption of offline back-ups and endpoint detection had made encryption harder, while a large-scale move to Cloud and SaaS platforms offered new vectors for data theft. By moving from data encryption to data exfiltration, ransomware attackers pivoted from targeting data availability within the CIA triad (Confidentiality, Integrity, Availability) to threatening data confidentiality.

In November 2021, Darktrace detected a data theft incident following the compromise of two SaaS accounts within an American tech customer’s Office365 environment. The client was a longstanding user of Darktrace DETECT/Network, and was in the process of expanding their coverage by trialing Darktrace DETECT+RESPOND/ Apps + Cloud.

Attack Overview

On November 23rd 2021, an Ask the Expert (ATE) ticket was raised prompting investigation into a breached SaaS model, ‘SaaS / Access / Unusual External Source for SaaS Credential Use’, and the activities of a user (censored as UserA) over the prior week.

1. Office365: UserA 

The account UserA had been logging in from an unusual location in Nigeria on November 21st. At the time of the incident there were no flags of malicious activity from this IP in widely used OSINT sources. It is also highly probable the attacker was not located in Nigeria but using Nigerian infrastructure in order to hide their true location. Regardless, the location of the login from this IP and ASN was considered highly unusual for users within the customer’s digital estate. The specific user in question most commonly accessed their account from IP ranges located in the US.

Figure 1: In the Geolocation tab of the External Sites Summary on the SaaS Console, UserA was seen logging in from Nigeria when previous logins were exclusively from USA

Further investigation revealed an additional anomaly in the Outlook Web activity of UserA. The account was using the Firefox browser to access their account for the first time in at least 4 weeks (the maximum period for which the customer stored such data). SaaS logs detailing the access of confidential folders and other suspicious actions were identified using the Advanced Search (AS) query:

@fields.saas_actor:"UserA@[REDACTED]" AND @fields.saas_software:"Firefox"

Most actions were ‘MailItemsAccessed’ events originating from IPs located in Nigeria [5,6] and one other potentially malicious IP located in the US [7].

‘MailItemsAccessed’ is part of the new Advanced Audit functionality from Microsoft and can be used to determine when email data is accessed by mail protocols and clients. A bind mail access type denotes an individual access to an email message [8]. 

Figure 2: AS logs shows UserA had not used Firefox to access Office365 for at least 4 weeks prior to the unusual login on the 21st November

Below are details of the main suspicious SaaS activities: 

·      Time: 2021-11-21 09:05:25 - 2021-11-22 16:57:39 UTC

·      SaaS Actor: UserA@[REDACTED]

·      SaaS Service: Office365

·      SaaS Service Product: Exchange

·      SaaS Software: Firefox

·      SaaS Office365 Parent Folders:

          o   \Accounts/Passwords
          o   \Invoices
          o   \Sent Items
          o   \Inbox
          o   \Recoverable Items\Deletions

·      SaaS Event:

          o   MailItemsAccessed
          o   UserLoggedIn
          o   Update

·      SaaS Office365 Mail Access Type: Bind (47 times)

·      Source IP addresses:

          o   105.112.59[.]83
          o   105.112.36[.]212
          o   154.6.17[.]16
          o   45.130.83[.]129

·      SaaS User Agents: 

          o   Client=OWA;Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:80.0) Gecko/20100101 Firefox/80.0;
          o   Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:80.0) Gecko/20100101 Firefox/80.0

·      Total SaaS logs: 57 

At the start of the month on the 5th November, the user had also been seen logging in from a potentially malicious endpoint [9] in Europe, performing ‘MailItemsAccessed’ and ‘Updates’ events with subjects and a resource location related to invoices and wire transfers from the Sent items folder. This suggests the initial compromise had been earlier in the month, giving the threat actor time to make preparations for the final stages of the attack.

Figure 3: Event log showing the activity of UserA from IP 45.135.187[.]108 

2. Office365: UserB 

Looking into the model breach ‘SaaS / Access / Suspicious Credential Use And Login User-Agent’, it was seen that a second account, UserB, was also observed logging in from a rare and potentially malicious location in Bangladesh [7]. Similar to UserA, this user had previously logged in exclusively from the USA, and no other accounts within the digital estate had been observed interacting with the Bangladeshi IP address. The login event appeared to bypass MFA (Multi-factor Authentication) and a suspicious user agent, BAV2ROPC, was used. Against misconfigured accounts, this Microsoft user agent is commonly used by attackers to bypass MFA on Office365. It targets Exchange’s Basic Authentication (normally used in POP3/IMAP4 conditions) and results in an OAuth flow which circumvents the additional password security brought by MFA [10].  

During the session, additional resources were accessed which appear to be associated with bill and invoice payments. In addition, on the 4th November, two new suspicious email rules named “..” were created from rare IPs (107.10.56[.]48 and 76.189.202[.]66). This type of behavior is commonly seen during SaaS compromises to delete or forward emails. Typically, an email rule created by a human user will be named to reflect the change being made, such as ‘Move emails from Legal to Urgent’. In contrast, malicious email rules are often short and undescriptive. The rule “..” is likely to blend in without arousing suspicion, while also being easy for the attacker to create and remember. 

Details of these rule changes are as follows:

·      Time: 2021-11-04 13:25:06, 2021-11-05 15:50:00 [UTC]
·      SaaS Service: Office365
·      SaaS Service Product: Exchange
·      SaaS Status Message: True
·      SaaS Source IP addresses: 107.10.56[.]48, 76.189.202[.]66
·      SaaS Account Name: O365
·      SaaS Actor: UserB@[REDACTED]
·      SaaS Event: SetInboxRule
·      SaaS Office365 Modified Property Names:
          o   AlwaysDeleteOutlookRulesBlob, Force, Identity, MoveToFolder, Name, FromAddressContainsWords, StopProcessingRules
          o   AlwaysDeleteOutlookRulesBlob, Force, Identity, Name, FromAddressContainsWords, StopProcessingRules
·      SaaS Resource Name: .. 

During cloud account compromises, attackers will often use sync operations to download emails to their local email client. During the operations, these clients typically download a large set of mail items from the cloud to a local computer. If the attacker is able to sync all mail items to their mail client, the entire mailbox can be compromised. The attacker is able to disconnect from the account and review and search the email without generating additional event logs. 

Both accounts UserA and UserB were observed using ‘MailItemsAccessed’ sync operations between the 1st and 23rd November when this attack occurred. However, based on the originating IP of the sync operations, the activity is likely to have been initiated by the legitimate, US-based users. Once the security team were able to confirm the events were expected and legitimate, they could establish that the contents of the mailbox were not a part of the data breach. 

Accomplish Mission

After gaining access to the Office365 accounts, sensitive data was downloaded by the attackers to their local system. Either on or before 14th December, the attacker had seemingly uploaded the documents onto a data leak website. In total, 130MB of data had been made available for download in two separate packages. The packages included audit and accounting financial documents, with file extensions such as DB, XLSX, and PDF.

Figure 4: The two data packages uploaded by the attacker and the extracted contents

In a sample of past SaaS activity of UserA, the subject and attachments appear related to the ‘OUTSTANDING PREPAY WIRES 2021’ excel document found from the data leak website in Figure 4, suggesting a further possibility that the account was associated with the leaked data. 

Historic SaaS activity associated with UserA: 

·      Time: 2021-11-05 21:21:18 [UTC]
·      SaaS Office365 Logon Type: Owner
·      Protocol: OFFICE365
·      SaaS Account Name: O365
·      SaaS Actor: UserA@[REDACTED].com
·      SaaS Event: Send
·      SaaS Service: Office365
·      SaaS Service Product: Exchange
·      SaaS Status Message: Succeeded
·      SaaS Office365 Attachment: WIRE 2021.xlsx (92406b); image.png (9084b); image.png (1454b); image.png (1648b); image.png (1691b); image.png (1909b); image.png (2094b)
·      SaaS Office365 Subject: Wires 11/8/21
·      SaaS Resource Location: \Drafts
·      SaaS User Agent: Client=OWA;Action=ViaProxy 

Based on the available evidence, it is highly likely that the data packages contain the data stolen during the account compromise the previous month.  

Once the credentials of an Office365 account are stolen, an attacker can not only access the user's mailbox, but also a full range of Office365 applications such as SharePoint folders, Teams Chat, or files in the user's OneDrive [11]. For example, files shared in Teams chat are stored in OneDrive for Business in a folder named Microsoft Teams Chat Files in the default Document library on SharePoint. One of the files visible on the data leak website, called ‘[REDACTED] CONTRACT.3.1.2020.pdf’, was also observed in the default document folder of a third user account (UserC) within the victim organization, suggesting the compromised accounts may have been able to access shared files stored on other accounts by moving laterally via other O365 applications such as Teams. 

One example can be seen in the below AS logs: 

·      Time: 2021-11-11 01:58:35 [UTC]
·      SaaS Resource Type: File
·      Protocol: OFFICE365
·      SaaS Account Name: 0365
·      SaaS Actor: UserC@[REDACTED]
·      SaaS Event: FilePreviewed
·      SaaS Service Product: OneDrive
·      SaaS Metric: ResourceViewed
·      SaaS Office365 Application Name: Media Analysis and Transformation Service
·      SaaS Office365 File Extension: pdf
·      SaaS Resource Location: https://[REDACTED]-my.sharepoint.com/personal/userC_[REDACTED]_com/Documents/Microsoft Teams Chat Files/[REDACTED] CONTRACT 3.1.2020.pdf
·      SaaS Resource Name: [REDACTED] CONTRACT 3.1.2020.pdf
·      SaaS Service: Office365
·      SaaS Service Product: OneDrive
·      SaaS User Agent: OneDriveMpc-Transform_Thumbnail/1.0 

In the period between the 1st and 30th November, the customer’s Darktrace DETECT/Apps trial had raised multiple high-level alerts associated with SaaS account compromise, but there was no evidence of file encryption.  

Establish Foothold 

Looking back at the start of the attack, it is unclear exactly how the attacker evaded the customer’s pre-existing security stack. At the time of the incident, the victim was using a Barracuda email gateway and Microsoft 365 Threat Management for their cloud environment. 

Darktrace detected no indication the accounts were compromised via credential bruteforcing, which would have enabled the attacker to bypass the Azure Active Directory smart lockout (if enabled). The credentials may have been harvested via a phishing campaign which successfully evaded the list of known ‘bad’ domains maintained by their email gateway.  

Upon gaining access to the account, the Microsoft Defender for Cloud Apps anomaly detection policies would have been expected to raise an alert [12]. In this instance, the unusual login from Nigeria occurred over 16 hours after the previous login from the US, potentially evading anomaly detection policies such as the ‘Impossible Travel’ rule. 

Figure 5: Event log showing the user accessing mail from USA a day before the suspicious usage from Nigeria 

Darktrace Coverage

Darktrace DETECT 

Throughout this event, high scoring model breaches associated with the attack were visible in the customer’s SaaS Console. In addition, there were two Cyber AI Analyst incidents for ‘Possible Account Hijack’ associated with the two compromised SaaS Office365 accounts, UserA and UserB. The visibility given by Darktrace DETECT also enabled the security team to confirm which files had been accessed and were likely part of the data leak.

Figure 6: Example Cyber AI Analyst incident of UserB SaaS Office365 account

Darktrace RESPOND

In this incident, the attackers successfully compromised O365 accounts in order to exfiltrate customer data. Whilst Darktrace RESPOND/Apps was being trialed and suggested several actions, it was configured in human confirmation mode. The following RESPOND/Apps actions were advised for these activities:  

·      ‘Antigena [RESPOND] Unusual Access Block’ triggered by the successful login from an unusual IP address, would have actioned the ‘Block IP’ inhibitor, preventing access to the account from the unusual IP for up to 24 hours
·      ‘Suspicious Source Activity Block’, triggered by the suspicious user agent used to bypass MFA, would have actioned the ‘Disable User’ inhibitor, disabling the user account for up to 24 hours 

During this incident, Darktrace RESPOND/Network was being used in fully autonomous mode in order to prevent the threat actor from pivoting into the network. The security team were unable to conclusively say if any attempts by the attacker to do this had been made. 

Concluding Thoughts  

Data theft extortion has become a widely used attack technique, and ransomware gangs may increasingly use this technique alone to target organizations without secure data encryption and storage policies.  

This case study describes a SaaS data theft extortion incident which bypassed MFA and existing security tools. The attacker appeared to compromise credentials without bruteforce activity, possibly with the use of social engineering through phishing. However, from the first new login, Darktrace DETECT identified the unusual credential use in spite of it being an existing account. Had Darktrace RESPOND/Apps been configured, it would have autonomously responded to halt this login and prevent the attacker from accomplishing their data theft mission.

Thanks to Oakley Cox, Brianna Leddy and Shuh Chin Goh for their contributions.

Appendices

References 

[1] https://securelist.com/new-ransomware-trends-in-2022/106457/

[2] https://www.itpro.co.uk/security/ransomware/367624/the-rise-of-double-extortion-ransomware

[3] https://www.malwarebytes.com/blog/news/2020/10/vastaamo-psychotherapy-data-breach-sees-the-most-vulnerable-victims-extorted

[4] https://www.blackfog.com/shift-from-ransomware-to-data-theft-extortion/

[5] https://www.abuseipdb.com/check/105.112.59.83

[6] https://www.abuseipdb.com/check/105.112.36.212

[7] https://www.abuseipdb.com/check/45.130.83.129

[8] https://docs.microsoft.com/en-us/microsoft-365/compliance/mailitemsaccessed-forensics-investigations?view=o365-worldwide

[9] https://www.abuseipdb.com/check/45.135.187.108

[10] https://www.virustotal.com/gui/ip-address/45.137.20.65/details

[11] https://tidorg.com/new-bec-phishing-attack-steals-office-365-credentials-and-bypasses-mfa/

[12] https://docs.microsoft.com/en-us/microsoft-365/security/office-365-security/responding-to-a-compromised-email-account?view=o365-worldwide

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adrianne Marques
Senior Research Analyst

More in this series

No items found.

Blog

/

Compliance

/

June 9, 2025

Modernising UK Cyber Regulation: Implications of the Cyber Security and Resilience Bill

Two individuals sitting at a desk working on a documentDefault blog imageDefault blog image

The need for security and continued cyber resilience

The UK government has made national security a key priority, and the new Cyber Security and Resilience Bill (CSRB) is a direct reflection of that focus. In introducing the Bill, Secretary of State for Science, Innovation and Technology, Peter Kyle, recognised that the UK is “desperately exposed” to cyber threats—from criminal groups to hostile nation-states that are increasingly targeting the UK's digital systems and critical infrastructure[1].

Context and timeline for the new legislation

First announced during the King’s Speech of July 2024, and elaborated in a Department for Science, Innovation and Technology (DSIT) policy statement published in April 2025, the CSRB is expected to be introduced in Parliament during the 2025-26 legislative session.

For now, organisations in the UK remain subject to the 2018 Network and Information Systems (NIS) Regulations – an EU-derived law which was drafted before today’s increasing digitisation of critical services, rise in cloud adoption and emergence of AI-powered threats.

Why modernisation is critical

Without modernisation, the Government believes UK’s infrastructure and economy risks falling behind international peers. The EU, which revised its cybersecurity regulation under the NIS2 Directive, already imposes stricter requirements on a broader set of sectors.

The urgency of the Bill is also underscored by recent high-impact incidents, including the Synnovis attack which targeted the National Health Service (NHS) suppliers and disrupted thousands of patient appointments and procedures[2]. The Government has argued that such events highlight a systemic failure to keep pace with a rapidly evolving threat landscape[3].

What the Bill aims to achieve

This Bill represents a decisive shift. According to the Government, it will modernise and future‑proof the UK’s cyber laws, extending oversight to areas where risk has grown but regulation has not kept pace[4]. While the legislation builds on previous consultations and draws lessons from international frameworks like the EU’s NIS2 directive, it also aims to tailor solutions to the UK’s unique threat environment.

Importantly, the Government is framing cybersecurity not as a barrier to growth, but as a foundation for it. The policy statement emphasises that strong digital resilience will create the stability businesses need to thrive, innovate, and invest[5]. Therefore, the goals of the Bill will not only be to enhance security but also act as an enabler to innovation and economic growth.

Recognition that AI changes cyber threats

The CSRB policy statement recognises that AI is fundamentally reshaping the threat landscape, with adversaries now leveraging AI and commercial cyber tools to exploit vulnerabilities in critical infrastructure and supply chains. Indeed, the NCSC has recently assessed that AI will almost certainly lead to “an increase in the frequency and intensity of cyber threats”[6]. Accordingly, the policy statement insists that the UK’s regulatory framework “must keep pace and provide flexibility to respond to future threats as and when they emerge”[7].

To address the threat, the Bill signals new obligations for MSPs and data centres, timely incident reporting and dynamic guidance that can be refreshed without fresh primary legislation, making it essential for firms to follow best practices.

What might change in day-to-day practice?

New organisations in scope of regulation

Under the existing Network and Information Systems (NIS) Regulations[8], the UK already supervises operators in five critical sectors—energy, transport, drinking water, health (Operators of Essential Services, OES) and digital infrastructure (Relevant Digital Service Providers, RDSPs).

The Cyber Security and Resilience Bill retains this foundation and adds Managed Service Providers (MSPs) and data centres to the scope of regulation to “better recognise the increasing reliance on digital services and the vulnerabilities posed by supply chains”[9]. It also grants the Secretary of State for Science, Innovation and Technology the power to add new sectors or sub‑sectors via secondary legislation, following consultation with Parliament and industry.

Managed service providers (MSPs)

MSPs occupy a central position within the UK’s enterprise information‑technology infrastructure. Because they remotely run or monitor clients’ systems, networks and data, they hold privileged, often continuous access to multiple environments. This foothold makes them an attractive target for malicious actors.

The Bill aims to bring MSPs in scope of regulation by making them subject to the same duties as those placed on firms that provide digital services under the 2018 NIS Regulations. By doing so, the Bill seeks to raise baseline security across thousands of customer environments and to provide regulators with better visibility of supply‑chain risk.

The proposed definition for MSPs is a service which:

  1. Is provided to another organisation
  2. Relies on the use of network and information systems to deliver the service
  3. Relates to ongoing management support, active administration and/or monitoring of AI systems, IT infrastructure, applications, and/or IT networks, including for the purpose of activities relating to cyber security.
  4. Involves a network connection and/or access to the customer’s network and information systems.

Data centres

Building on the September 2024 designation of data centres as critical national infrastructure, the CSRB will fold data infrastructure into the NIS-style regime by naming it an “relevant sector" and data centres as “essential service”[10].

About 182 colocation facilities run by 64 operators will therefore come under statutory duties to notify the regulator, maintain proportionate CAF-aligned controls and report significant incidents, regardless of who owns them or what workloads they host.

New requirements for regulated organisations

Incident reporting processes

There could be stricter timelines or broader definitions of what counts as a reportable incident. This might nudge organisations to formalise detection, triage, and escalation procedures.

The Government is proposing to introduce a new two-stage incident reporting process. This would include an initial notification which would be submitted within 24 hours of becoming aware of a significant incident, followed by a full incident report which should be submitted within 72 hours of the same.

Supply chain assurance requirements

Supply chains for the UK's most critical services are becoming increasingly complex and present new and serious vulnerabilities for cyber-attacks. The recent Synnovis ransomware attacks on the NHS[11] exemplify the danger posed by attacks against the supply chains of important services and organisations. This is concerning when reflecting on the latest Cyber Security Breaches survey conducted by DSIT, which highlights that fewer than 25% of large businesses review their supply chain risks[12].

Despite these risks, the UK’s legacy cybersecurity regulatory regime does not explicitly cover supply chain risk management. The UK instead relies on supporting and non-statutory guidance to close this gap, such as the NCSC’s Cyber Assessment Framework (CAF)[13].

The CSRB policy statement acts on this regulatory shortcoming and recognises that “a single supplier’s disruption can have far-reaching impacts on the delivery of essential or digital services”[14].

To address this, the Bill would make in-scope organisations (OES and RDPS) directly accountable for the cybersecurity of their supply chains. Secondary legislation would spell out these duties in detail, ensuring that OES and RDSPs systematically assess and mitigate third-party cyber risks.

Updated and strengthened security requirements

By placing the CAF into a firmer footing and backing it with a statutory Code of Practice, the Government is setting clearer expectations about government expectations on technical standards and methods organisations will need to follow to prove their resilience.

How Darktrace can help support affected organizations

Demonstrate resilience

Darktrace’s Self-Learning AITM continuously monitors your digital estate across cloud, network, OT, email, and endpoint to detect, investigate, and autonomously respond to emerging threats in real time. This persistent visibility and defense posture helps organizations demonstrate cyber resilience to regulators with confidence.

Streamline incident reporting and compliance

Darktrace surfaces clear alerts and automated investigation reports, complete with timeline views and root cause analysis. These insights reduce the time and complexity of regulatory incident reporting and support internal compliance workflows with auditable, AI-generated evidence.

Improve supply chain visibility

With full visibility across connected systems and third-party activity, Darktrace detects early indicators of lateral movement, account compromise, and unusual behavior stemming from vendor or partner access, reducing the risk of supply chain-originated cyber-attacks.

Ensure MSPs can meet new standards

For managed service providers, Darktrace offers native multi-tenant support and autonomous threat response that can be embedded directly into customer environments. This ensures consistent, scalable security standards across clients—helping MSPs address increasing regulatory obligations.

[related-resource]

References

[1] https://www.theguardian.com/uk-news/article/2024/jul/29/uk-desperately-exposed-to-cyber-threats-and-pandemics-says-minister

[2] https://www.england.nhs.uk/2024/06/synnovis-cyber-attack-statement-from-nhs-england/

[3] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[4] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[5] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[6] https://www.ncsc.gov.uk/report/impact-ai-cyber-threat-now-2027

[7] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[8] https://www.gov.uk/government/collections/nis-directive-and-nis-regulations-2018

[9] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[10] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

[11] https://www.england.nhs.uk/2024/06/synnovis-cyber-attack-statement-from-nhs-england/

[12] https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2025/cyber-security-breaches-survey-2025

[13] https://www.ncsc.gov.uk/collection/cyber-assessment-framework

[14] https://www.gov.uk/government/publications/cyber-security-and-resilience-bill-policy-statement/cyber-security-and-resilience-bill-policy-statement

Continue reading
About the author
The Darktrace Community

Blog

/

Network

/

June 5, 2025

Unpacking ClickFix: Darktrace’s detection of a prolific social engineering tactic

Woman on laptop in office buildingDefault blog imageDefault blog image

What is ClickFix and how does it work?

Amid heightened security awareness, threat actors continue to seek stealthy methods to infiltrate target networks, often finding the human end user to be the most vulnerable and easily exploited entry point.

ClickFix baiting is an exploitation of the end user, making use of social engineering techniques masquerading as error messages or routine verification processes, that can result in malicious code execution.

Since March 2024, the simplicity of this technique has drawn attention from a range of threat actors, from individual cybercriminals to Advanced Persistent Threat (APT) groups such as APT28 and MuddyWater, linked to Russia and Iran respectively, introducing security threats on a broader scale [1]. ClickFix campaigns have been observed affecting organizations in across multiple industries, including healthcare, hospitality, automotive and government [2][3].

Actors carrying out these targeted attacks typically utilize similar techniques, tools and procedures (TTPs) to gain initial access. These include spear phishing attacks, drive-by compromises, or exploiting trust in familiar online platforms, such as GitHub, to deliver malicious payloads [2][3]. Often, a hidden link within an email or malvertisements on compromised legitimate websites redirect the end user to a malicious URL [4]. These take the form of ‘Fix It’ or fake CAPTCHA prompts [4].

From there, users are misled into believing they are completing a human verification step, registering a device, or fixing a non-existent issue such as a webpage display error. As a result, they are guided through a three-step process that ultimately enables the execution of malicious PowerShell commands:

  1. Open a Windows Run dialog box [press Windows Key + R]
  2. Automatically or manually copy and paste a malicious PowerShell command into the terminal [press CTRL+V]
  3. And run the prompt [press ‘Enter’] [2]

Once the malicious PowerShell command is executed, threat actors then establish command and control (C2) communication within the targeted environment before moving laterally through the network with the intent of obtaining and stealing sensitive data [4]. Malicious payloads associated with various malware families, such as XWorm, Lumma, and AsyncRAT, are often deployed [2][3].

Attack timeline of ClickFix cyber attack

Based on investigations conducted by Darktrace’s Threat Research team in early 2025, this blog highlights Darktrace’s capability to detect ClickFix baiting activity following initial access.

Darktrace’s coverage of a ClickFix attack chain

Darktrace identified multiple ClickFix attacks across customer environments in both Europe, the Middle East, and Africa (EMEA) and the United States. The following incident details a specific attack on a customer network that occurred on April 9, 2025.

Although the initial access phase of this specific attack occurred outside Darktrace’s visibility, other affected networks showed compromise beginning with phishing emails or fake CAPTCHA prompts that led users to execute malicious PowerShell commands.

Darktrace’s visibility into the compromise began when the threat actor initiated external communication with their C2 infrastructure, with Darktrace / NETWORK detecting the use of a new PowerShell user agent, indicating an attempt at remote code execution.

Darktrace / NETWORK's detection of a device making an HTTP connection with new PowerShell user agent, indicating PowerShell abuse for C2 communications.
Figure 1: Darktrace / NETWORK's detection of a device making an HTTP connection with new PowerShell user agent, indicating PowerShell abuse for C2 communications.

Download of Malicious Files for Lateral Movement

A few minutes later, the compromised device was observed downloading a numerically named file. Numeric files like this are often intentionally nondescript and associated with malware. In this case, the file name adhered to a specific pattern, matching the regular expression: /174(\d){7}/. Further investigation into the file revealed that it contained additional malicious code designed to further exploit remote services and gather device information.

Darktrace / NETWORK's detection of a numeric file, one minute after the new PowerShell User Agent alert.
Figure 2: Darktrace / NETWORK's detection of a numeric file, one minute after the new PowerShell User Agent alert.

The file contained a script that sent system information to a specified IP address using an HTTP POST request, which also processed the response. This process was verified through packet capture (PCAP) analysis conducted by the Darktrace Threat Research team.

By analyzing the body content of the HTTP GET request, it was observed that the command converts the current time to Unix epoch time format (i.e., 9 April 2025 13:26:40 GMT), resulting in an additional numeric file observed in the URI: /1744205200.

PCAP highlighting the HTTP GET request that sends information to the specific IP, 193.36.38[.]237, which then generates another numeric file titled per the current time.
Figure 3: PCAP highlighting the HTTP GET request that sends information to the specific IP, 193.36.38[.]237, which then generates another numeric file titled per the current time.

Across Darktrace’s investigations into other customers' affected by ClickFix campaigns, both internal information discovery events and further execution of malicious code were observed.

Data Exfiltration

By following the HTTP stream in the same PCAP, the Darktrace Threat Research Team assessed the activity as indicative of data exfiltration involving system and device information to the same command-and-control (C2) endpoint, , 193.36.38[.]237. This endpoint was flagged as malicious by multiple open-source intelligence (OSINT) vendors [5].

PCAP highlighting HTTP POST connection with the numeric file per the URI /1744205200 that indicates data exfiltration to 193.36.38[.]237.
Figure 4: PCAP highlighting HTTP POST connection with the numeric file per the URI /1744205200 that indicates data exfiltration to 193.36.38[.]237.

Further analysis of Darktrace’s Advanced Search logs showed that the attacker’s malicious code scanned for internal system information, which was then sent to a C2 server via an HTTP POST request, indicating data exfiltration

Advanced Search further highlights Darktrace's observation of the HTTP POST request, with the second numeric file representing data exfiltration.
Figure 5: Advanced Search further highlights Darktrace's observation of the HTTP POST request, with the second numeric file representing data exfiltration.

Actions on objectives

Around ten minutes after the initial C2 communications, the compromised device was observed connecting to an additional rare endpoint, 188.34.195[.]44. Further analysis of this endpoint confirmed its association with ClickFix campaigns, with several OSINT vendors linking it to previously reported attacks [6].

In the final HTTP POST request made by the device, Darktrace detected a file at the URI /init1234 in the connection logs to the malicious endpoint 188.34.195[.]44, likely depicting the successful completion of the attack’s objective, automated data egress to a ClickFix C2 server.

Darktrace / NETWORK grouped together the observed indicators of compromise (IoCs) on the compromised device and triggered an Enhanced Monitoring model alert, a high-priority detection model designed to identify activity indicative of the early stages of an attack. These models are monitored and triaged 24/7 by Darktrace’s Security Operations Center (SOC) as part of the Managed Threat Detection service, ensuring customers are promptly notified of malicious activity as soon as it emerges.

Darktrace correlated the separate malicious connections that pertained to a single campaign.
Figure 6: Darktrace correlated the separate malicious connections that pertained to a single campaign.

Darktrace Autonomous Response

In the incident outlined above, Darktrace was not configured in Autonomous Response mode. As a result, while actions to block specific connections were suggested, they had to be manually implemented by the customer’s security team. Due to the speed of the attack, this need for manual intervention allowed the threat to escalate without interruption.

However, in a different example, Autonomous Response was fully enabled, allowing Darktrace to immediately block connections to the malicious endpoint (138.199.156[.]22) just one second after the initial connection in which a numerically named file was downloaded [7].

Darktrace Autonomous Response blocked connections to a suspicious endpoint following the observation of the numeric file download.
Figure 7: Darktrace Autonomous Response blocked connections to a suspicious endpoint following the observation of the numeric file download.

This customer was also subscribed to our Managed Detection and Response service, Darktrace’s SOC extended a ‘Quarantine Device’ action that had already been autonomously applied in order to buy their security team additional time for remediation.

Autonomous Response blocked connections to malicious endpoints, including 138.199.156[.]22, 185.250.151[.]155, and rkuagqnmnypetvf[.]top, and also quarantined the affected device. These actions were later manually reinforced by the Darktrace SOC.
Figure 8: Autonomous Response blocked connections to malicious endpoints, including 138.199.156[.]22, 185.250.151[.]155, and rkuagqnmnypetvf[.]top, and also quarantined the affected device. These actions were later manually reinforced by the Darktrace SOC.

Conclusion

ClickFix baiting is a widely used tactic in which threat actors exploit human error to bypass security defenses. By tricking end point users into performing seemingly harmless, everyday actions, attackers gain initial access to systems where they can access and exfiltrate sensitive data.

Darktrace’s anomaly-based approach to threat detection identifies early indicators of targeted attacks without relying on prior knowledge or IoCs. By continuously learning each device’s unique pattern of life, Darktrace detects subtle deviations that may signal a compromise. In this case, Darktrace's Autonomous Response, when operating in a fully autonomous mode, was able to swiftly contain the threat before it could progress further along the attack lifecycle.

Credit to Keanna Grelicha (Cyber Analyst) and Jennifer Beckett (Cyber Analyst)

Appendices

NETWORK Models

  • Device / New PowerShell User Agent
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Anomalous Connection / Powershell to Rare External
  • Device / Suspicious Domain
  • Device / New User Agent and New IP
  • Anomalous File / New User Agent Followed By Numeric File Download (Enhanced Monitoring Model)
  • Device / Initial Attack Chain Activity (Enhanced Monitoring Model)

Autonomous Response Models

  • Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block
  • Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block
  • Antigena / Network::External Threat::Antigena File then New Outbound Block
  • Antigena / Network::External Threat::Antigena Suspicious File Block
  • Antigena / Network::Significant Anomaly::Antigena Alerts Over Time Block
  • Antigena / Network::External Threat::Antigena Suspicious File Block

IoC - Type - Description + Confidence

·       141.193.213[.]11 – IP address – Possible C2 Infrastructure

·       141.193.213[.]10 – IP address – Possible C2 Infrastructure

·       64.94.84[.]217 – IP address – Possible C2 Infrastructure

·       138.199.156[.]22 – IP address – C2 server

·       94.181.229[.]250 – IP address – Possible C2 Infrastructure

·       216.245.184[.]181 – IP address – Possible C2 Infrastructure

·       212.237.217[.]182 – IP address – Possible C2 Infrastructure

·       168.119.96[.]41 – IP address – Possible C2 Infrastructure

·       193.36.38[.]237 – IP address – C2 server

·       188.34.195[.]44 – IP address – C2 server

·       205.196.186[.]70 – IP address – Possible C2 Infrastructure

·       rkuagqnmnypetvf[.]top – Hostname – C2 server

·       shorturl[.]at/UB6E6 – Hostname – Possible C2 Infrastructure

·       tlgrm-redirect[.]icu – Hostname – Possible C2 Infrastructure

·       diagnostics.medgenome[.]com – Hostname – Compromised Website

·       /1741714208 – URI – Possible malicious file

·       /1741718928 – URI – Possible malicious file

·       /1743871488 – URI – Possible malicious file

·       /1741200416 – URI – Possible malicious file

·       /1741356624 – URI – Possible malicious file

·       /ttt – URI – Possible malicious file

·       /1741965536 – URI – Possible malicious file

·       /1.txt – URI – Possible malicious file

·       /1744205184 – URI – Possible malicious file

·       /1744139920 – URI – Possible malicious file

·       /1744134352 – URI – Possible malicious file

·       /1744125600 – URI – Possible malicious file

·       /1[.]php?s=527 – URI – Possible malicious file

·       34ff2f72c191434ce5f20ebc1a7e823794ac69bba9df70721829d66e7196b044 – SHA-256 Hash – Possible malicious file

·       10a5eab3eef36e75bd3139fe3a3c760f54be33e3 – SHA-1 Hash – Possible malicious file

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique  

Spearphishing Link - INITIAL ACCESS - T1566.002 - T1566

Drive-by Compromise - INITIAL ACCESS - T1189

PowerShell - EXECUTION - T1059.001 - T1059

Exploitation of Remote Services - LATERAL MOVEMENT - T1210

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Automated Exfiltration - EXFILTRATION - T1020 - T1020.001

References

[1] https://www.logpoint.com/en/blog/emerging-threats/clickfix-another-deceptive-social-engineering-technique/

[2] https://www.proofpoint.com/us/blog/threat-insight/security-brief-clickfix-social-engineering-technique-floods-threat-landscape

[3] https://cyberresilience.com/threatonomics/understanding-the-clickfix-attack/

[4] https://www.group-ib.com/blog/clickfix-the-social-engineering-technique-hackers-use-to-manipulate-victims/

[5] https://www.virustotal.com/gui/ip-address/193.36.38.237/detection

[6] https://www.virustotal.com/gui/ip-address/188.34.195.44/community

[7] https://www.virustotal.com/gui/ip-address/138.199.156.22/detection

Continue reading
About the author
Keanna Grelicha
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI