Blog
/
/
June 16, 2021

Stopping Corp-Internal Phishing Attacks with Darktrace

Discover how Darktrace Email stopped a series of multi-language phishing attacks, including an Emotet campaign in Japanese. Learn how Darktrace can help!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mariana Pereira
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Jun 2021

Click here! Clique aqui! ここをクリック! Klikk here! !اینجا کلیک کنید naDev yIbej! Hic tange!

Language is deceptive. In the realm of email security, language can deceive a recipient into clicking a link or completing a transaction, and it can trick a security tool into thinking an email is legitimate.

It is for this reason that Darktrace/Email is not reliant on language, but rather uses mathematics to develop an understanding of ‘normal’ for every email user in an organization. This enables it to neutralize anomalous emails indicative of a threat around the world, no matter in what format or language they come.

Natural language processing

When it comes to catching a compromised account or impersonation email, how can you teach a computer to understand intent or a change of tone, compared to the normal way a person corresponds?

One of the most common approaches in email security is natural language processing. NLP looks at how to program computers to analyze natural language, commonly by exposing them to a large volume of data.

The result is a computer capable of ‘understanding’ the contents of documents, including the nuances of the language within them. The technology can then extract information in the documents as well as categorize and organize the documents themselves.

Modern-day limitations

However, using NLP is limited in scope for email security as it will often misunderstand specific jargon or colloquialisms, as well as terms that had not been invented when the computer was programmed, unless it is trained on these too. Each additional language requires the computer to learn from zero every time. NLP only works on the regional languages it has been trained on, and it is not commercially viable to teach the technology to work in all small markets.

If a company hires an email security vendor based in America, therefore, it is probable that the security vendor has invested most of their time in detecting English-based phishing threats. That is fine if the company only communicates in English, but this is often not the case. In a 21st century globalized world, the need for security technology to be language-agnostic is more critical than ever.

Not all AI is the same: Unsupervised machine learning

Darktrace/Email relies on unsupervised machine learning, which can learn on the job and does not need to be fed large data sets. It can glean insights from NLP for good measure, but it does not depend on NLP for detection or understanding.

When working with AI it is crucial to understand how the AI learns: does it learn on the job or was it trained with a labeled data set? This is particularly important when looking to understand the intent behind an email, specifically to uncover solicitation attempts either through spoofing, phishing, impersonation of a supplier or any other form of email attack.

Rather than teaching a computer to understand language in an email, Darktrace Cyber AI dynamically assesses activity across inbound and outbound emails including senders, recipients, links, IP addresses, and attachment types. The movement of all these objects are then used by the AI to create the ‘patterns of life’ for every user across all communications, including communications with external users who frequently correspond with a given business.

By taking a mathematical approach, Darktrace/Email is able to understand ‘normal’ for any user regardless of the dialect they are corresponding in, uniquely interpreting all languages from Norwegian to Latin and Persian, and subsequently identifying subtle anomalies indicative of a phishing attack or an account takeover.

Catching Emotet in Japanese

Last year, Darktrace uncovered a sophisticated Spamware campaign which leveraged Emotet, the infamous banking malware. The campaign targeted various industries with highly sophisticated phishing emails.

At a food production company in Japan, Darktrace detected six phishing emails sent over a two-day period in July.

Figure 1: An email from the Emotet campaign.

In the email above, both the subject line and the filename translate to “Regarding the invoice,” followed by a number and the date. The attacker was clearly trying to imitate a legitimate business email here, spoofing a well-known Japanese company (三菱食品(株)) and a common Japanese name (‘藤沢 昭彦’).

Darktrace/Email revealed key metrics behind the email including that the real sender was using a domain name from GMO, a Japanese company which offers cheap web email services, and that the sender’s location was actually Portugal, not Japan.

Figure 2: Darktrace/Email detects the attempt at inducement.

Darktrace/Email’s models recognized the topic anomalies and inducement attempts in the emails, regardless of the language they had been written in – giving a high anomaly score of 85. Furthermore, Darktrace’s AI determined that the extension and the MIME type in the attachments were anomalous, when compared to the documents which the user normally exchanges via email.

Portuguese threat find

In another instance, a series of malicious emails were sent to an organization in Europe. These emails used several tactics to bypass the company’s security tools, including personalized subject lines and hidden malicious URLs.

Figure 3: An interactive snapshot of Darktrace/Email’s user interface. The subject line reads ‘Notice of transfer.’

As displayed above, the email contained a link that appeared to lead to a CaixaBank domain. However, Darktrace/Email recognized this as a deliberate attempt to mislead the recipient and revealed that the link in fact led to a WordPress domain, which Cyber AI identified as 100% rare for the business.

A closer inspection revealed that these emails were sent from Vietnam. The sender had never been in any previous correspondence with the business, and the isolated link within the email was also marked as a 100% rare domain. Darktrace/Email held these malicious emails back, protecting the organization from harm.

Universal defense

These two examples demonstrate the benefits of an unsupervised machine learning approach. An AI security solution which analyzes hundreds of different metrics and does not rely on pre-existing data is a groundbreaking advantage when faced with global phishing threats that now utilize a wide range of languages.

Email-based attacks are becoming more targeted and more convincing by the day. Targeted social engineering and spear phishing with advanced translation tools bombard companies daily, in all languages.

Whether it’s a phishing attack against a local office in Korea or a solicitation attempt in Arabic – even a malicious email written in Klingon from a Star Trek convention – or any of the thousands of email exchanges which occur in countless vernaculars and tones, Darktrace/Email can keep your company safe across the world, and beyond.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mariana Pereira
VP, Field CISO

More in this series

No items found.

Blog

/

/

April 24, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats using signatures and threat intelligence, Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI