Blog
/
AI
/
December 7, 2021

Conti Ransomware Strategies in Modern Cybercrime

Uncover the strategies behind the Conti ransomware gang's double extortion methods and what it means for businesses facing cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Dec 2021

In a previous blog, we outlined how the Ryuk ransomware strain developed by Russian hacking group ‘Wizard Spider’ has fallen into the hands of small-time cyber criminals.

Wizard Spider – who allegedly operate with support from the Russian government and remain under investigation by the FBI and Interpol – adopted Ryuk ransomware’s successor ‘Conti’ in 2020. Conti affects all Windows operating systems and has been involved in more than 400 incidents. Wizard Spider were soon rebranded in cyber press as the ‘Conti Ransomware Gang’, though the group does not necessarily see itself as a ‘gang’. It prefers to present itself as a business.

The ransomware bubble

Ransomware has become a multibillion-dollar industry – and the Conti Ransomware Gang reportedly made up 15% of it in 2020. With this scale of income, groups like Conti find themselves adopting some crude imitations of legitimate business practice. This corporate mimicry dictates that their victims be called ‘customers’, their extortion attempts ‘negotiations’ and their criminal peers ‘affiliates’. They even publish ‘press releases’ via a dedicated Dark Web site.

The gang’s Ransomware-as-a-Service ‘business model’ consists of employing affiliates, training them in Conti ransomware’s deployment and management, and then taking 30% of the profits themselves. With exact profits known only to the malware writers and not the affiliates, however, the percentage Conti takes is often much higher than the 30% they claim.

There may not be checks and regulations in place to address fraud in the cyber underworld, but one business complication which Conti have not been able to escape is that of the disgruntled employee.

Unhappy with the malpractice of their superiors, an underpaid affiliate leaked the Conti Ransomware Gang’s training materials and the IP addresses for their Cobalt Strike C2 servers in August 2021, declaring, “they recruit suckers and divide the money among themselves”.

Meanwhile, the US Government has also been taking action to try to disrupt the profit margins of groups like the Conti Ransomware Gang, going as far as to impose sanctions on cryptocurrency exchanges seen as facilitating ransomware transactions. However, leaks and legislation have proved far from fatal for Conti.

The reality is that these actions have not lost the Conti Ransomware Gang any of its so-called “customers”, and where there are customers there is profit. Any individual or organization entrusting their cyber security to conventional, rules-based measures is in their target market.

Darktrace’s AI recently detected a Conti attack conducted along the lines of one of the methods outlined in the August leak. The target organization – a US transportation company – was trialing Darktrace but, without Darktrace’s Autonomous Response set in active mode, the attack was allowed to go ahead. In examining how it progressed, however, it should become clear not only how threatening double extortion ransomware attacks like this one can be, but also how effectively they can be stopped by Darktrace at each stage of the attack.

Figure 1: Timeline of the attack

Conti Ransomware Gang diversifies the ransomware playbook

A single uninstalled Microsoft patch had left the target organization with dangerous ProxyShell vulnerabilities. Conti exploited these vulnerabilities, quickly gaining the rights to remotely execute Exchange PowerShell commands on the company’s server and steadily broadened its presence within the digital environment. This is a relatively new approach for the Conti Ransomware Gang, who previously relied upon phishing attacks and firewall exploits. By diversifying its approach, it stays ahead of patches and intelligence.

Two weeks after the initial breach, C2 connections were made to an unusual endpoint located in Finland using an SSL client which appeared innocuous but was 100% rare for the organization. Had Autonomous Response been set in active mode, Darktrace would have shut the connections down at this very early stage.

The IP address of this suspicious endpoint has since been identified as a Conti IoC (Indicator of Compromise), allowing it to be incorporated into rules-based security solutions. This would have done little good for the company in question, however, which was breached weeks before this intelligence was made available.

As Conti continued to conduct internal reconnaissance and move laterally through the company’s digital environment, Darktrace detected further unusual activity. The suspicious Finnish endpoint then employed new ‘Living off the Land’ techniques, installing the usually legitimate tools AnyDesk and Cobalt Strike onto various parts of the environment.

A series of SSL connections were made to AnyDesk endpoints and external hosts, one of which lasted 95 hours, indicating an active remote session conducted by one of Conti’s affiliates. At this stage, Darktrace had 10 distinct reasons to suspect an imminent attack.

Conti News: Closing the deal with double extortion ransomware

Double extortion has become the Conti Ransomware Gang’s new favourite sales tactic. If you refuse to pay its ransom, Conti will not only take your most important files from you, but also exfiltrate and publish them using its dedicated ‘Conti News’ website, or sell them directly to your competitors.

Having expanded their reach across the transport company’s network, the Conti affiliate began rapidly exfiltrating large quantities of company data to Conti’s preferred cloud storage site, MEGA. Over four days, more than 3TB of data was uploaded, and then encrypted.

To avoid detection by a human security team, encryption was launched at close to midnight – Conti’s ‘business’ does not respect business hours. When the company’s security team returned to work the next day, they were met with a ransom note.

This attack was able to progress because Darktrace was only being trialed at this stage and was therefore allowed to detect threats but not to take action against them. With Autonomous Response employed in active mode, this ransomware attack would have ended in the very early stages, when Darktrace detected its first suspicious connections.

Nonetheless, the Cyber AI Analyst was able to investigate and connect the dots of the attack automatically, making the organization’s remediation efforts drastically quicker and easier than they would have been without even this partial Darktrace deployment.

Figure 2: Cyber AI Analyst generated this incident report following the initiation of data exfiltration

How the Conti Ransomware Gang evades cyber intelligence

Security systems that rely on human intelligence to detect threats fit Conti’s ideal customer profile perfectly. By adapting and diversifying their approach, moving from Ryuk to Conti, and from spear phishing and firewall exploits to this new ProxyShell approach, Conti stay ahead of regulations and hold on to their vulnerable customer base.

Even if the Conti Ransomware Gang is brought down by leaks or legislation, other groups will rise to fill the gap in the market, eager for their own cut of the illicit gains. If these groups are to be truly stopped, they must be made unprofitable.

The US government has tried to do this by imposing fines upon ransom payers, but companies still often consider the losses involved in not recovering their data too great. As I have argued previously, ‘to pay or not to pay,’ is not the question we should be asking.

If you’re deciding whether to pay or not to pay, you’re already too far down the line. Darktrace stops groups like Conti at the first encounter. As this case has shown, Darktrace’s Self-Learning AI is able to identify threats weeks before human analysts and threat intelligence can do the same, and neutralize them at every stage of an attack with Autonomous Response.

Thanks to Darktrace analyst Sam Lister for his insights on the above threat find.

Darktrace model detections:

  • Device / Long Agent Connection to New Endpoint
  • Device / ICMP Address Scan
  • Anomalous Connection / SMB Enumeration
  • Anomalous Server Activity / Outgoing from Server
  • Compromise / Beacon to Young Endpoint
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Fast Beaconing to DGA
  • Compromise / SSL or HTTP Beacon
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Beacon for 4 Days
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Compliance / SMB Drive Write
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous Connection / Suspicious Read Write Ratio
  • Anomalous Connection / Suspicious Read Write Ratio and Unusual SMB
  • Anomalous Connection / Sustained MIME Type Conversion
  • Unusual Activity / Anomalous SMB Move & Write
  • Unusual Activity / Unusual Internal Data Volume as Client or Server
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Compromise / Ransomware / Suspicious SMB Activity
  • Anomalous File / Internal / Unusual SMB Script Write
  • Anomalous File / Internal / Masqueraded Executable SMB Write
  • Device / SMB Lateral Movement
  • Device / Multiple Lateral Movement Model Breaches

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations

More in this series

No items found.

Blog

/

AI

/

July 17, 2025

Introducing the AI Maturity Model for Cybersecurity

AI maturity model for cybersecurityDefault blog imageDefault blog image

AI adoption in cybersecurity: Beyond the hype

Security operations today face a paradox. On one hand, artificial intelligence (AI) promises sweeping transformation from automating routine tasks to augmenting threat detection and response. On the other hand, security leaders are under immense pressure to separate meaningful innovation from vendor hype.

To help CISOs and security teams navigate this landscape, we’ve developed the most in-depth and actionable AI Maturity Model in the industry. Built in collaboration with AI and cybersecurity experts, this framework provides a structured path to understanding, measuring, and advancing AI adoption across the security lifecycle.

Overview of AI maturity levels in cybersecurity

Why a maturity model? And why now?

In our conversations and research with security leaders, a recurring theme has emerged:

There’s no shortage of AI solutions, but there is a shortage of clarity and understanding of AI uses cases.

In fact, Gartner estimates that “by 2027, over 40% of Agentic AI projects will be canceled due to escalating costs, unclear business value, or inadequate risk controls. Teams are experimenting, but many aren’t seeing meaningful outcomes. The need for a standardized way to evaluate progress and make informed investments has never been greater.

That’s why we created the AI Security Maturity Model, a strategic framework that:

  • Defines five clear levels of AI maturity, from manual processes (L0) to full AI Delegation (L4)
  • Delineating the outcomes derived between Agentic GenAI and Specialized AI Agent Systems
  • Applies across core functions such as risk management, threat detection, alert triage, and incident response
  • Links AI maturity to real-world outcomes like reduced risk, improved efficiency, and scalable operations

[related-resource]

How is maturity assessed in this model?

The AI Maturity Model for Cybersecurity is grounded in operational insights from nearly 10,000 global deployments of Darktrace's Self-Learning AI and Cyber AI Analyst. Rather than relying on abstract theory or vendor benchmarks, the model reflects what security teams are actually doing, where AI is being adopted, how it's being used, and what outcomes it’s delivering.

This real-world foundation allows the model to offer a practical, experience-based view of AI maturity. It helps teams assess their current state and identify realistic next steps based on how organizations like theirs are evolving.

Why Darktrace?

AI has been central to Darktrace’s mission since its inception in 2013, not just as a feature, but the foundation. With over a decade of experience building and deploying AI in real-world security environments, we’ve learned where it works, where it doesn’t, and how to get the most value from it. This model reflects that insight, helping security leaders find the right path forward for their people, processes, and tools

Security teams today are asking big, important questions:

  • What should we actually use AI for?
  • How are other teams using it — and what’s working?
  • What are vendors offering, and what’s just hype?
  • Will AI ever replace people in the SOC?

These questions are valid, and they’re not always easy to answer. That’s why we created this model: to help security leaders move past buzzwords and build a clear, realistic plan for applying AI across the SOC.

The structure: From experimentation to autonomy

The model outlines five levels of maturity :

L0 – Manual Operations: Processes are mostly manual with limited automation of some tasks.

L1 – Automation Rules: Manually maintained or externally-sourced automation rules and logic are used wherever possible.

L2 – AI Assistance: AI assists research but is not trusted to make good decisions. This includes GenAI agents requiring manual oversight for errors.

L3 – AI Collaboration: Specialized cybersecurity AI agent systems  with business technology context are trusted with specific tasks and decisions. GenAI has limited uses where errors are acceptable.

L4 – AI Delegation: Specialized AI agent systems with far wider business operations and impact context perform most cybersecurity tasks and decisions independently, with only high-level oversight needed.

Each level reflects a shift, not only in technology, but in people and processes. As AI matures, analysts evolve from executors to strategic overseers.

Strategic benefits for security leaders

The maturity model isn’t just about technology adoption it’s about aligning AI investments with measurable operational outcomes. Here’s what it enables:

SOC fatigue is real, and AI can help

Most teams still struggle with alert volume, investigation delays, and reactive processes. AI adoption is inconsistent and often siloed. When integrated well, AI can make a meaningful difference in making security teams more effective

GenAI is error prone, requiring strong human oversight

While there is a lot of hype around GenAI agentic systems, teams will need to account for inaccuracy and hallucination in Agentic GenAI systems.

AI’s real value lies in progression

The biggest gains don’t come from isolated use cases, but from integrating AI across the lifecycle, from preparation through detection to containment and recovery.

Trust and oversight are key initially but evolves in later levels

Early-stage adoption keeps humans fully in control. By L3 and L4, AI systems act independently within defined bounds, freeing humans for strategic oversight.

People’s roles shift meaningfully

As AI matures, analyst roles consolidate and elevate from labor intensive task execution to high-value decision-making, focusing on critical, high business impact activities, improving processes and AI governance.

Outcome, not hype, defines maturity

AI maturity isn’t about tech presence, it’s about measurable impact on risk reduction, response time, and operational resilience.

[related-resource]

Outcomes across the AI Security Maturity Model

The Security Organization experiences an evolution of cybersecurity outcomes as teams progress from manual operations to AI delegation. Each level represents a step-change in efficiency, accuracy, and strategic value.

L0 – Manual Operations

At this stage, analysts manually handle triage, investigation, patching, and reporting manually using basic, non-automated tools. The result is reactive, labor-intensive operations where most alerts go uninvestigated and risk management remains inconsistent.

L1 – Automation Rules

At this stage, analysts manage rule-based automation tools like SOAR and XDR, which offer some efficiency gains but still require constant tuning. Operations remain constrained by human bandwidth and predefined workflows.

L2 – AI Assistance

At this stage, AI assists with research, summarization, and triage, reducing analyst workload but requiring close oversight due to potential errors. Detection improves, but trust in autonomous decision-making remains limited.

L3 – AI Collaboration

At this stage, AI performs full investigations and recommends actions, while analysts focus on high-risk decisions and refining detection strategies. Purpose-built agentic AI systems with business context are trusted with specific tasks, improving precision and prioritization.

L4 – AI Delegation

At this stage, Specialized AI Agent Systems performs most security tasks independently at machine speed, while human teams provide high-level strategic oversight. This means the highest time and effort commitment activities by the human security team is focused on proactive activities while AI handles routine cybersecurity tasks

Specialized AI Agent Systems operate with deep business context including impact context to drive fast, effective decisions.

Join the webinar

Get a look at the minds shaping this model by joining our upcoming webinar using this link. We’ll walk through real use cases, share lessons learned from the field, and show how security teams are navigating the path to operational AI safely, strategically, and successfully.

Continue reading
About the author
Ashanka Iddya
Senior Director, Product Marketing

Blog

/

Cloud

/

July 17, 2025

Forensics or Fauxrensics: Five Core Capabilities for Cloud Forensics and Incident Response

people working and walking in officeDefault blog imageDefault blog image

The speed and scale at which new cloud resources can be spun up has resulted in uncontrolled deployments, misconfigurations, and security risks. It has had security teams racing to secure their business’ rapid migration from traditional on-premises environments to the cloud.

While many organizations have successfully extended their prevention and detection capabilities to the cloud, they are now experiencing another major gap: forensics and incident response.

Once something bad has been identified, understanding its true scope and impact is nearly impossible at times. The proliferation of cloud resources across a multitude of cloud providers, and the addition of container and serverless capabilities all add to the complexities. It’s clear that organizations need a better way to manage cloud incident response.

Security teams are looking to move past their homegrown solutions and open-source tools to incorporate real cloud forensics capabilities. However, with the increased buzz around cloud forensics, it can be challenging to decipher what is real cloud forensics, and what is “fauxrensics.”

This blog covers the five core capabilities that security teams should consider when evaluating a cloud forensics and incident response solution.

[related-resource]

1. Depth of data

There have been many conversations among the security community about whether cloud forensics is just log analysis. The reality, however, is that cloud forensics necessitates access to a robust dataset that extends far beyond traditional log data sources.

While logs provide valuable insights, a forensics investigation demands a deeper understanding derived from multiple data sources, including disk, network, and memory, within the cloud infrastructure. Full disk analysis complements log analysis, offering crucial context for identifying the root cause and scope of an incident.

For instance, when investigating an incident involving a Kubernetes cluster running on an EC2 instance, access to bash history can provide insights into the commands executed by attackers on the affected instance, which would not be available through cloud logs alone.

Having all of the evidence in one place is also a capability that can significantly streamline investigations, unifying your evidence be it disk images, memory captures or cloud logs, into a single timeline allowing security teams to reconstruct an attacks origin, path and impact far more easily. Multi–cloud environments also require platforms that can support aggregating data from many providers and services into one place. Doing this enables more holistic investigations and reduces security blind spots.

There is also the importance of collecting data from ephemeral resources in modern cloud and containerized environments. Critical evidence can be lost in seconds as resources are constantly spinning up and down, so having the ability to capture this data before its gone can be a huge advantage to security teams, rather than having to figure out what happened after the affected service is long gone.

darktrace / cloud, cado, cloud logs, ost, and memory information. value of cloud combined analysis

2. Chain of custody

Chain of custody is extremely critical in the context of legal proceedings and is an essential component of forensics and incident response. However, chain of custody in the cloud can be extremely complex with the number of people who have access and the rise of multi-cloud environments.

In the cloud, maintaining a reliable chain of custody becomes even more complex than it already is, due to having to account for multiple access points, service providers and third parties. Having automated evidence tracking is a must. It means that all actions are logged, from collection to storage to access. Automation also minimizes the chance of human error, reducing the risk of mistakes or gaps in evidence handling, especially in high pressure fast moving investigations.

The ability to preserve unaltered copies of forensic evidence in a secure manner is required to ensure integrity throughout an investigation. It is not just a technical concern, its a legal one, ensuring that your evidence handling is documented and time stamped allows it to stand up to court or regulatory review.

Real cloud forensics platforms should autonomously handle chain of custody in the background, recording and safeguarding evidence without human intervention.

3. Automated collection and isolation

When malicious activity is detected, the speed at which security teams can determine root cause and scope is essential to reducing Mean Time to Response (MTTR).

Automated forensic data collection and system isolation ensures that evidence is collected and compromised resources are isolated at the first sign of malicious activity. This can often be before an attacker has had the change to move latterly or cover their tracks. This enables security teams to prevent potential damage and spread while a deeper-dive forensics investigation takes place. This method also ensures critical incident evidence residing in ephemeral environments is preserved in the event it is needed for an investigation. This evidence may only exist for minutes, leaving no time for a human analyst to capture it.

Cloud forensics and incident response platforms should offer the ability to natively integrate with incident detection and alerting systems and/or built-in product automation rules to trigger evidence capture and resource isolation.

4. Ease of use

Security teams shouldn’t require deep cloud or incident response knowledge to perform forensic investigations of cloud resources. They already have enough on their plates.

While traditional forensics tools and approaches have made investigation and response extremely tedious and complex, modern forensics platforms prioritize usability at their core, and leverage automation to drastically simplify the end-to-end incident response process, even when an incident spans multiple Cloud Service Providers (CSPs).

Useability is a core requirement for any modern forensics platform. Security teams should not need to have indepth knowledge of every system and resource in a given estate. Workflows, automation and guidance should make it possible for an analyst to investigate whatever resource they need to.

Unifying the workflow across multiple clouds can also save security teams a huge amount of time and resources. Investigations can often span multiple CSP’s. A good security platform should provide a single place to search, correlate and analyze evidence across all environments.

Offering features such as cross cloud support, data enrichment, a single timeline view, saved search, and faceted search can help advanced analysts achieve greater efficiency, and novice analysts are able to participate in more complex investigations.

5. Incident preparedness

Incident response shouldn't just be reactive. Modern security teams need to regularly test their ability to acquire new evidence, triage assets and respond to threats across both new and existing resources, ensuring readiness even in the rapidly changing environments of the cloud.  Having the ability to continuously assess your incident response and forensics workflows enables you to rapidly improve your processes and identify and mitigate any gaps identified that could prevent the organization from being able to effectively respond to potential threats.

Real forensics platforms deliver features that enable security teams to prepare extensively and understand their shortcomings before they are in the heat of an incident. For example, cloud forensics platforms can provide the ability to:

  • Run readiness checks and see readiness trends over time
  • Identify and mitigate issues that could prevent rapid investigation and response
  • Ensure the correct logging, management agents, and other cloud-native tools are appropriately configured and operational
  • Ensure that data gathered during an investigation can be decrypted
  • Verify that permissions are aligned with best practices and are capable of supporting incident response efforts

Cloud forensics with Darktrace

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage. Darktrace / CLOUD is a real time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

[related-resource]

Continue reading
About the author
Calum Hall
Technical Content Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI