Blog
/
AI
/
December 7, 2021

Conti Ransomware Strategies in Modern Cybercrime

Uncover the strategies behind the Conti ransomware gang's double extortion methods and what it means for businesses facing cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Dec 2021

In a previous blog, we outlined how the Ryuk ransomware strain developed by Russian hacking group ‘Wizard Spider’ has fallen into the hands of small-time cyber criminals.

Wizard Spider – who allegedly operate with support from the Russian government and remain under investigation by the FBI and Interpol – adopted Ryuk ransomware’s successor ‘Conti’ in 2020. Conti affects all Windows operating systems and has been involved in more than 400 incidents. Wizard Spider were soon rebranded in cyber press as the ‘Conti Ransomware Gang’, though the group does not necessarily see itself as a ‘gang’. It prefers to present itself as a business.

The ransomware bubble

Ransomware has become a multibillion-dollar industry – and the Conti Ransomware Gang reportedly made up 15% of it in 2020. With this scale of income, groups like Conti find themselves adopting some crude imitations of legitimate business practice. This corporate mimicry dictates that their victims be called ‘customers’, their extortion attempts ‘negotiations’ and their criminal peers ‘affiliates’. They even publish ‘press releases’ via a dedicated Dark Web site.

The gang’s Ransomware-as-a-Service ‘business model’ consists of employing affiliates, training them in Conti ransomware’s deployment and management, and then taking 30% of the profits themselves. With exact profits known only to the malware writers and not the affiliates, however, the percentage Conti takes is often much higher than the 30% they claim.

There may not be checks and regulations in place to address fraud in the cyber underworld, but one business complication which Conti have not been able to escape is that of the disgruntled employee.

Unhappy with the malpractice of their superiors, an underpaid affiliate leaked the Conti Ransomware Gang’s training materials and the IP addresses for their Cobalt Strike C2 servers in August 2021, declaring, “they recruit suckers and divide the money among themselves”.

Meanwhile, the US Government has also been taking action to try to disrupt the profit margins of groups like the Conti Ransomware Gang, going as far as to impose sanctions on cryptocurrency exchanges seen as facilitating ransomware transactions. However, leaks and legislation have proved far from fatal for Conti.

The reality is that these actions have not lost the Conti Ransomware Gang any of its so-called “customers”, and where there are customers there is profit. Any individual or organization entrusting their cyber security to conventional, rules-based measures is in their target market.

Darktrace’s AI recently detected a Conti attack conducted along the lines of one of the methods outlined in the August leak. The target organization – a US transportation company – was trialing Darktrace but, without Darktrace’s Autonomous Response set in active mode, the attack was allowed to go ahead. In examining how it progressed, however, it should become clear not only how threatening double extortion ransomware attacks like this one can be, but also how effectively they can be stopped by Darktrace at each stage of the attack.

Figure 1: Timeline of the attack

Conti Ransomware Gang diversifies the ransomware playbook

A single uninstalled Microsoft patch had left the target organization with dangerous ProxyShell vulnerabilities. Conti exploited these vulnerabilities, quickly gaining the rights to remotely execute Exchange PowerShell commands on the company’s server and steadily broadened its presence within the digital environment. This is a relatively new approach for the Conti Ransomware Gang, who previously relied upon phishing attacks and firewall exploits. By diversifying its approach, it stays ahead of patches and intelligence.

Two weeks after the initial breach, C2 connections were made to an unusual endpoint located in Finland using an SSL client which appeared innocuous but was 100% rare for the organization. Had Autonomous Response been set in active mode, Darktrace would have shut the connections down at this very early stage.

The IP address of this suspicious endpoint has since been identified as a Conti IoC (Indicator of Compromise), allowing it to be incorporated into rules-based security solutions. This would have done little good for the company in question, however, which was breached weeks before this intelligence was made available.

As Conti continued to conduct internal reconnaissance and move laterally through the company’s digital environment, Darktrace detected further unusual activity. The suspicious Finnish endpoint then employed new ‘Living off the Land’ techniques, installing the usually legitimate tools AnyDesk and Cobalt Strike onto various parts of the environment.

A series of SSL connections were made to AnyDesk endpoints and external hosts, one of which lasted 95 hours, indicating an active remote session conducted by one of Conti’s affiliates. At this stage, Darktrace had 10 distinct reasons to suspect an imminent attack.

Conti News: Closing the deal with double extortion ransomware

Double extortion has become the Conti Ransomware Gang’s new favourite sales tactic. If you refuse to pay its ransom, Conti will not only take your most important files from you, but also exfiltrate and publish them using its dedicated ‘Conti News’ website, or sell them directly to your competitors.

Having expanded their reach across the transport company’s network, the Conti affiliate began rapidly exfiltrating large quantities of company data to Conti’s preferred cloud storage site, MEGA. Over four days, more than 3TB of data was uploaded, and then encrypted.

To avoid detection by a human security team, encryption was launched at close to midnight – Conti’s ‘business’ does not respect business hours. When the company’s security team returned to work the next day, they were met with a ransom note.

This attack was able to progress because Darktrace was only being trialed at this stage and was therefore allowed to detect threats but not to take action against them. With Autonomous Response employed in active mode, this ransomware attack would have ended in the very early stages, when Darktrace detected its first suspicious connections.

Nonetheless, the Cyber AI Analyst was able to investigate and connect the dots of the attack automatically, making the organization’s remediation efforts drastically quicker and easier than they would have been without even this partial Darktrace deployment.

Figure 2: Cyber AI Analyst generated this incident report following the initiation of data exfiltration

How the Conti Ransomware Gang evades cyber intelligence

Security systems that rely on human intelligence to detect threats fit Conti’s ideal customer profile perfectly. By adapting and diversifying their approach, moving from Ryuk to Conti, and from spear phishing and firewall exploits to this new ProxyShell approach, Conti stay ahead of regulations and hold on to their vulnerable customer base.

Even if the Conti Ransomware Gang is brought down by leaks or legislation, other groups will rise to fill the gap in the market, eager for their own cut of the illicit gains. If these groups are to be truly stopped, they must be made unprofitable.

The US government has tried to do this by imposing fines upon ransom payers, but companies still often consider the losses involved in not recovering their data too great. As I have argued previously, ‘to pay or not to pay,’ is not the question we should be asking.

If you’re deciding whether to pay or not to pay, you’re already too far down the line. Darktrace stops groups like Conti at the first encounter. As this case has shown, Darktrace’s Self-Learning AI is able to identify threats weeks before human analysts and threat intelligence can do the same, and neutralize them at every stage of an attack with Autonomous Response.

Thanks to Darktrace analyst Sam Lister for his insights on the above threat find.

Darktrace model detections:

  • Device / Long Agent Connection to New Endpoint
  • Device / ICMP Address Scan
  • Anomalous Connection / SMB Enumeration
  • Anomalous Server Activity / Outgoing from Server
  • Compromise / Beacon to Young Endpoint
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Fast Beaconing to DGA
  • Compromise / SSL or HTTP Beacon
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Beacon for 4 Days
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Compliance / SMB Drive Write
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous Connection / Suspicious Read Write Ratio
  • Anomalous Connection / Suspicious Read Write Ratio and Unusual SMB
  • Anomalous Connection / Sustained MIME Type Conversion
  • Unusual Activity / Anomalous SMB Move & Write
  • Unusual Activity / Unusual Internal Data Volume as Client or Server
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Compromise / Ransomware / Suspicious SMB Activity
  • Anomalous File / Internal / Unusual SMB Script Write
  • Anomalous File / Internal / Masqueraded Executable SMB Write
  • Device / SMB Lateral Movement
  • Device / Multiple Lateral Movement Model Breaches

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations

More in this series

No items found.

Blog

/

AI

/

December 23, 2025

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI