The State of AI in Cybersecurity: Understanding AI Technologies
Part 4: This blog explores the findings from Darktrace’s State of AI Cybersecurity Report on security professionals' understanding of the different types of AI used in security programs. Get the latest insights into the evolving challenges, growing demand for skilled professionals, and the need for integrated security solutions by downloading the full report.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community
Share
24
Jul 2024
About the State of AI Cybersecurity Report
Darktrace surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.
How familiar are security professionals with supervised machine learning
Just 31% of security professionals report that they are “very familiar” with supervised machine learning.
Many participants admitted unfamiliarity with various AI types. Less than one-third felt "very familiar" with the technologies surveyed: only 31% with supervised machine learning and 28% with natural language processing (NLP).
Most participants were "somewhat" familiar, ranging from 46% for supervised machine learning to 36% for generative adversarial networks (GANs). Executives and those in larger organizations reported the highest familiarity.
Combining "very" and "somewhat" familiar responses, 77% had familiarity with supervised machine learning, 74% generative AI, and 73% NLP. With generative AI getting so much media attention, and NLP being the broader area of AI that encompasses generative AI, these results may indicate that stakeholders are understanding the topic on the basis of buzz, not hands-on work with the technologies.
If defenders hope to get ahead of attackers, they will need to go beyond supervised learning algorithms trained on known attack patterns and generative AI. Instead, they’ll need to adopt a comprehensive toolkit comprised of multiple, varied AI approaches—including unsupervised algorithms that continuously learn from an organization’s specific data rather than relying on big data generalizations.
Different types of AI
Different types of AI have different strengths and use cases in cyber security. It’s important to choose the right technique for what you’re trying to achieve.
Supervised machine learning: Applied more often than any other type of AI in cyber security. Trained on human attack patterns and historical threat intelligence.
Large language models (LLMs): Applies deep learning models trained on extremely large data sets to understand, summarize, and generate new content. Used in generative AI tools.
Natural language processing (NLP): Applies computational techniques to process and understand human language.
Unsupervised machine learning: Continuously learns from raw, unstructured data to identify deviations that represent true anomalies.
What impact will generative AI have on the cybersecurity field?
More than half of security professionals (57%) believe that generative AI will have a bigger impact on their field over the next few years than other types of AI.
Figure 1: Chart from Darktrace's State of AI in Cybersecurity Report
Security stakeholders are highly aware of generative AI and LLMs, viewing them as pivotal to the field's future. Generative AI excels at abstracting information, automating tasks, and facilitating human-computer interaction. However, LLMs can "hallucinate" due to training data errors and are vulnerable to prompt injection attacks. Despite improvements in securing LLMs, the best cyber defenses use a mix of AI types for enhanced accuracy and capability.
AI education is crucial as industry expectations for generative AI grow. Leaders and practitioners need to understand where and how to use AI while managing risks. As they learn more, there will be a shift from generative AI to broader AI applications.
Do security professionals fully understand the different types of AI in security products?
Only 26% of security professionals report a full understanding of the different types of AI in use within security products.
Confusion is prevalent in today’s marketplace. Our survey found that only 26% of respondents fully understand the AI types in their security stack, while 31% are unsure or confused by vendor claims. Nearly 65% believe generative AI is mainly used in cybersecurity, though it’s only useful for identifying phishing emails. This highlights a gap between user expectations and vendor delivery, with too much focus on generative AI.
Key findings include:
Executives and managers report higher understanding than practitioners.
Larger organizations have better understanding due to greater specialization.
As AI evolves, vendors are rapidly introducing new solutions faster than practitioners can learn to use them. There's a strong need for greater vendor transparency and more education for users to maximize the technology's value.
To help ease confusion around AI technologies in cybersecurity, Darktrace has released the CISO’s Guide to Cyber AI. A comprehensive white paper that categorizes the different applications of AI in cybersecurity. Download the White Paper here.
Do security professionals believe generative AI alone is enough to stop zero-day threats?
No! 86% of survey participants believe generative AI alone is NOT enough to stop zero-day threats
This consensus spans all geographies, organization sizes, and roles, though executives are slightly less likely to agree. Asia-Pacific participants agree more, while U.S. participants agree less.
Despite expecting generative AI to have the most impact, respondents recognize its limited security use cases and its need to work alongside other AI types. This highlights the necessity for vendor transparency and varied AI approaches for effective security across threat prevention, detection, and response.
Stakeholders must understand how AI solutions work to ensure they offer advanced, rather than outdated, threat detection methods. The survey shows awareness that old methods are insufficient.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Protecting the Experience: How a global hospitality brand stays resilient with Darktrace
A global hospitality brand uses Darktrace AI for autonomous, preventative cybersecurity – protecting guest experience, reducing risk, and enabling secure, scalable venue expansion worldwide.
How a Major Civil Engineering Company Reduced MTTR across Network, Email and the Cloud with Darktrace
This civil engineering company maintains much of the highway infrastructure across the UK. After legacy tools failed to stop advanced email threats, the company adopted Darktrace’s AI, which autonomously detected and neutralized attacks—proving its value and driving broader deployment.
One-Person Security Team, Enterprise-Wide Protection: A Utility Company’s Darktrace Success Story
Discover how a private utility management company experienced measurable network and email security improvements with Darktrace, saving 264 analyst hours on investigations in less than a month.
Atomic Stealer: Darktrace’s Investigation of a Growing macOS Threat
The Rise of Infostealers Targeting Apple Users
In a threat landscape historically dominated by Windows-based threats, the growing prevalence of macOS information stealers targeting Apple users is becoming an increasing concern for organizations. Infostealers are a type of malware designed to steal sensitive data from target devices, often enabling attackers to extract credentials and financial data for resale or further exploitation. Recent research identified infostealers as the largest category of new macOS malware, with an alarming 101% increase in the last two quarters of 2024 [1].
What is Atomic Stealer?
Among the most notorious is Atomic macOS Stealer (or AMOS), first observed in 2023. Known for its sophisticated build, Atomic Stealer can exfiltrate a wide range of sensitive information including keychain passwords, cookies, browser data and cryptocurrency wallets.
Originally marketed on Telegram as a Malware-as-a-Service (MaaS), Atomic Stealer has become a popular malware due to its ability to target macOS. Like other MaaS offerings, it includes services like a web panel for managing victims, with reports indicating a monthly subscription cost between $1,000 and $3,000 [2]. Although Atomic Stealer’s original intent was as a standalone MaaS product, its unique capability to target macOS has led to new variants emerging at an unprecedented rate
Even more concerning, the most recent variant has now added a backdoor for persistent access [3]. This backdoor presents a significant threat, as Atomic Stealer campaigns are believed to have reached an around 120 countries. The addition of a backdoor elevates Atomic Stealer to the rare category of backdoor deployments potentially at a global scale, something only previously attributed to nation-state threat actors [4].
This level of sophistication is also evident in the wide range of distribution methods observed since its first appearance; including fake application installers, malvertising and terminal command execution via the ClickFix technique. The ClickFix technique is particularly noteworthy: once the malware is downloaded onto the device, users are presented with what appears to be a legitimate macOS installation prompt. In reality, however, the user unknowingly initiates the execution of the Atomic Stealer malware.
This blog will focus on activity observed across multiple Darktrace customer environments where Atomic Stealer was detected, along with several indicators of compromise (IoCs). These included devices that successfully connected to endpoints associated with Atomic Stealer, those that attempted but failed to establish connections, and instances suggesting potential data exfiltration activity.
Darktrace’s Coverage of Atomic Stealer
As this evolving threat began to spread across the internet in June 2025, Darktrace observed a surge in Atomic Stealer activity, impacting numerous customers in 24 different countries worldwide. Initially, most of the cases detected in 2025 affected Darktrace customers within the Europe, Middle East, and Africa (EMEA) region. However, later in the year, Darktrace began to observe a more even distribution of cases across EMEA, the Americas (AMS), and Asia Pacific (APAC). While multiple sectors were impacted by Atomic Stealer, Darktrace customers in the education sector were the most affected, particularly during September and October, coinciding with the return to school and universities after summer closures. This spike likely reflects increased device usage as students returned and reconnected potentially compromised devices to school and campus environments.
Starting from June, Darktrace detected multiple events of suspicious HTTP activity to external connections to IPs in the range 45.94.47.0/24. Investigation by Darktrace’s Threat Research team revealed several distinct patterns ; HTTP POST requests to the URI “/contact”, identical cURL User Agents and HTTP requests to “/api/tasks/[base64 string]” URIs.
Within one observed customer’s environment in July, Darktrace detected two devices making repeated initiated HTTP connections over port 80 to IPs within the same range. The first, Device A, was observed making GET requests to the IP 45.94.47[.]158 (AS60781 LeaseWeb Netherlands B.V.), targeting the URI “/api/tasks/[base64string]” using the “curl/8.7.2” user agent. This pattern suggested beaconing activity and triggered the ‘Beaconing Activity to External Rare' model alert in Darktrace / NETWORK, with Device A’s Model Event Log showing repeated connections. The IP associated with this endpoint has since been flagged by multiple open-source intelligence (OSINT) vendors as being associated with Atomic Stealer [5].
Figure 1: Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.
Darktrace’s Cyber AI Analyst subsequently launched an investigation into the activity, uncovering that the GET requests resulted in a ‘503 Service Unavailable’ response, likely indicating that the server was temporarily unable to process the requests.
Figure 2: Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.
This unusual activity prompted Darktrace’s Autonomous Response capability to recommend several blocking actions for the device in an attempt to stop the malicious activity. However, as the customer’s Autonomous Response configuration was set to Human Confirmation Mode, Darktrace was unable to automatically apply these actions. Had Autonomous Response been fully enabled, these connections would have been blocked, likely rendering the malware ineffective at reaching its malicious command-and-control (C2) infrastructure.
Figure 3: Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.
In another customer environment in August, Darktrace detected similar IoCs, noting a device establishing a connection to the external endpoint 45.94.47[.]149 (ASN: AS57043 Hostkey B.V.). Shortly after the initial connections, the device was observed making repeated requests to the same destination IP, targeting the URI /api/tasks/[base64string] with the user agent curl/8.7.1, again suggesting beaconing activity. Further analysis of this endpoint after the fact revealed links to Atomic Stealer in OSINT reporting [6].
Figure 4: Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.
As with the customer in the first case, had Darktrace’s Autonomous Response been properly configured on the customer’s network, it would have been able to block connectivity with 45.94.47[.]149. Instead, Darktrace suggested recommended actions that the customer’s security team could manually apply to help contain the attack.
Figure 5: Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.
In the most recent case observed by Darktrace in October, multiple instances of Atomic Stealer activity were seen across one customer’s environment, with two devices communicating with Atomic Stealer C2 infrastructure. During this incident, one device was observed making an HTTP GET request to the IP 45.94.47[.]149 (ASN: AS60781 LeaseWeb Netherlands B.V.). These connections targeted the URI /api/tasks/[base64string, using the user agent curl/8.7.1.
Shortly afterward, the device began making repeated connections over port 80 to the same external IP, 45.94.47[.]149. This activity continued for several days until Darktrace detected the device making an HTTP POST request to a new IP, 45.94.47[.]211 (ASN: AS57043 Hostkey B.V.), this time targeting the URI /contact, again using the curl/8.7.1 user agent. Similar to the other IPs observed in beaconing activity, OSINT reporting later linked this one to information stealer C2 infrastructure [7].
Figure 6: Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.
Further investigation into this customer’s network revealed that similar activity had been occurring as far back as August, when Darktrace detected data exfiltration on a second device. Cyber AI Analyst identified this device making a single HTTP POST connection to the external IP 45.94.47[.]144, another IP with malicious links [8], using the user agent curl/8.7.1 and targeting the URI /contact.
Figure 7: Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.
A deeper investigation into the technical details within the POST request revealed the presence of a file named “out.zip”, suggesting potential data exfiltration.
Figure 8: Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.
Similarly, in another environment, Darktrace was able to collect a packet capture (PCAP) of suspected Atomic Stealer activity, which revealed potential indicators of data exfiltration. This included the presence of the “out.zip” file being exfiltrated via an HTTP POST request, along with data that appeared to contain details of an Electrum cryptocurrency wallet and possible passwords.
Read more about Darktrace’s full deep dive into a similar case where this tactic was leveraged by malware as part of an elaborate cryptocurrency scam.
Figure 9: PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.
Although recent research attributes the “out.zip” file to a new variant named SHAMOS [9], it has also been linked more broadly to Atomic Stealer [10]. Indeed, this is not the first instance where Darktrace has seen the “out.zip” file in cases involving Atomic Stealer either. In a previous blog detailing a social engineering campaign that targeted cryptocurrency users with the Realst Stealer, the macOS version of Realst contained a binary that was found to be Atomic Stealer, and similar IoCs were identified, including artifacts of data exfiltration such as the “out.zip” file.
Conclusion
The rapid rise of Atomic Stealer and its ability to target macOS marks a significant shift in the threat landscape and should serve as a clear warning to Apple users who were traditionally perceived as more secure in a malware ecosystem historically dominated by Windows-based threats.
Atomic Stealer’s growing popularity is now challenging that perception, expanding its reach and accessibility to a broader range of victims. Even more concerning is the emergence of a variant embedded with a backdoor, which is likely to increase its appeal among a diverse range of threat actors. Darktrace’s ability to adapt and detect new tactics and IoCs in real time delivers the proactive defense organizations need to protect themselves against emerging threats before they can gain momentum.
Credit to Isabel Evans (Cyber Analyst), Dylan Hinz (Associate Principal Cyber Analyst) Edited by Ryan Traill (Analyst Content Lead)
How Darktrace is ending email security silos with new capabilities in cross-domain detection, DLP, and native Microsoft integrations
A new era of reputation-aware, unified email security
Darktrace / EMAIL is redefining email defense with new innovations that close email security silos and empower SOC teams to stop multi-stage attacks – without disrupting business operations.
By extending visibility across interconnected domains, Darktrace catches the 17% of threats that leading SEGs miss, including multi-stage attacks like email bombing and cloud platform abuse. Its label-free behavioral DLP protects sensitive data without reliance on manual rules or classification, while DMARC strengthens brand trust and authenticity. With native integrations for Microsoft Defender and Security Copilot, SOC teams can now investigate and respond faster, reducing risk and maintaining operational continuity across the enterprise.
Summary of what’s new:
Cross-domain AI-native detection unifying email, identity, and SaaS
Label-free behavioral DLP for effortless data protection
Microsoft Defender and Security Copilot integrations for streamlined investigation and response
Why email security must evolve
Today’s attacks don’t stop at the inbox. They move across domains – email to identity, SaaS, and network – exploiting the blind spots between disconnected tools. Yet most email security solutions still operate in isolation, unable to see or respond beyond the message itself.
Tool sprawl compounds the issue. The average enterprise manages around 75 security products, and 69% report operational strain as a result. This complexity is counterproductive – and with legacy SEGs failing to adapt to detect threats that exploit human behavior, analysts are left juggling an unwieldy patchwork of fragmented defenses.
The bottom line? Siloed email defenses can’t keep pace with today’s AI-driven, cross domain attacks.
Beyond detection: AI built for modern threats
Darktrace / EMAIL is uniquely designed to catch the threats SEGs miss, powered by Self-Learning AI. It learns the communication patterns of every user – correlating behavioral signals from email, identity, and SaaS – to identify the subtle, context-driven deviations that define advanced social engineering and supply chain attacks.
Unlike tools that rely on static rules or historical attack data, Darktrace’s AI assumes a zero trust posture, treating every interaction as a potential risk. It detects novel threats in real time, including those that exploit trusted relationships or mimic legitimate business processes. And because Darktrace’s technology is natively unified, it delivers precise, coordinated responses that neutralize threats in real time.
Powerful innovations to Darktrace / EMAIL
Improved, multi-domain threat detection and response
With this update, Darktrace reveals multi-domain detection linking behavioral signals across email, identity, and SaaS to uncover advanced attacks. Darktrace leverages its existing agentic platform to understand behavioral deviations in any communication channel and take precise actions regardless of the domain.
This innovation enables customers to:
Correlate behavioral signals across domains to expose cross-channel threats and enable coordinated response
Link email and identity intelligence to neutralize multi-stage attacks, including advanced email bombing campaigns
Detection accuracy is further strengthened through layering with traditional threat intelligence:
Integrated antivirus verdicts improve detection efficacy by adding traditional file scanning
Structured threat intelligence (STIX/TAXII) enriches alerts with global context for faster triage and prioritization
Expanded ecosystem visibility also includes:
Salesforce integration, enabling automatic action on potentially malicious tickets auto-created from emails – accelerating threat response and reducing manual burden
Advancements in label-free DLP
Darktrace is delivering the industry’s first label-free data loss prevention (DLP) solution powered by a proprietary domain specific language model (DSLM).
This update expands DLP to protect against both secrets and personally identifiable information (PII), safeguarding sensitive data without relying on status rules or manual classification. The DSLM is tuned for email/DLP semantics so it understands entities, PII patterns, and message context quickly enough to enforce at send time.
Key enhancements include:
Behaviorally enhanced PII detection that automatically defines over 35+ new categories, including personal, financial, and health data
Added detail to DLP alerts in the UI, showing exactly how and when DLP policies were applied
Enhanced Cyber AI Analyst narratives to explain detection logic, making it easier to investigate and escalate incidents
And for further confidence in outbound mail, discover new updates to DMARC, with support for BIMI logo verification, automatic detection of both MTA-STS and TLS records, and data exports for deeper analysis and reporting. Accessible for all organizations, available now on the Azure marketplace.
Streamlined SOC workflows, with Microsoft-native integrations
This update introduces new integrations that simplify SOC operations, unify visibility, and accelerate response. By embedding directly into the Microsoft ecosystem – with Defender and Security Copilot – analysts gain instant access to correlated insights without switching consoles.
New innovations include:
Unified quarantine management with Microsoft Defender, centralizing containment within the native Microsoft interface and eliminating console hopping
Ability to surface threat insights directly in Copilot via the Darktrace Email Analysis Agent, eliminating data hunting and simplifying investigations
Automatic ticket creation in JIRA when users report suspicious messages
Sandbox analysis integration, enabling payload inspection in isolated environments directly from the Darktrace UI
Committed to innovation
These updates are part of the broader Darktrace release, which also included:
As attackers exploit gaps between tools, the Darktrace ActiveAI Security Platform delivers unified detection, automated investigation, and autonomous response across cloud, endpoint, email, network, and OT. With full-stack visibility and AI-native workflows, Darktrace empowers security teams to detect, understand, and stop novel threats before they escalate.
Join our Live Launch Event
When? December 9, 2025
What will be covered? Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.