Blog
/
AI
/
July 26, 2022

Self-Learning AI for Zero-Day and N-Day Attack Defense

Explore the differences between zero-day and n-day attacks on different customer servers to learn how Darktrace detects and prevents cyber threats effectively.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Lewis Morgan
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Jul 2022

Key Terms:

Zero-day | A recently discovered security vulnerability in computer software that has no currently available fix or patch. Its name come from the reality that vendors have “zero days” to act and respond.

N-day | A vulnerability that emerges in computer software in which a vendor is aware and may have already issued (or are currently working on) a patch or fix. Active exploits often already exist and await abuse by nefarious actors.

Traditional security solutions often apply signature-based-detection when identifying cyber threats, helping to defend against legacy attacks but consequently missing novel ones. Therefore, security teams often lend a lot of focus to ensuring that the risk of zero-day vulnerabilities is reduced [1]. As explored in this blog, however, organizations can face just as much of a risk from n-day attacks, since they invite the most attention from malicious actors [2]. This is due in part to the reduced complexity, cost and time invested in researching and finding new exploits compared with that found when attackers exploit zero-days. 

This blog will examine both a zero-day and n-day attack that two different Darktrace customers faced in the fall of 2021. This will include the activity Darktrace detected, along with the steps taken by Darktrace/Network to intervene. It will then compare the incidents, discuss the possible dangers of third-party integrations, and assess the deprecation of legacy security tools.

Revisiting zero-day attacks 

Zero-days are among the greatest concerns security teams face in the era of modern technology and networking. Defending critical systems from zero-day compromises is a task most legacy security solutions are often unable to handle. Due to the complexity of uncovering new security flaws and developing elaborate code that can exploit them, these attacks are often carried out by funded or experienced groups such as nation-state actors and APTs. One of history’s most prolific zero-days, ‘Stuxnet’, sent security teams worldwide into a global panic in 2010. This involved a widespread attack on Iranian nuclear infrastructure and was widely accepted to be a result of nation-state actors [3]. The Stuxnet worm took advantage of four zero-day exploits, compromising over 200,000 devices and physically damaging around 10% of the 9,000 critical centrifuges at the Natanz nuclear site. 

More recently, 2021 saw the emergence of several critical zero-day vulnerabilities within SonicWall’s product suite [4]. SonicWall is a security hardware manufacturer that provides hardware firewall devices, unified threat management, VPN gateways and network security solutions. Some of these vulnerabilities lie within their Secure Mobile Access (SMA) 100 series (for example, CVE-2019-7481, CVE-2021-20016 and CVE-2021-20038 to name a few). These directly affected VPN devices and often allowed attackers easy remote access to company devices. CVE-2021-20016 in particular incorporates an SQL-Injection vulnerability within SonicWall’s SSL VPN SMA 100 product line [5]. If exploited, this defect would allow an unauthenticated remote attacker to perform their own malicious SQL query in order to access usernames, passwords and other session related information. 

The N-day underdog

The shadow cast by zero-day attacks often shrouds that of n-day attacks. N-days, however, often pose an equal - if not greater - risk to the majority of organizations, particularly those in industrial sectors. Since these vulnerabilities have fixes available, all of the hard work around research is already done; malicious actors only need to view proof of concepts (POCs) or, if proficient in coding, reverse-engineer software to reveal code-changes (binary diffing) in order to exploit these security flaws in the wild. These vulnerabilities are typically attributed to opportunistic hackers and script-kiddies, where little research or heavy lifting is required.  

August 2021 gave rise to a critical vulnerability in Atlassian Confluence servers, namely CVE-2021-26084 [6]. Confluence is a widely used collaboration wiki tool and knowledge-sharing platform. As introduced and discussed a few months ago in a previous Darktrace blog (Explore Internet-Facing System Vulnerabilities), this vulnerability allows attackers to remotely execute code on internet-facing servers after exploiting injection vulnerabilities in Object-Graph Navigation Language (OGNL). Whilst Confluence had patches and fixes available to users, attackers still jumped on this opportunity and began scanning the internet for signs of critical devices serving this outdated software [7]. Once identified, they would  exploit the vulnerability, often installing crypto mining software onto the device. More recently, Darktrace explored a new vulnerability (CVE-2022-26134), disclosed midway through 2022, that affected Confluence servers and data centers using similar techniques to that found in CVE-2021-26084 [8]. 

SonicWall in the wild – 1. Zero-day attack

At the beginning of August 2021, Darktrace prevented an attack from taking place within a European automotive customer’s environment (Figure 1). The attack targeted a vulnerable internet-facing SonicWall VPN server, and while the attacker’s motive remains unclear, similar historic events suggest that they intended to perform ransomware encryption or data exfiltration. 

Figure 1: Timeline of the SonicWall attack 

Darktrace was unable to confirm the definite tactics, techniques and procedures (TTPs) used by the attacker to compromise the customer’s environment, as the device was compromised before Darktrace installation and coverage. However, from looking at recently disclosed SonicWall VPN vulnerabilities and patterns of behaviour, it is likely CVE-2021-20016 played a part. At some point after this initial infection, it is also believed the device was able to move laterally to a domain controller (DC) using administrative credentials; it was this server that then initiated the anomalous activity that Darktrace detected and alerted on. 

On August 5th 2021 , Darktrace observed this compromised domain controller engaging in unusual ICMP scanning - a protocol used to discover active devices within an environment and create a map of an organization’s network topology. Shortly after, the infected server began scanning devices for open RDP ports and enumerating SMB shares using unorthodox methods. SMB delete and HTTP requests (over port 445 and 80 respectively) were made for files named delete.me in the root directory of numerous network shares using the user agent Microsoft WebDAV. However, no such files appeared to exist within the environment. This may have been the result of an attacker probing devices in the network in an effort to see their responses and gather information on properties and vulnerabilities they could later exploit. 

Soon the infected DC began establishing RDP tunnels back to the VPN server and making requests to an internal DNS server for multiple endpoints relating to exploit kits, likely in an effort to strengthen the attacker’s foothold within the environment. Some of the endpoints requested relate to:

-       EternalBlue vulnerability 

-       Petit Potam NTLM hash attack tool

-       Unusual GitHub repositories

-       Unusual Python repositories  

The DC made outgoing NTLM requests to other internal devices, implying the successful installation of Petit Potam exploitation tools. The server then began performing NTLM reconnaissance, making over 1,000 successful logins under ‘Administrator’ to several other internal devices. Around the same time, the device was also seen making anonymous SMBv1 logins to numerous internal devices, (possibly symptomatic of the attacker probing machines for EternalBlue vulnerabilities). 

Interestingly, the device also made numerous failed authentication attempts using a spoofed credential for one of the organization’s security managers. This was likely in an attempt to hide themselves using ‘Living off the Land’ (LotL) techniques. However, whilst the attacker clearly did their research on the company, they failed to acknowledge the typical naming convention used for credentials within the environment. This ultimately backfired and made the compromise more obvious and unusual. 

In the morning of the following day, the initially compromised VPN server began conducting further reconnaissance, engaging in similar activity to that observed by the domain controller. Until now, the customer had set Darktrace RESPOND to run in human confirmation mode, meaning interventions were not made autonomously but required confirmation by a member of the internal security team. However, thanks to Proactive Threat Notifications (PTNs) delivered by Darktrace’s dedicated SOC team, the customer was made immediately aware of this unusual behaviour, allowing them to apply manual Darktrace RESPOND blocks to all outgoing connections (Figure 2). This gave the security team enough time to respond and remediate before serious damage could be done.

Figure 2: Darktrace RESPOND model breach showing the manually applied “Quarantine Device” action taken against the compromised VPN server. This screenshot displays the UI from Darktrace version 5.1

Confluence in the wild – 2. N-day attack

Towards the end of 2021, Darktrace saw a European broadcasting customer leave an Atlassian Confluence internet-facing server unpatched and vulnerable to crypto-mining malware using CVE-2021-26084. Thanks to Darktrace, this attack was entirely immobilized within only a few hours of the initial infection, protecting the organization from damage (Figure 3). 

Figure 3: Timeline of the Confluence attack

On midday on September 1st 2021, an unpatched Confluence server was seen receiving SSL connections over port 443 from a suspicious new endpoint, 178.238.226[.]127.  The connections were encrypted, meaning Darktrace was unable to view the contents and ascertain what requests were being made. However, with the disclosure of CVE-2021-26084 just 7 days prior to this activity, it is likely that the TTPs used involved injecting OGNL expressions to Confluence server memory; allowing the attacker to remotely execute code on the vulnerable server.

Immediately after successful exploitation of the Confluence server, the infected device was observed making outgoing HTTP GET requests to several external endpoints using a new user agent (curl/7.61.1). Curl was used to silently download and configure multiple suspicious files relating to XMRig cryptocurrency miner, including ld.sh, XMRig and config.json. Subsequent outgoing connections were then made to europe.randomx-hub.miningpoolhub[.]com · 172.105.210[.]117 using the JSON-RPC protocol, seen alongside the mining credential maillocal.confluence (Figure 4). Only 3 seconds after initial compromise, the infected device began attempting to mine cryptocurrency using the Minergate protocol but was instantly and autonomously blocked by Darktrace RESPOND. This prevented the server from abusing system resources and generating profits for the attacker.

Figure 4: A graph showing the frequency of external connections using the JSON-RPC protocol made by the breach device over a 48-hour window. The orange-red dots represent models that breached as a result of this activity, demonstrating the “waterfall” effect commonly seen when a device suffers a compromise. This screenshot displays the UI from Darktrace version 5.1

In the afternoon, the malware persisted with its infection. The compromised server began making successive HTTP GET requests to a new rare endpoint 195.19.192[.]28 using the same curl user agent (Figures 5 & 6). These requests were for executable and dynamic library files associated with Kinsing malware (but fortunately were also blocked by Darktrace RESPOND). Kinsing is a malware strain found in numerous attack campaigns which is often associated with crypto-jacking, and has appeared in previous Darktrace blogs [9].

Figure 5: Cyber AI Analyst summarising the unusual download of Kinsing software using the new curl user agent. This screenshot displays the UI from Darktrace version 5.1

The attacker then began making HTTP POST requests to an IP 185.154.53[.]140, using the same curl user agent; likely a method for the attacker to maintain persistence within the network and establish a foothold using its C2 infrastructure. The Confluence server was then again seen attempting to mine cryptocurrency using the Minergate protocol. It made outgoing JSON-RPC connections to a different new endpoint, 45.129.2[.]107, using the following mining credential: ‘42J8CF9sQoP9pMbvtcLgTxdA2KN4ZMUVWJk6HJDWzixDLmU2Ar47PUNS5XHv4Kmfdh8aA9fbZmKHwfmFo8Wup8YtS5Kdqh2’. This was once again blocked by Darktrace RESPOND (Figure 7). 

Figure 6: VirusTotal showing the unusualness of one of these external IPs [10]
Figure 7: Log data showing the action taken by Darktrace RESPOND in response to the device breaching the “Crypto Currency Mining Activity” model. This screenshot displays the UI from Darktrace version 5.1

The final activity seen from this device involved the download of additional shell scripts over HTTP associated with Kinsing, namely spre.sh and unk.sh, from 194.38.20[.]199 and 195.3.146[.]118 respectively (Figure 8). A new user agent (Wget/1.19.5 (linux-gnu)) was used when connecting to the latter endpoint, which also began concurrently initiating repeated connections indicative of C2 beaconing. These scripts help to spread the Kinsing malware laterally within the environment and may have been the attacker's last ditch efforts at furthering their compromise before Darktrace RESPOND blocked all connections from the infected Confluence server [11]. With Darktrace RESPOND's successful actions, the customer’s security team were then able to perform their own response and remediation. 

Figure 8: Cyber AI Analyst revealing the last ditch efforts made by the threat actor to download further malicious software. This screenshot displays the UI from Darktrace version 5.1

Darktrace Coverage: N- vs Zero-days

In the SonicWall case the attacker was unable to achieve their actions on objectives (thanks to Darktrace's intervention). However, this incident displayed tactics of a more stealthy and sophisticated attacker - they had an exploited machine but waited for the right moment to execute their malicious code and initiate a full compromise. Due to the lack of visibility over attacker motive, it is difficult to deduce what type of actor led to this intrusion. However, with the disclosure of a zero-day vulnerability (CVE-2021-20016) not long before this attack, along with a seemingly dormant initially compromised device, it is highly possible that it was carried out by a sophisticated cyber criminal or gang. 

On the other hand, the Confluence case engaged in a slightly more noisy approach; it dropped crypto mining malware on vulnerable devices in the hope that the target’s security team did not maintain visibility over their network or would merely turn a blind eye. The files downloaded and credentials observed alongside the mining activity heavily imply the use of Kinsing malware [11]. Since this vulnerability (CVE-2021-26084) emerged as an n-day attack with likely easily accessible POCs, as well as there being a lack of LotL techniques and the motive being long term monetary gain, it is possible this attack was conducted by a less sophisticated or amateur actor (script-kiddie); one that opportunistically exploits known vulnerabilities in internet-facing devices in order to make a quick profit [12].

Whilst Darktrace RESPOND was enabled in human confirmation mode only during the start of the SonicWall attack, Darktrace’s Cyber AI Analyst still offered invaluable insight into the unusual activity associated with the infected machines during both the Confluence and SonicWall compromises. SOC analysts were able to see these uncharacteristic behaviours and escalate the incident through Darktrace’s PTN and ATE services. Analysts then worked through these tickets with the customers, providing support and guidance and, in the SonicWall case, quickly helping to configure Darktrace RESPOND. In both scenarios, Darktrace RESPOND was able to block abnormal connections and enforce a device’s pattern of life, affording the security team enough time to isolate the infected machines and prevent further threats such as ransomware detonation or data exfiltration. 

Concluding thoughts and dangers of third-party integrations 

Organizations with internet-facing devices will inevitably suffer opportunistic zero-day and n-day attacks. While little can be done to remove the risk of zero-days entirely, ensuring that organizations keep their systems up to date will at the very least help prevent opportunistic and script-kiddies from exploiting n-day vulnerabilities.  

However, it is often not always possible for organizations to keep their systems up to date, especially for those who require continuous availability. This may also pose issues for organizations that rely on, and put their trust in, third party integrations such as those explored in this blog (Confluence and SonicWall), as enforcing secure software is almost entirely out of their hands. Moreover, with the rising prevalence of remote working, it is essential now more than ever that organizations ensure their VPN devices are shielded from external threats, guidance on which has been released by the NSA/CISA [13].

These two case studies have shown that whilst organizations can configure their networks and firewalls to help identify known indicators of compromise (IoC), this ‘rearview mirror’ approach will not account for, or protect against, any new and undisclosed IoCs. With the aid of Self-Learning AI and anomaly detection, Darktrace can detect the slightest deviation from a device’s normal pattern of life and respond autonomously without the need for rules and signatures. This allows for the disruption and prevention of known and novel attacks before irreparable damage is caused- reassuring security teams that their digital estates are secure. 

Thanks to Paul Jennings for his contributions to this blog.

Appendices: SonicWall (Zero-day)

Darktrace model detections

·      AIA / Suspicious Chain of Administrative Credentials

·      Anomalous Connection / Active Remote Desktop Tunnel

·      Anomalous Connection / SMB Enumeration

·      Anomalous Connection / Unusual Internal Remote Desktop

·      Compliance / High Priority Compliance Model Breach

·      Compliance / Outgoing NTLM Request from DC

·      Device / Anomalous RDP Followed By Multiple Model Breaches

·      Device / Anomalous SMB Followed By Multiple Model Breaches

·      Device / ICMP Address Scan

·      Device / Large Number of Model Breaches

·      Device / Large Number of Model Breaches from Critical Network Device

·      Device / Multiple Lateral Movement Model Breaches (PTN/Enhanced Monitoring model)

·      Device / Network Scan

·      Device / Possible SMB/NTLM Reconnaissance

·      Device / RDP Scan

·      Device / Reverse DNS Sweep

·      Device / SMB Session Bruteforce

·      Device / Suspicious Network Scan Activity (PTN/Enhanced Monitoring model)

·      Unusual Activity / Possible RPC Recon Activity

Darktrace RESPOND (Antigena) actions (as displayed in example)

·      Antigena / Network / Manual / Quarantine Device

MITRE ATT&CK Techniques Observed
IoCs

Appendices: Confluence (N-day)

Darktrace model detections

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Anomalous Connection / Posting HTTP to IP Without Hostname

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Script from Rare Location

·      Compliance / Crypto Currency Mining Activity

·      Compromise / High Priority Crypto Currency Mining (PTN/Enhanced Monitoring model)

·      Device / Initial Breach Chain Compromise (PTN/Enhanced Monitoring model)

·      Device / Internet Facing Device with High Priority Alert

·      Device / New User Agent

Darktrace RESPOND (Antigena) actions (displayed in example)

·      Antigena / Network / Compliance / Antigena Crypto Currency Mining Block

·      Antigena / Network / External Threat / Antigena File then New Outbound Block

·      Antigena / Network / External Threat / Antigena Suspicious Activity Block

·      Antigena / Network / External Threat / Antigena Suspicious File Block

·      Antigena / Network / Significant Anomaly / Antigena Block Enhanced Monitoring

MITRE ATT&CK Techniques Observed
IOCs

References:

[1] https://securitybrief.asia/story/why-preventing-zero-day-attacks-is-crucial-for-businesses

[2] https://electricenergyonline.com/energy/magazine/1150/article/Security-Sessions-More-Dangerous-Than-Zero-Days-The-N-Day-Threat.htm

[3] https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/

[4] https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=SonicWall+2021 

[5] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-20016

[6] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26084

[7] https://www.zdnet.com/article/us-cybercom-says-mass-exploitation-of-atlassian-confluence-vulnerability-ongoing-and-expected-to-accelerate/

[8] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-26134

[9] https://attack.mitre.org/software/S0599/

[10] https://www.virustotal.com/gui/ip-address/195.19.192.28/detection 

[11] https://sysdig.com/blog/zoom-into-kinsing-kdevtmpfsi/

[12] https://github.com/alt3kx/CVE-2021-26084_PoC

[13] https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/2791320/nsa-cisa-release-guidance-on-selecting-and-hardening-remote-access-vpns/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Lewis Morgan
Cyber Analyst

More in this series

No items found.

Blog

/

Email

/

December 4, 2025

How Darktrace is ending email security silos with new capabilities in cross-domain detection, DLP, and native Microsoft integrations

Default blog imageDefault blog image

A new era of reputation-aware, unified email security

Darktrace / EMAIL is redefining email defense with new innovations that close email security silos and empower SOC teams to stop multi-stage attacks – without disrupting business operations.  

By extending visibility across interconnected domains, Darktrace catches the 17% of threats that leading SEGs miss, including multi-stage attacks like email bombing and cloud platform abuse. Its label-free behavioral DLP protects sensitive data without reliance on manual rules or classification, while DMARC strengthens brand trust and authenticity. With native integrations for Microsoft Defender and Security Copilot, SOC teams can now investigate and respond faster, reducing risk and maintaining operational continuity across the enterprise.

Summary of what’s new:

  • Cross-domain AI-native detection unifying email, identity, and SaaS
  • Label-free behavioral DLP for effortless data protection
  • Microsoft Defender and Security Copilot integrations for streamlined investigation and response

Why email security must evolve

Today’s attacks don’t stop at the inbox. They move across domains – email to identity, SaaS, and network – exploiting the blind spots between disconnected tools. Yet most email security solutions still operate in isolation, unable to see or respond beyond the message itself.

In 2024, Darktrace detected over 30 million phishing attempts: 38% targeting high-value individuals and almost a third using novel social engineering, including AI-generated text. Generative AI is amplifying the realism and scale of social engineering, while customers face a wave of new techniques like email bombing, where attackers flood inboxes to distract or manipulate users, and polymorphic malware, which continuously evolves to evade static defenses.

Meanwhile, defenders are exposed to traditional DLP tools that create operational drag with high false positives and rigid policies. Accidental insider breachers remain a major risk to organizations: 6% of all data breaches are caused by misdelivery, and 95% of those incidents involve personal data.

Tool sprawl compounds the issue. The average enterprise manages around 75 security products, and 69% report operational strain as a result. This complexity is counterproductive – and with legacy SEGs failing to adapt to detect threats that exploit human behavior, analysts are left juggling an unwieldy patchwork of fragmented defenses.

The bottom line? Siloed email defenses can’t keep pace with today’s AI-driven, cross domain attacks.

Beyond detection: AI built for modern threats

Darktrace / EMAIL is uniquely designed to catch the threats SEGs miss, powered by Self-Learning AI. It learns the communication patterns of every user – correlating behavioral signals from email, identity, and SaaS – to identify the subtle, context-driven deviations that define advanced social engineering and supply chain attacks.

Unlike tools that rely on static rules or historical attack data, Darktrace’s AI assumes a zero trust posture, treating every interaction as a potential risk. It detects novel threats in real time, including those that exploit trusted relationships or mimic legitimate business processes. And because Darktrace’s technology is natively unified, it delivers precise, coordinated responses that neutralize threats in real time.

Powerful innovations to Darktrace / EMAIL

Improved, multi-domain threat detection and response

With this update, Darktrace reveals multi-domain detection linking behavioral signals across email, identity, and SaaS to uncover advanced attacks. Darktrace leverages its existing agentic platform to understand behavioral deviations in any communication channel and take precise actions regardless of the domain.  

This innovation enables customers to:

  • Correlate behavioral signals across domains to expose cross-channel threats and enable coordinated response
  • Link email and identity intelligence to neutralize multi-stage attacks, including advanced email bombing campaigns

Detection accuracy is further strengthened through layering with traditional threat intelligence:

  • Integrated antivirus verdicts improve detection efficacy by adding traditional file scanning
  • Structured threat intelligence (STIX/TAXII) enriches alerts with global context for faster triage and prioritization

Expanded ecosystem visibility also includes:

  • Salesforce integration, enabling automatic action on potentially malicious tickets auto-created from emails – accelerating threat response and reducing manual burden

Advancements in label-free DLP

Darktrace is delivering the industry’s first label-free data loss prevention (DLP) solution powered by a proprietary domain specific language model (DSLM).  

This update expands DLP to protect against both secrets and personally identifiable information (PII), safeguarding sensitive data without relying on status rules or manual classification. The DSLM is tuned for email/DLP semantics so it understands entities, PII patterns, and message context quickly enough to enforce at send time.

Key enhancements include:

  • Behaviorally enhanced PII detection that automatically defines over 35+ new categories, including personal, financial, and health data  
  • Added detail to DLP alerts in the UI, showing exactly how and when DLP policies were applied
  • Enhanced Cyber AI Analyst narratives to explain detection logic, making it easier to investigate and escalate incidents

And for further confidence in outbound mail, discover new updates to DMARC, with support for BIMI logo verification, automatic detection of both MTA-STS and TLS records, and data exports for deeper analysis and reporting. Accessible for all organizations, available now on the Azure marketplace.

Streamlined SOC workflows, with Microsoft-native integrations

This update introduces new integrations that simplify SOC operations, unify visibility, and accelerate response. By embedding directly into the Microsoft ecosystem – with Defender and Security Copilot – analysts gain instant access to correlated insights without switching consoles.

New innovations include:

  • Unified quarantine management with Microsoft Defender, centralizing containment within the native Microsoft interface and eliminating console hopping
  • Ability to surface threat insights directly in Copilot via the Darktrace Email Analysis Agent, eliminating data hunting and simplifying investigations
  • Automatic ticket creation in JIRA when users report suspicious messages
  • Sandbox analysis integration, enabling payload inspection in isolated environments directly from the Darktrace UI

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

  1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.
  2. Redefining NDR with industry-first autonomous threat investigation from network to endpoint  
  3. Innovations to our suite of Exposure Management & Attack Surface Management tools

As attackers exploit gaps between tools, the Darktrace ActiveAI Security Platform delivers unified detection, automated investigation, and autonomous response across cloud, endpoint, email, network, and OT. With full-stack visibility and AI-native workflows, Darktrace empowers security teams to detect, understand, and stop novel threats before they escalate.

Join our Live Launch Event

When? December 9, 2025

What will be covered? Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 4, 2025

The 17% of email threats SEGs miss – and how Darktrace catches them

Photo of analysts at a computerDefault blog imageDefault blog image

17%: The figure that changes your risk math

Most organizations deploy a Secure Email Gateway (SEG) assuming it will catch whatever their native email security provider would not be able to. But the data tells a different story. Nearly one in six of the riskiest inbound emails still evade the native + SEG layers on the first pass – 17% is the average SEG miss rate after Microsoft filtering.  

How did we calculate the miss rate? The figure comes from a volume-weighted analysis of real-world enterprise deployments where Darktrace operated alongside a SEG, compared to deployments without a SEG. It’s based on how each security layer treated malicious emails on the first instance – if the SEG missed the email at the initial filtering but caught it minutes or hours later we considered it a miss, because the threat had already been exposed to the user. We computed the mean per category miss count across the top three widely deployed SEGs and divided that by the total number of threats that had already bypassed native filters. The resulting rate is 17.8%, conservatively communicated as “about 17%.”

This result is a powerful directional signal – not a guarantee for every environment – but significant enough to merit a closer look.

What SEGs miss most (and why it matters)

Our analysis shows that SEGs most frequently miss context-driven, low-signal attacks.

Darktrace catches more threats than SEGs across a range of attack vectors

These are the kinds of emails that look convincing to recipients and rely on business context, without overtly malicious indicators, including:

Solicitation and fraudulent requests (~21% miss rate)

Deceptive invoices, vendor “updates,” payment term changes, or urgent favors. These messages often lack obvious payloads and exploit business process mimicry, making them nearly indistinguishable from genuine correspondence in the eyes of static, rule-based filters dependent on payload analysis. 22% of breaches stemming from external actors were a result of social engineering in 2025 (Verizon 2025 Data Breach Investigations Report).

Phishing links (~20% miss rate)

Links to credential harvesters or later-weaponized sites using new or compromised domains, redirects, or shorteners. URL rotation and staging evade list-based controls; the linguistic and workflow context looks routine. This also includes threats that leverage legitimate cloud platforms to disguise their intent and avoid reputation analysis.  Phishing remains one of the most expensive cause of breaches, an average cost of $4.8 million (IBM Cost of a Data Breach Report 2025).

User impersonation (~19% miss rate)

Convincing messages that mimic executives, colleagues, or partners, often with subtle display-name or address manipulation. These attacks rely on social engineering and context, bypassing static detection and reputation checks.

Other notable misses: Credential harvesting lures and forged/abused sender addresses, both typically light on static indicators but heavy on contextual clues. 

Why SEGs miss these emails

Let’s look at some of the reasons SEGs fail to catch more advanced, context-driven attacks.

  1. Attack-centric bias. SEGs excel at recognizing known-bad indicators (spam, commodity malware). But today’s high-impact threats are supercharged by AI and can be hyper-customized with polymorphic malware or personalized social engineering. They mirror normal business communications and weaponize trust, not binary patterns.  
  2. Limited behavioral understanding. Without modeling each user’s “normal” pattern of life, subtle anomalies (timing, tone, counterpart, transaction patterns) can look benign, even if they should be flagged. Some modern solutions have begun to incorporate behavioral analysis into their products, but these are still supplements for additional information rather than integrated into the core threat detection engine.
  3. Assumed trust. Account compromise and attacks that abuse legitimate services exploit trust. SEGs weren’t designed to handle these kinds of threats, in fact, they assume trust in order to minimize false positives, leaving them wide open to attackers.  
  4. Siloed detection. Email rarely tells the whole story. Attacks pivot across email, identity, and SaaS; single-channel tools can’t connect those dots in real time. This issue is exacerbated when email security vendors are only focused on email activity, ignoring activity beyond the inbox like network or cloud account activity.
  5. Adaptive evasion. Fast domain churn, benign-looking links, and clean hosting on trusted platforms routinely outpace static rules and blocklists. No matter how great your threat intelligence or threat research teams may be, there is a reliance on a first victim – which leads to defenders remaining one step behind attackers. 

How Darktrace / EMAIL catches the threats SEGs miss

Everywhere a SEG falters, Darktrace excels. Let’s take a look why.

  • Self-Learning AI: Darktrace learns the unique communication patterns of every user, department, and supplier, flagging the subtle deviations that typify social engineering and impersonation. 
  • A zero trust approach: According to Gartner, many organizations fail to extend their zero-trust strategy to email, leaving a critical gap. Darktrace assumes no trust, applying the zero trust principle across all aspects of email communication.
  • Cross-domain context: Correlates behavior across email, identity, and SaaS, exposing multi-stage campaigns that a siloed SEG can’t piece together. 
  • Better together with native providers: Operates alongside your native email security – not against it – so protection is additive. Darktrace ingests native signals and orchestrate unified quarantine without duplicating policy stacks or forcing you to disable built-in protections. 

For example: one of our customers, a global enterprise saw a surge of “document-share” notifications from a trusted collaboration platform. The domain and authentication looked fine; their SEG allowed it. Darktrace / EMAIL flagged it because the supplier’s sharing behavior and permission scope deviated from normal (volume, recipients, and access level). Follow-up confirmed the supplier account was compromised. Behavioral context – not rules or signatures – made the difference. 

Three steps to building a modern email security stack

Let’s end with three strategic takeaways for ensuring your email security is fit-for-purpose.

  1. Defense-in-depth = diversity, not duplication

Why it matters: Two security layers with the same detection philosophy (e.g. SEG + native email security) create overlapping blind spots. Both native email security providers and SEGs are attack-centric solutions that rely on past threats and threat intelligence. True defense-in-depth ensures you are asking different questions of every email that comes through.

How to apply: Pair your native email security with behavioral AI that learns how your business communicates. Eliminate redundant layers that only add cost and latency. 

  1. Coordinate the layers you keep

Why it matters:  Layers that don’t talk create delays and hand-offs; SEGs often become sole decision-makers by forcing native protections off. 

How to apply:  Favor an ICES approach that ingests native signals and can orchestrate unified quarantine, so detections become actions in one motion. 

  1. Quantify your security gap with a POV

Why it matters:  Every environment is different. You need evidence before making changes to your stack.

How to apply:  Run Darktrace / EMAIL in observe mode next to your current stack to surface exactly what’s still getting through. Use those results to plan your transition and measure improvement. 

Ready to claim 17% more protection? Request a demo with Darktrace / EMAIL to quantify what your SEG is missing, then decide how much of that residual risk you’re willing to accept. We’ll help you plan a clean, staged transition that preserves native protections and streamlines operations.  In the meantime, calculate your potential ROI using Darktrace / EMAIL with our handy calculator.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI