Blog
/
AI
/
July 26, 2022

Self-Learning AI for Zero-Day and N-Day Attack Defense

Explore the differences between zero-day and n-day attacks on different customer servers to learn how Darktrace detects and prevents cyber threats effectively.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Lewis Morgan
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Jul 2022

Key Terms:

Zero-day | A recently discovered security vulnerability in computer software that has no currently available fix or patch. Its name come from the reality that vendors have “zero days” to act and respond.

N-day | A vulnerability that emerges in computer software in which a vendor is aware and may have already issued (or are currently working on) a patch or fix. Active exploits often already exist and await abuse by nefarious actors.

Traditional security solutions often apply signature-based-detection when identifying cyber threats, helping to defend against legacy attacks but consequently missing novel ones. Therefore, security teams often lend a lot of focus to ensuring that the risk of zero-day vulnerabilities is reduced [1]. As explored in this blog, however, organizations can face just as much of a risk from n-day attacks, since they invite the most attention from malicious actors [2]. This is due in part to the reduced complexity, cost and time invested in researching and finding new exploits compared with that found when attackers exploit zero-days. 

This blog will examine both a zero-day and n-day attack that two different Darktrace customers faced in the fall of 2021. This will include the activity Darktrace detected, along with the steps taken by Darktrace/Network to intervene. It will then compare the incidents, discuss the possible dangers of third-party integrations, and assess the deprecation of legacy security tools.

Revisiting zero-day attacks 

Zero-days are among the greatest concerns security teams face in the era of modern technology and networking. Defending critical systems from zero-day compromises is a task most legacy security solutions are often unable to handle. Due to the complexity of uncovering new security flaws and developing elaborate code that can exploit them, these attacks are often carried out by funded or experienced groups such as nation-state actors and APTs. One of history’s most prolific zero-days, ‘Stuxnet’, sent security teams worldwide into a global panic in 2010. This involved a widespread attack on Iranian nuclear infrastructure and was widely accepted to be a result of nation-state actors [3]. The Stuxnet worm took advantage of four zero-day exploits, compromising over 200,000 devices and physically damaging around 10% of the 9,000 critical centrifuges at the Natanz nuclear site. 

More recently, 2021 saw the emergence of several critical zero-day vulnerabilities within SonicWall’s product suite [4]. SonicWall is a security hardware manufacturer that provides hardware firewall devices, unified threat management, VPN gateways and network security solutions. Some of these vulnerabilities lie within their Secure Mobile Access (SMA) 100 series (for example, CVE-2019-7481, CVE-2021-20016 and CVE-2021-20038 to name a few). These directly affected VPN devices and often allowed attackers easy remote access to company devices. CVE-2021-20016 in particular incorporates an SQL-Injection vulnerability within SonicWall’s SSL VPN SMA 100 product line [5]. If exploited, this defect would allow an unauthenticated remote attacker to perform their own malicious SQL query in order to access usernames, passwords and other session related information. 

The N-day underdog

The shadow cast by zero-day attacks often shrouds that of n-day attacks. N-days, however, often pose an equal - if not greater - risk to the majority of organizations, particularly those in industrial sectors. Since these vulnerabilities have fixes available, all of the hard work around research is already done; malicious actors only need to view proof of concepts (POCs) or, if proficient in coding, reverse-engineer software to reveal code-changes (binary diffing) in order to exploit these security flaws in the wild. These vulnerabilities are typically attributed to opportunistic hackers and script-kiddies, where little research or heavy lifting is required.  

August 2021 gave rise to a critical vulnerability in Atlassian Confluence servers, namely CVE-2021-26084 [6]. Confluence is a widely used collaboration wiki tool and knowledge-sharing platform. As introduced and discussed a few months ago in a previous Darktrace blog (Explore Internet-Facing System Vulnerabilities), this vulnerability allows attackers to remotely execute code on internet-facing servers after exploiting injection vulnerabilities in Object-Graph Navigation Language (OGNL). Whilst Confluence had patches and fixes available to users, attackers still jumped on this opportunity and began scanning the internet for signs of critical devices serving this outdated software [7]. Once identified, they would  exploit the vulnerability, often installing crypto mining software onto the device. More recently, Darktrace explored a new vulnerability (CVE-2022-26134), disclosed midway through 2022, that affected Confluence servers and data centers using similar techniques to that found in CVE-2021-26084 [8]. 

SonicWall in the wild – 1. Zero-day attack

At the beginning of August 2021, Darktrace prevented an attack from taking place within a European automotive customer’s environment (Figure 1). The attack targeted a vulnerable internet-facing SonicWall VPN server, and while the attacker’s motive remains unclear, similar historic events suggest that they intended to perform ransomware encryption or data exfiltration. 

Figure 1: Timeline of the SonicWall attack 

Darktrace was unable to confirm the definite tactics, techniques and procedures (TTPs) used by the attacker to compromise the customer’s environment, as the device was compromised before Darktrace installation and coverage. However, from looking at recently disclosed SonicWall VPN vulnerabilities and patterns of behaviour, it is likely CVE-2021-20016 played a part. At some point after this initial infection, it is also believed the device was able to move laterally to a domain controller (DC) using administrative credentials; it was this server that then initiated the anomalous activity that Darktrace detected and alerted on. 

On August 5th 2021 , Darktrace observed this compromised domain controller engaging in unusual ICMP scanning - a protocol used to discover active devices within an environment and create a map of an organization’s network topology. Shortly after, the infected server began scanning devices for open RDP ports and enumerating SMB shares using unorthodox methods. SMB delete and HTTP requests (over port 445 and 80 respectively) were made for files named delete.me in the root directory of numerous network shares using the user agent Microsoft WebDAV. However, no such files appeared to exist within the environment. This may have been the result of an attacker probing devices in the network in an effort to see their responses and gather information on properties and vulnerabilities they could later exploit. 

Soon the infected DC began establishing RDP tunnels back to the VPN server and making requests to an internal DNS server for multiple endpoints relating to exploit kits, likely in an effort to strengthen the attacker’s foothold within the environment. Some of the endpoints requested relate to:

-       EternalBlue vulnerability 

-       Petit Potam NTLM hash attack tool

-       Unusual GitHub repositories

-       Unusual Python repositories  

The DC made outgoing NTLM requests to other internal devices, implying the successful installation of Petit Potam exploitation tools. The server then began performing NTLM reconnaissance, making over 1,000 successful logins under ‘Administrator’ to several other internal devices. Around the same time, the device was also seen making anonymous SMBv1 logins to numerous internal devices, (possibly symptomatic of the attacker probing machines for EternalBlue vulnerabilities). 

Interestingly, the device also made numerous failed authentication attempts using a spoofed credential for one of the organization’s security managers. This was likely in an attempt to hide themselves using ‘Living off the Land’ (LotL) techniques. However, whilst the attacker clearly did their research on the company, they failed to acknowledge the typical naming convention used for credentials within the environment. This ultimately backfired and made the compromise more obvious and unusual. 

In the morning of the following day, the initially compromised VPN server began conducting further reconnaissance, engaging in similar activity to that observed by the domain controller. Until now, the customer had set Darktrace RESPOND to run in human confirmation mode, meaning interventions were not made autonomously but required confirmation by a member of the internal security team. However, thanks to Proactive Threat Notifications (PTNs) delivered by Darktrace’s dedicated SOC team, the customer was made immediately aware of this unusual behaviour, allowing them to apply manual Darktrace RESPOND blocks to all outgoing connections (Figure 2). This gave the security team enough time to respond and remediate before serious damage could be done.

Figure 2: Darktrace RESPOND model breach showing the manually applied “Quarantine Device” action taken against the compromised VPN server. This screenshot displays the UI from Darktrace version 5.1

Confluence in the wild – 2. N-day attack

Towards the end of 2021, Darktrace saw a European broadcasting customer leave an Atlassian Confluence internet-facing server unpatched and vulnerable to crypto-mining malware using CVE-2021-26084. Thanks to Darktrace, this attack was entirely immobilized within only a few hours of the initial infection, protecting the organization from damage (Figure 3). 

Figure 3: Timeline of the Confluence attack

On midday on September 1st 2021, an unpatched Confluence server was seen receiving SSL connections over port 443 from a suspicious new endpoint, 178.238.226[.]127.  The connections were encrypted, meaning Darktrace was unable to view the contents and ascertain what requests were being made. However, with the disclosure of CVE-2021-26084 just 7 days prior to this activity, it is likely that the TTPs used involved injecting OGNL expressions to Confluence server memory; allowing the attacker to remotely execute code on the vulnerable server.

Immediately after successful exploitation of the Confluence server, the infected device was observed making outgoing HTTP GET requests to several external endpoints using a new user agent (curl/7.61.1). Curl was used to silently download and configure multiple suspicious files relating to XMRig cryptocurrency miner, including ld.sh, XMRig and config.json. Subsequent outgoing connections were then made to europe.randomx-hub.miningpoolhub[.]com · 172.105.210[.]117 using the JSON-RPC protocol, seen alongside the mining credential maillocal.confluence (Figure 4). Only 3 seconds after initial compromise, the infected device began attempting to mine cryptocurrency using the Minergate protocol but was instantly and autonomously blocked by Darktrace RESPOND. This prevented the server from abusing system resources and generating profits for the attacker.

Figure 4: A graph showing the frequency of external connections using the JSON-RPC protocol made by the breach device over a 48-hour window. The orange-red dots represent models that breached as a result of this activity, demonstrating the “waterfall” effect commonly seen when a device suffers a compromise. This screenshot displays the UI from Darktrace version 5.1

In the afternoon, the malware persisted with its infection. The compromised server began making successive HTTP GET requests to a new rare endpoint 195.19.192[.]28 using the same curl user agent (Figures 5 & 6). These requests were for executable and dynamic library files associated with Kinsing malware (but fortunately were also blocked by Darktrace RESPOND). Kinsing is a malware strain found in numerous attack campaigns which is often associated with crypto-jacking, and has appeared in previous Darktrace blogs [9].

Figure 5: Cyber AI Analyst summarising the unusual download of Kinsing software using the new curl user agent. This screenshot displays the UI from Darktrace version 5.1

The attacker then began making HTTP POST requests to an IP 185.154.53[.]140, using the same curl user agent; likely a method for the attacker to maintain persistence within the network and establish a foothold using its C2 infrastructure. The Confluence server was then again seen attempting to mine cryptocurrency using the Minergate protocol. It made outgoing JSON-RPC connections to a different new endpoint, 45.129.2[.]107, using the following mining credential: ‘42J8CF9sQoP9pMbvtcLgTxdA2KN4ZMUVWJk6HJDWzixDLmU2Ar47PUNS5XHv4Kmfdh8aA9fbZmKHwfmFo8Wup8YtS5Kdqh2’. This was once again blocked by Darktrace RESPOND (Figure 7). 

Figure 6: VirusTotal showing the unusualness of one of these external IPs [10]
Figure 7: Log data showing the action taken by Darktrace RESPOND in response to the device breaching the “Crypto Currency Mining Activity” model. This screenshot displays the UI from Darktrace version 5.1

The final activity seen from this device involved the download of additional shell scripts over HTTP associated with Kinsing, namely spre.sh and unk.sh, from 194.38.20[.]199 and 195.3.146[.]118 respectively (Figure 8). A new user agent (Wget/1.19.5 (linux-gnu)) was used when connecting to the latter endpoint, which also began concurrently initiating repeated connections indicative of C2 beaconing. These scripts help to spread the Kinsing malware laterally within the environment and may have been the attacker's last ditch efforts at furthering their compromise before Darktrace RESPOND blocked all connections from the infected Confluence server [11]. With Darktrace RESPOND's successful actions, the customer’s security team were then able to perform their own response and remediation. 

Figure 8: Cyber AI Analyst revealing the last ditch efforts made by the threat actor to download further malicious software. This screenshot displays the UI from Darktrace version 5.1

Darktrace Coverage: N- vs Zero-days

In the SonicWall case the attacker was unable to achieve their actions on objectives (thanks to Darktrace's intervention). However, this incident displayed tactics of a more stealthy and sophisticated attacker - they had an exploited machine but waited for the right moment to execute their malicious code and initiate a full compromise. Due to the lack of visibility over attacker motive, it is difficult to deduce what type of actor led to this intrusion. However, with the disclosure of a zero-day vulnerability (CVE-2021-20016) not long before this attack, along with a seemingly dormant initially compromised device, it is highly possible that it was carried out by a sophisticated cyber criminal or gang. 

On the other hand, the Confluence case engaged in a slightly more noisy approach; it dropped crypto mining malware on vulnerable devices in the hope that the target’s security team did not maintain visibility over their network or would merely turn a blind eye. The files downloaded and credentials observed alongside the mining activity heavily imply the use of Kinsing malware [11]. Since this vulnerability (CVE-2021-26084) emerged as an n-day attack with likely easily accessible POCs, as well as there being a lack of LotL techniques and the motive being long term monetary gain, it is possible this attack was conducted by a less sophisticated or amateur actor (script-kiddie); one that opportunistically exploits known vulnerabilities in internet-facing devices in order to make a quick profit [12].

Whilst Darktrace RESPOND was enabled in human confirmation mode only during the start of the SonicWall attack, Darktrace’s Cyber AI Analyst still offered invaluable insight into the unusual activity associated with the infected machines during both the Confluence and SonicWall compromises. SOC analysts were able to see these uncharacteristic behaviours and escalate the incident through Darktrace’s PTN and ATE services. Analysts then worked through these tickets with the customers, providing support and guidance and, in the SonicWall case, quickly helping to configure Darktrace RESPOND. In both scenarios, Darktrace RESPOND was able to block abnormal connections and enforce a device’s pattern of life, affording the security team enough time to isolate the infected machines and prevent further threats such as ransomware detonation or data exfiltration. 

Concluding thoughts and dangers of third-party integrations 

Organizations with internet-facing devices will inevitably suffer opportunistic zero-day and n-day attacks. While little can be done to remove the risk of zero-days entirely, ensuring that organizations keep their systems up to date will at the very least help prevent opportunistic and script-kiddies from exploiting n-day vulnerabilities.  

However, it is often not always possible for organizations to keep their systems up to date, especially for those who require continuous availability. This may also pose issues for organizations that rely on, and put their trust in, third party integrations such as those explored in this blog (Confluence and SonicWall), as enforcing secure software is almost entirely out of their hands. Moreover, with the rising prevalence of remote working, it is essential now more than ever that organizations ensure their VPN devices are shielded from external threats, guidance on which has been released by the NSA/CISA [13].

These two case studies have shown that whilst organizations can configure their networks and firewalls to help identify known indicators of compromise (IoC), this ‘rearview mirror’ approach will not account for, or protect against, any new and undisclosed IoCs. With the aid of Self-Learning AI and anomaly detection, Darktrace can detect the slightest deviation from a device’s normal pattern of life and respond autonomously without the need for rules and signatures. This allows for the disruption and prevention of known and novel attacks before irreparable damage is caused- reassuring security teams that their digital estates are secure. 

Thanks to Paul Jennings for his contributions to this blog.

Appendices: SonicWall (Zero-day)

Darktrace model detections

·      AIA / Suspicious Chain of Administrative Credentials

·      Anomalous Connection / Active Remote Desktop Tunnel

·      Anomalous Connection / SMB Enumeration

·      Anomalous Connection / Unusual Internal Remote Desktop

·      Compliance / High Priority Compliance Model Breach

·      Compliance / Outgoing NTLM Request from DC

·      Device / Anomalous RDP Followed By Multiple Model Breaches

·      Device / Anomalous SMB Followed By Multiple Model Breaches

·      Device / ICMP Address Scan

·      Device / Large Number of Model Breaches

·      Device / Large Number of Model Breaches from Critical Network Device

·      Device / Multiple Lateral Movement Model Breaches (PTN/Enhanced Monitoring model)

·      Device / Network Scan

·      Device / Possible SMB/NTLM Reconnaissance

·      Device / RDP Scan

·      Device / Reverse DNS Sweep

·      Device / SMB Session Bruteforce

·      Device / Suspicious Network Scan Activity (PTN/Enhanced Monitoring model)

·      Unusual Activity / Possible RPC Recon Activity

Darktrace RESPOND (Antigena) actions (as displayed in example)

·      Antigena / Network / Manual / Quarantine Device

MITRE ATT&CK Techniques Observed
IoCs

Appendices: Confluence (N-day)

Darktrace model detections

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Anomalous Connection / Posting HTTP to IP Without Hostname

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Script from Rare Location

·      Compliance / Crypto Currency Mining Activity

·      Compromise / High Priority Crypto Currency Mining (PTN/Enhanced Monitoring model)

·      Device / Initial Breach Chain Compromise (PTN/Enhanced Monitoring model)

·      Device / Internet Facing Device with High Priority Alert

·      Device / New User Agent

Darktrace RESPOND (Antigena) actions (displayed in example)

·      Antigena / Network / Compliance / Antigena Crypto Currency Mining Block

·      Antigena / Network / External Threat / Antigena File then New Outbound Block

·      Antigena / Network / External Threat / Antigena Suspicious Activity Block

·      Antigena / Network / External Threat / Antigena Suspicious File Block

·      Antigena / Network / Significant Anomaly / Antigena Block Enhanced Monitoring

MITRE ATT&CK Techniques Observed
IOCs

References:

[1] https://securitybrief.asia/story/why-preventing-zero-day-attacks-is-crucial-for-businesses

[2] https://electricenergyonline.com/energy/magazine/1150/article/Security-Sessions-More-Dangerous-Than-Zero-Days-The-N-Day-Threat.htm

[3] https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/

[4] https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=SonicWall+2021 

[5] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-20016

[6] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26084

[7] https://www.zdnet.com/article/us-cybercom-says-mass-exploitation-of-atlassian-confluence-vulnerability-ongoing-and-expected-to-accelerate/

[8] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-26134

[9] https://attack.mitre.org/software/S0599/

[10] https://www.virustotal.com/gui/ip-address/195.19.192.28/detection 

[11] https://sysdig.com/blog/zoom-into-kinsing-kdevtmpfsi/

[12] https://github.com/alt3kx/CVE-2021-26084_PoC

[13] https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/2791320/nsa-cisa-release-guidance-on-selecting-and-hardening-remote-access-vpns/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Lewis Morgan
Cyber Analyst

More in this series

No items found.

Blog

/

/

April 29, 2025

MFA Under Attack: AiTM Phishing Kits Abusing Legitimate Services

fingerprintDefault blog imageDefault blog image

In late 2024 and early 2025, the Darktrace Security Operations Center (SOC) investigated alerts regarding separate cases of Software-as-a-Service (SaaS) account compromises on two customer environments that presented several similarities, suggesting they were part of a wider phishing campaign.

This campaign was found to leverage the project collaboration and note-taking application, Milanote, and the Tycoon 2FA phishing kit.

Legitimate services abused

As highlighted in Darktrace's 2024 Annual Threat Report [1], threat actors are abusing legitimate services, like Milanote, in their phishing campaigns. By leveraging these trusted platforms and domains, malicious actors can bypass traditional security measures, making their phishing emails appear benign and increasing the likelihood of successful attacks.

Darktrace categorizes these senders and platforms as free content senders. These services allow users to send emails containing custom content (e.g., files) from fully validated, fixed service address belonging to legitimate corporations. Although some of these services permit full body and subject customization by attackers, the structure of these emails is generally consistent, making it challenging to differentiate between legitimate and malicious emails.

What is Tycoon 2FA?

Tycoon 2FA is an Adversary-in-the-Middle (AitM) phishing kit, first seen in August 2023 and distributed via the Phishing-as-a-Service (PhaaS) model [2]. It targets multi-factor authentication (MFA) by intercepting credentials and MFA tokens during authentication on fake Microsoft or Google login pages. The attacker captures session cookies after MFA is completed, allowing them to replay the session and access the user account, even if credentials are reset. The rise in MFA use has increased the popularity of AitM phishing kits like Tycoon 2FA and Mamba 2FA, another AiTM phishing kit investigated by Darktrace.

Initial access via phishing email

At the beginning of 2025, Darktrace observed phishing emails leveraging Milanote being sent to multiple internal recipients in an organization. In this attack, the same email was sent to 19 different users, all of which were held by Darktrace.

The subject line of the emails mentioned both a legitimate internal user of the company, the company name, as well as a Milanote board regarding a “new agreement” in German. It is a common social engineering technique to mention urgent matters, such as unpaid invoices, expired passwords, or awaiting voicemails, in the subject line to prompt immediate action from the user. However, this tactic is now widely covered in phishing awareness training, making users more suspicious of such emails. In this case, while the subject mentioned a “new agreement,” likely raising the recipient’s curiosity, the tone remained professional and not overly alarming. Additionally, the mention of a colleague and the standardized language typical of free content sender emails further helped dispel concerns regarding the email.

These emails were sent by the legitimate address support@milanote[.]com and referenced "Milanote" in the personal field of the header but originated from the freemail address “ahnermatternk.ef.od.13@gmail[.]com”. Darktrace / EMAIL recognized that none of the recipients had previously received a file share email from Milanote, making this sender unfamiliar in the customer's email environment

The emails contained several benign links to legitimate Milanote endpoints (including an unsubscribe link) which were not flagged by Darktrace. However, they also included a malicious link designed to direct recipients to a pre-filled credential harvesting page hosted on Milanote, prompting them to register for an account. Despite not blocking the legitimate Milanote links in the same email, Darktrace locked the malicious link, preventing users from visiting the credential harvester.

Credential harvesting page sent to recipients, as seen in. sandbox environment.
Figure 1: Credential harvesting page sent to recipients, as seen in. sandbox environment.

Around one minute later, one recipient received a legitimate email from Milanote confirming their successful account registration, indicating they had accessed the phishing page. This email had a lower anomaly score and was not flagged by Darktrace / EMAIL because, unlike the first email, it did not contain any suspicious links and was a genuine account registration notification. Similarly, in the malicious Milanote email, only the link leading to the phishing page was blocked, while the benign and legitimate Milanote links remained accessible, demonstrating Darktrace’s precise and targeted actioning.

A legitimate and a malicious Milanote email received by one recipient.
Figure 2: A legitimate and a malicious Milanote email received by one recipient.

Around the same time, Darktrace / NETWORK observed the same user’s device making DNS query for the domain name “lrn.ialeahed[.]com” , which has been flagged as a Tycoon 2FA domain [2], suggesting the use of this phishing platform.

Once the user had entered their details in the credential harvester, it is likely that they were presented a document hosted on Milanote that contained the final payload link – likely hidden behind text instructing users to access a “new agreement” document.

External research indicates that the user was likely directed to a Cloudflare Turnstile challenge meant to reroute unwanted traffic, such as automated security scripts and penetration testing tools [2] [3]. After these checks and other background processes are completed, the user is directed to the final landing page. In this case, it was likely a fake login prompt hosted on the attacker’s server, where the user is asked to authenticate to their account using MFA. By burrowing malicious links and files in this manner, threat actors can evade analysis by traditional security email gateways, effectively bypassing their protection.

Darktrace’s analysis of the structure and word content of the phishing emails resulted in an 82% probability score that the email was malicious, and the email further received a 67% phishing inducement score, representing how closely the structure and word content of the emails compared to typical phishing emails.

All these unusual elements triggered multiple alerts in Darktrace / EMAIL, focusing on two main suspicious aspects: a new, unknown sender with no prior correspondence with the recipients or the environment, and the inclusion of a link to a previously unseen file storage solution.

Milanote phishing email as seen within Darktrace / EMAIL.
Figure 3: Milanote phishing email as seen within Darktrace / EMAIL.

After detecting the fifth email, the “Sender Surge” model alert was triggered in Darktrace / EMAIL due to a significant number of recipients being emailed by this new suspicious sender in a short period. These recipients were from various departments across the customer’s organization, including sales, marketing, purchasing, and production. Darktrace / EMAIL determined that the emails were sent to a highly unusual group of internal recipients, further raising doubts about the business legitimacy.

Darktrace / EMAIL suggested actions to contain the attack by holding all Milanote phishing emails back from recipient’s inboxes, except for the detailed email with locked links. However, autonomous actions were not enabled at the time, allowing the initial email to reach recipients' inboxes, providing a brief window for interaction. Unfortunately, during this window, one recipient clicked on the Milanote payload link, leading to the compromise of their account.

SaaS account takeover

About three minutes after the malicious Milanote email was received, Darktrace / IDENTITY detected an unusual login to the email recipient’s SaaS account. The SaaS actor was observed accessing files from their usual location in Germany, while simultaneously, a 100% rare login occurred from a location in the US that had never been seen in the customer’s environment before. This login was also flagged as suspicious by Microsoft 365, triggering a 'Conditional Access Policy' that required MFA authentication, which was successfully completed.

Tycoon 2FA adnimistration panel login page dated from October 2023 [3].
Figure 4: Tycoon 2FA adnimistration panel login page dated from October 2023 [3].

Despite the successful authentication, Darktrace / IDENTITY recognized that the login from this unusual location, coupled with simultaneous activity in another geographically distant location, were highly suspicious. Darktrace went on to observe MFA-validated logins from three separate US-based IP addresses: 89.185.80[.]19, 5.181.3[.]68, and 38.242.7[.]252. Most of the malicious activity was performed from the latter, which is associated with the Hide My Ass (HMA) VPN network [5].

Darktrace’s detection of the suspicious login from the US while the legitimate user was logged in from Germany.
Figure 5: Darktrace’s detection of the suspicious login from the US while the legitimate user was logged in from Germany.
Darktrace’s detection of the suspicious login following successful MFA authentication.
Figure 6: Darktrace’s detection of the suspicious login following successful MFA authentication.

Following this, the malicious actor accessed the user’s inbox and created a new mailbox rule named “GTH” that deleted any incoming email containing the string “milanote” in the subject line or body. Rules like this are a common technique used by attackers to leverage compromised accounts for launching phishing campaigns and concealing replies to phishing emails that might raise suspicions among legitimate account holders. Using legitimate, albeit compromised, accounts to send additional phishing emails enhances the apparent legitimacy of the malicious emails. This tactic has been reported as being used by Tycoon 2FA attackers [4].

The attacker accessed over 140 emails within the legitimate user’s inbox, including both the inbox and the “Sent Items” folder. Notably, the attacker accessed five emails in the “Sent Items” folder and modified their attachments. These emails were mainly related to invoices, suggesting the threat actor may have been looking to hijack those email threads to send fake invoices or replicate previous invoice emails.

Darktrace’s Cyber AI AnalystTM launched autonomous investigations into the individual events surrounding this suspicious activity. It connected these separate events into a single, broad account takeover incident, providing the customer with a clearer view of the ongoing compromise.

Cyber AI Analyst’s detection of unusual SaaS account activities in a single incident.
Figure 7: Cyber AI Analyst’s detection of unusual SaaS account activities in a single incident.
Cyber AI Analyst investigation of suspicious activities performed by the attacker.
Figure 8: Cyber AI Analyst investigation of suspicious activities performed by the attacker.

Darktrace's response

Within three minutes of the first unusual login alert, Darktrace’s Autonomous Response intervened, disabling the compromised user account for two hours.

As the impacted customer was subscribed to the Managed Threat Detection Service, Darktrace’s SOC team investigated the activity further and promptly alerted the customer’s security team. With the user’s account still disabled by Autonomous Response, the attack was contained, allowing the customer’s security team valuable time to investigate and remediate. Within ten minutes of receiving the alert from Darktrace’s SOC, they reset the user’s password, closed all active SaaS sessions, and deleted the malicious email rule. Darktrace’s SOC further supported the customer through the Security Operations Service Support service by providing information about the data accessed and identifying any other affected users.

Autonomous Response actions carried out by Darktrace / IDENTITY to contain the malicious activity
Figure 9: Autonomous Response actions carried out by Darktrace / IDENTITY to contain the malicious activity.

A wider Milanote phishing campaign?

Around a month before this compromise activity, Darktrace alerted another customer to similar activities involving two compromised user accounts. These accounts created new inbox rules named “GFH” and “GVB” to delete all incoming emails containing the string “milanote” in their subject line and/or body.

The phishing emails that led to the compromise of these user accounts were similar to the ones discussed above. Specifically, these emails were sent via the Milanote platform and referenced a “new agreement” (in Spanish) being shared by a colleague. Additionally, the payload link included in the phishing emails showed the same UserPrincipalName (UPN) attribute (i.e., click?upn=u001.qLX9yCzR), which has been seen in other Milanote phishing emails leveraging Tycoon 2FA reported by OSINT sources [6]. Interestingly, in some cases, the email also referenced a “new agreement” in Portuguese, indicating a global campaign.

Based on the similarities in the rule’s naming convention and action, as well as the similarities in the phishing email subjects, it is likely that these were part of the same campaign leveraging Milanote and Tycoon 2FA to compromise user accounts. Since its introduction, the Tycoon 2FA phishing kit has undergone several enhancements to increase its stealth and obfuscation methods, making it harder for security tools to detect. For example, the latest versions contain special source code to obstruct web page analysis by defenders, prevent users from copying meaningful text from the phishing webpages, and disable the right-click menu to prevent offline analysis [4].

Conclusion

Threat actors are continually employing new methods to bypass security detection tools and measures. As highlighted in this blog, even robust security mechanisms like MFA can be compromised using AitM phishing kits. The misuse of legitimate services such as Milanote for malicious purposes can help attackers evade traditional email security solutions by blurring the distinction between legitimate and malicious content.

This is why security tools based on anomaly detection are crucial for defending against such attacks. However, user awareness is equally important. Delays in processing can impact the speed of response, making it essential for users to be informed about these threats.

Appendices

References

[1] https://www.darktrace.com/resources/annual-threat-report-2024

[2] https://www.validin.com/blog/tycoon_2fa_analyzing_and_hunting_phishing-as-a-service_domains

[3] https://blog.sekoia.io/tycoon-2fa-an-in-depth-analysis-of-the-latest-version-of-the-aitm-phishing-kit/#h-iocs-amp-technical-details

[4] https://blog.barracuda.com/2025/01/22/threat-spotlight-tycoon-2fa-phishing-kit

[5] https://spur.us/context/38.242.7.252    

[6] https://any.run/report/5ef1ac94e4c6c1dc35579321c206453aea80d414108f9f77abd2e2b03ffbd658/be5351d9-53c0-470b-8708-ee2e29300e70

Indicators of Compromise (IoCs)

IoC         Type      Description + Probability

89.185.80[.]19 - IP Address - Malicious login

5.181.3[.]68 - IP Address -Malicious login

38.242.7[.]252 - IP Address - Malicious login and new email inbox rule creation -  Hide My Ass VPN

lrn.ialeahed[.]com – Hostname - Likely Tycoon 2FA domain

Darktrace Model Detections

Email alerts

Platforms / Free Content Sender + High Sender Surge

Platforms / Free Content Sender + Sender Surge

Platforms / Free Content Sender + Unknown Initiator

Platforms / Free Content Sender

Platforms / Free Content Sender + First Time Recipient

Unusual / New Sender Surge

Unusual / Sender Surge

Antigena Anomaly / High Antigena Anomaly

Association / Unknown Sender

History / New Sender

Link / High Rarity Link to File Storage

Link/ Link To File Storage

Link / Link to File Storage + Unknown Sender

Link / Low Link Association

Platforms / Free Content Sender + First Time Initiator

Platforms / Free Content Sender + Unknown Initiator + Freemail

Platforms / Free Content Sender Link

Unusual / Anomalous Association

Unusual / Unlikely Recipient Association

IDENTITY

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Compromise / Login from Rare High Risk Endpoint

SaaS / Access / M365 High Risk Level Login

SaaS / Compromise / Login From Rare Endpoint While User Is Active

SaaS / Access / MailItemsAccessed from Rare Endpoint

SaaS / Unusual Activity / Multiple Unusual SaaS Activities

SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

SaaS / Compliance / Anomalous New Email Rule

SaaS / Compromise / Unusual Login and New Email Rule

SaaS / Compromise / SaaS Anomaly Following Anomalous Login

Antigena / SaaS / Antigena Suspicious SaaS Activity Block

Antigena / SaaS / Antigena Enhanced Monitoring from SaaS User Block

Antigena / SaaS / Antigena Unusual Activity Block

Antigena / SaaS / Antigena Suspicious SaaS and Email Activity Block

Cyber AI Analyst Incident

Possible Hijack of Office365 Account

MITRE ATT&CK Mapping

Tactic – Technique

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - Cloud Accounts

INITIAL ACCESS - Phishing

CREDENTIAL ACCESS - Steal Web Session Cookie

PERSISTENCE - Account Manipulation

PERSISTENCE - Outlook Rules

RESOURCE DEVELOPMENT - Email Accounts

RESOURCE DEVELOPMENT - Compromise Accounts

Continue reading
About the author
Alexandra Sentenac
Cyber Analyst

Blog

/

/

April 29, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI